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Abstract
We describe and evaluate a character-level tagger for language-independent Named Entity
Recognition (NER). Instead of words, a sentence is represented as a sequence of characters.
The model consists of stacked bidirectional LSTMs which inputs characters and outputs tag
probabilities for each character. These probabilities are then converted to consistent word level
named entity tags using a Viterbi decoder. We are able to achieve close to state-of-the-art NER
performance in seven languages with the same basic model using only labeled NER data and no
hand-engineered features or other external resources like syntactic taggers or Gazetteers.

1 Introduction

Named Entity Recognition is commonly formulated as a word-level tagging problem where each word
in the sentence is mapped to a named entity tag. A typical approach is to slide a window over each word
position to extract features for a classifier that produces tags. Moreover, one can allow the classifica-
tions at adjacent positions to interact by chaining local classifiers together and perform joint inference.
To achieve good performance, one has to overcome the data sparsity problem in the labeled training
data. This is achieved by handcrafting good word-level features by exploiting affix, capitalization, or
punctuation (Zhang and Johnson, 2003), using the output of syntactic analyzers (part-of-speech tag-
gers, chunkers) and external resources such as gazetteers, word embeddings, word cluster ids to improve
performance further (Turian et al., 2010; Ratinov and Roth, 2009). These solutions require significant
engineering effort or language specific resources that are not readily available in all languages of interest.

It is even harder to design a multilingual model with handcrafted features considering each language
offers different challenges. A distinguishing feature for one language may not be informative for another.
For example, capitalization (a typical feature for English NER) is not a distinguishing orthographic
feature for the Arabic script. Models for languages with agglutinative or inflectional morphologies may
need to utilize the output of a language specific morphological analyzer. In some morphologically rich
languages, production of hundreds of words from a given root is common, which makes models even
more susceptible to the data sparsity problem.

This work is motivated by the desire to eliminate the tedious work of feature engineering, language
specific syntactic and morphological analyzers, and language specific lexical or named-entity resources
which are considered necessary to accomplish good performance on Named Entity Recognition. We
accomplish this by combining the following ideas: First, instead of considering entire words as the basic
input features, we take the characters as the primary representation as in (Klein et al., 2003; Gillick et al.,
2016). Second, we use a stacked bidirectional Long Short Term Memory (LSTM) model (Hochreiter and
Schmidhuber, 1997) which is able to operate on sequential data of arbitrary length and encode observed
patterns in its memory at different scales. Finally, we use a Viterbi decoder to convert the character level
tag probabilities produced by the LSTM into consistent word level tags.

Considering characters as the primary representation proves fruitful in several ways. Characters pro-
vide sub-word-level syntactic, morphological, and orthographic information that can be directly ex-
ploited by our model, whereas word-based models have to incorporate this information using feature
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engineering. Furthermore, useful sub-word features may vary from language to language, which our
model can automatically learn but word-based models would have to incorporate using language-specific
resources and features. Finally, character-based models reduce the size of the input vocabulary compared
to word-level models, using fewer parameters, increasing computational and statistical efficiency.

We report results similar to or better than the state-of-the-art in resource-free Named Entity Recogni-
tion in seven languages. Moreover, our proposed model is not limited to Named Entity Recognition in
particular and can be applied to other tagging tasks such as part-of-speech tagging.

In the rest of the paper we discuss related work in Section 2, detail our model and describe the in-
put/output representation, stacked bidirectional LSTMs and inference details in Section 3. In section 4,
we describe evaluation datasets in detail and present our experiments and results. Section 5 summarizes
our contributions.

2 Related Work

In this section, we first outline the previous work on NER with word-level inputs then move onto
character-based NER models. Next, we summarize the applications of character-based models in NLP
in general.

2.1 Word based NER

Early successful studies on NER use hand-crafted features and language specific name lists with word-
level classifiers. Both of the first place submissions in CoNLL-2002 (Spanish & Dutch), CoNLL-2003
(English & German) NER shared tasks (Carreras et al., 2002; Florian et al., 2003) use a rich set of
handcrafted features along with gazetteers to achieve top performance. Subsequently, semi-supervised
approaches (Ando and Zhang, 2005; Suzuki and Isozaki, 2008; Turian et al., 2010) have reported better
results by utilizing large unlabeled corpora. Demir and Ozgur (2014) employs a semi-supervised learning
approach to achieve best result for Czech. Darwish (2013) exploits cross-lingual features and knowledge
bases from English data sources to achieve the top performance on Arabic. The current state-of-the-art
system for Turkish (Seker and Eryigit, 2012) is based on Conditional Random Field (CRF) and utilizes
language dependent features along with gazetteers.

2.2 Character based NER

Klein et al. (2003) introduce a Hidden Markov Model (HMM) with character-level inputs to alleviate
the data sparsity problem inherent in word-level inputs. Their character-level HMM achieves a 30%
error reduction over an HMM with word-level inputs. However, the character-level HMM suffers from
unrealistic independence assumptions and it is not able to compete with their best system where they
utilize a maximum-entropy conditional Markov model using richer set of features (word, all substrings
of the word, part-of-speech and chunk tags). Ma and Hovy (2016) utilize pretrained word embeddings
and character-level representation of a word by using a combination of Convolutional Neural Network
(CNN), bidirectional LSTM and CRF. They report the best published result for English. Lample et al.
(2016) also utilize characters to construct word representations with LSTM-CRF model and relies on
unsupervised word representations extracted from unannotated corpora. They announce the best results
for German and Spanish. Gillick et al. (2016) adapt the sequence-to-sequence model used for machine
translation (Sutskever et al., 2014) to part-of-speech tagging and NER. The model inputs the text as
sequence of bytes and outputs span annotations of the form (phrase start byte, length of the phrase
in bytes, type of the phrase). Our model CharNER has a similar input/output representation with the
character-based HMM of (Klein et al., 2003) and employs a much more compact network than (Gillick
et al., 2016).

2.3 Other character-based models

Character-based models have been used successfully for NLP tasks other than NER as well. Depending
on the nature of the task, characters are utilized in two different ways. One line of work uses characters to
form a word representation for each token in a sentence (Kim et al., 2015; Ling et al., 2015a; Ballesteros
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et al., 2015). Alternatively character representations are used without mapping to words first (Klein et
al., 2003; Zhang and LeCun, 2015; Ling et al., 2015b; Dhingra et al., 2016).

Ling et al. (2015a) construct vector representations of words by composing characters using bidirec-
tional LSTMs and Kim et al. (2015) employs a convolutional neural network (CNN) over characters
to form word representations. Ling et al. (2015a) achieve state-of-the-art results in language modeling
and part-of-speech tagging by utilizing these word representations. Kim et al. (2015) use word repre-
sentations constructed by CNN with recurrent neural network for language modeling. They show that
taking characters as the primary representation is sufficient to encode both semantic and orthographic
information and their model is on par with the existing state-of-the-art despite having significantly fewer
parameters. Ballesteros et al. (2015) employs the same strategy with (Ling et al., 2015a) to represent
each token for a continuous-state dependency parsing model. They show that the parsing model benefits
from incorporating the character-based encodings of words for morphologically rich languages.

Zhang and LeCun (2015) demonstrate that convolutional neural networks are successful at mapping
characters directly to ontology/sentiment classes and text categories. Ling et al. (2015b) introduce a
neural machine translation model that views the input and output sentences as sequences of characters
rather than words. They show that the model is capable of interpreting and generating unseen word
forms. They achieve translation results that are on par with conventional word-based models. Dhingra et
al. (2016) proposes a model which finds vector space representations of whole tweets by utilizing char-
acter sequences rather than words. Their model performs significantly better compared to word-based
counterpart when the input contains many out-of-vocabulary words or unusual character sequences.

3 Model

In this section we outline the architecture of our model, CharNER. We first define the input/output rep-
resentation. Next we provide preliminary background on LSTMs and bidirectional LSTMs. Then we
explain the deep stacked bidirectional LSTM network used in CharNER. Finally, we detail the decoding
process.

3.1 Input/Output Representation

Since Named Entity Recognition is proposed as a word-level tagging problem, all of the proposed data
sets use word-level tags to denote named entity phrases. A named entity (NE) phrase may span multiple
words, hence a NE tag is composed of concatenation of a position indicator (B- Beginning, I- Inside) and
a NE type (PER, ORG, LOC, ...). In addition, an O tag indicates that a token is not inside a NE phrase.
A named entity phrase starts with a B- tag and if it consists of multiple words, the following word tags
are prefixed with I-.

Our model, however, examines a sentence as a sequence of characters and outputs a tag distribution for
each character. Therefore, we convert word-level tags to character-level tags. We abandon the position
indicator prefixes (B-, I-) and use phrase types (PER, ORG, ...) directly as character tags. If a character
subsequence in a sentence constitutes a NE phrase, all of the characters in that subsequence (including
spaces) receive the same NE phrase tag. Otherwise, characters get the outside tag (O). Figure 1 shows
word-level and character-level tags for an example sentence.

John works for Globex Corp. .
B-PER O O B-ORG I-ORG O

J o h n w o r k s f o r G l o b e x C o r p . .
P P P P O O O O O O O O O O O G G G G G G G G G G G G O O

Figure 1: An example sentence with word level and character level NER tags.
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3.2 Long Short-Term Memory
Recurrent Neural Networks (RNN) have recently achieved state of the art results in natural language pro-
cessing tasks such as language modeling (Mikolov et al., 2010), parsing (Dyer et al., 2015), and machine
translation (Sutskever et al., 2014). One major problem with simple RNNs is that they are difficult to
train for long term dependencies due to the vanishing and the exploding gradient problems (Bengio et
al., 1994). Hochreiter and Schmidhuber (1997) developed Long Short-Term Memory (LSTM) to over-
come the long term dependency problem. They introduced a special memory cell which is controlled by
input, output and forget gates. The input gate controls how much new information should be added to
current cell, the forget gate controls what old information should be deleted. The output gate controls
the information flow from the cell to the output. Many variants of the LSTM have been developed, in
this study we use the LSTM architecture with peephole connections which was proposed by Gers et al.
(2000). The LSTM memory cell is defined by the following equations1:

ft = σ(Wfxxt + Wfhht−1 + wfc ∗ ct−1 + bf )
it = σ(Wixxt + Wihht−1 + wic ∗ ct−1 + bi)
ct = ft ∗ ct−1 + it ∗ tanh(Wcxxt + Wchht−1 + bc)
ot = σ(Woxxt + Wohht−1 + woc ∗ ct + bo)
ht = ot ∗ tanh(ct)

where σ is the logistic sigmoid function, tanh is the hyperbolic tangent function and ∗ is element wise
multiplication. f , i and o are the forget, input and output gates respectively, c denotes the cell vector,
and h is the hidden state vector. All gate vectors and the cell vector have the same dimensionality as
the hidden state vector. Bold upper case letters stand for matrices, lowercase variables are vectors, and
subscripts indicate the connection (e.g. Wfx : input to forget gate weight matrix).

3.3 Bidirectional LSTMs
It is a common approach to use both preceding and following tokens to derive features for the current
token in natural language processing tasks. If we look at the LSTM equations, the current output depends
only on previous inputs, the initial cell value and hidden state. Graves and Schmidhuber (2005) proposed
bidirectional LSTM (BLSTM) to gain information from future inputs. In a BLSTM, two LSTM compo-
nents are present, namely the forward LSTM and the backward LSTM. The forward LSTM traverses the
sequence in the forward direction and the backward LSTM traverses same sequence in the reverse order
using ht+1 and ct+1 are used instead of ht−1 and ct−1 for the gate calculations. For example, input gate
at time t is calculated using the following:

it = σ(Wixxt + Wihht+1 + wic ∗ ct+1 + bi)

In a bidirectional model the output at time t depends on both the forward hidden state
−→
ht and the backward

hidden state
←−
ht .

3.4 Deep BLSTMs
The CharNER model uses bidirectional stacked LSTMs (Graves et al., 2013) to map character sequences
to tag sequences. Figure 2 demonstrates the model overview. The network takes characters as the input
sequence and each character is fed into the first forward and backward LSTM layers as one-hot vectors.
The output of the first forward and backward layers are concatenated and fed into the next layer. The
same process is carried on for the additional BLSTM layers. To obtain the distribution over the tag at
position t, an affine transformation followed by a softmax is applied to the hidden representation of the
final BLSTM.

1We denote matrices with bold upper case letters and vectors with lower case letters.
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Figure 2: CharNER model: 5-layer Bidi-
rectional LSTM Network with a Viterbi
decoder. Each square and diamond node
represents a forward and backward hid-
den LSTM layer, respectively. Circles de-
note the output layer (i.e. softmax layer).
Solid lines show forward connections and
dashed lines show backward connections.
The model takes characters as an input se-
quence and each character is represented
with a one-hot vector (ct). A Viterbi de-
coder takes the sequence of character tag
probabilities that is produced by the soft-
max layer and produces most likely char-
acter tag sequence (y) that is consistent at
the word level.

3.5 Decoder
The deep BLSTM gives us a tag distribution for each character position. In this section we discuss the
final step of turning these character level tag distributions into word level tags.

In early experiments, we observed that the most probable character tags within a word were not always
consistent. For example, the model may assign higher probability to person (P) tags in the beginning of a
word and organization (G) tags at the end of the same word. Even though the deep BLSTM has access to
both left and right input contexts, it is unable to learn word level consistency for output tags. To remedy
this, we use a decoder similar to (Wang et al., 2015).

Given a character sequence c1, c2, ..., cn (henceforth denoted with [c]n1 ), and a tag set y ∈ Y , the de-
coder takes output tag probabilities from the LSTM, o(ci)yi = p(yi | [c]i1, [c]ni ), as emission probabilities
and exploits transition matrices, Aij , that only allow tags consistent within a word. Three types of tran-
sitions can occur between consecutive character tags (yi−1, yi) according to the position of the character
at hand. A character is either followed by a fellow character in the same word (c → c) or it can be the
last character of a word followed by space (c → s) where c denotes a character inside word boundaries
and s denotes the delimiter space. Finally, it can be a space character followed by the first character of
the next word (s→ c). The entries in Table 1 show transition matrices Aij for these three states.

PER ORG O PER ORG O PER ORG O
PER 1 0 0 1 0 1 1 0 0
ORG 0 1 0 0 1 1 0 1 0
O 0 0 1 0 0 1 1 1 1

c→ c c→ s s→ c

Table 1: Example transition matrices for two phrase types (PER, ORG) and Outside (O). c denotes a
character inside word boundaries and s denotes the delimiter space.

The score of a sentence [c]n1 along a path of tags [y]n1 is computed by the product of transition scores
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and model output probabilities:

s([c]n1 , [y]
n
1 ) =

n∏
i=1

Ayi−1yio(ci)yi (1)

The path of tags with the highest sentence score is computed by:

[y∗]n1 = arg max
[y]n1

s([c]n1 , [y]
n
1 ) (2)

To find the path of tags with the highest sentence score we use the Viterbi algorithm (Viterbi, 1967).
Once a character tag sequence is decoded without violating word boundaries, it is trivial to convert these
tags to word-level tags.

4 Experiments

This section presents our experiments and results. We start by describing the evaluation datasets with
their properties. We detail our network training and demonstrate how changing the shape of the network
effects performance. We present the results of our model on a variety of languages and compare with
related work.

4.1 Datasets
In order to evaluate our system, we applied our model to NER datasets in various languages. The shared
tasks of CoNLL-2002 and CoNLL-2003 provide NER data for four languages, Spanish, Dutch, English
and German. In addition to these datasets, we evaluated our model on languages with rich morphologies:
Arabic, Czech and Turkish. The Turkish NER dataset was prepared by (Tür et al., 2003). For Czech,
Konkol and Konopı́k (2013) make the dataset prepared by (Ševčı́ková et al., 2007) CoNLL compatible.
Benajiba et al. (2007) prepared ANERCorp for Arabic Named Entitiy Recognition. All of the datasets
except Turkish and Arabic have conventional training, development and test splits. The Turkish dataset
is provided with training and test sets. We separated a small fraction of the training set for development.
Since the Arabic dataset (ANERCorp) do not have training and test splits, we applied Monte Carlo cross
validation (Arlot et al., 2010) with 3 random runs. All of the datasets are in CoNLL format and we used
the CoNLL evaluation script to report phrase-level F1 scores. Table 2 gives the number of sentences.

Arabic Czech Dutch English German Spanish Turkish
Train 3988 4644 15806 14041 12152 8323 30000
Dev. - 572 2895 3250 2867 1915 2237
Test 7972 577 5195 3453 3005 1517 3336

Table 2: Number of Sentences for Training, Development and Test sets.

In some morphologically rich languages production of hundreds of words from a given root is com-
mon, which increases data sparsity. We present unique, phrase-wide and corpus-wide unknown word
percentages in Table 3 where a word is considered unknown if test set contains it but the word is absent
in training. The Unique row counts an unknown word only once while the Phrase and Corpus rows
consider all the occurrences of an unknown word in NE phrases and the whole test set, respectively.

Arabic Czech Dutch English German Spanish Turkish
Unique 34.88 43.18 43.42 38.92 47.46 26.85 30.08
Phrase 18.82 35.54 39.28 31.27 42.20 18.39 13.82
Corpus 15.52 21.33 10.08 12.18 14.28 6.25 11.22

Table 3: Unknown Word Percentages.

2Randomly sampled with replacement for each run.
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We give a brief comparison word-level and character-level views in Table 4. The number of unique
tokens and average sequence length are indicated for each language. Switching from word-level to
character-level view reduces the number of unique tokens drastically while making the input sequences
longer. For direct comparison we trained and evaluated the same CharNER architecture (5 layer BLSTM
with hidden size of 128) on both word-level and character-level data. The character-level model yields
improved results for all datasets.

Arabic Czech Dutch English German Spanish Turkish

Char
X 136 136 101 85 96 92 100
µl 149 142 70 76 105 173 90
F1 75.12 76.87 79.03 90.75 71.64 79.02 93.58

Word
X 27050 34869 27803 23623 32932 26099 63703
µl 27 25 12 14 17 31 13
F1 74.50 56.77 61.72 84.12 50.68 68.09 91.82

Table 4: Comparison of word-level and character-level views. X denotes the number of unique input
tokens and µl denotes the average sequence length. F1 gives the best scores achieved on development
sets when the same architecture is used on both word-level and character-level data.

4.2 Network Training

We use Adam (Kingma and Ba, 2014) for the gradient based training of the network3 and we find that the
default parameters given in the original study work well for this task. We update our network parameters
after each mini-batch of 32 sentences. Before mini-batching, we sorted sentences according to character
length to group sentences with similar lengths to speed up training. Also, we shuffle the order of mini-
batches prior to each epoch. We use 5 BLSTM layers of size 128 (both forward and backward) stacked on
top of each other and apply dropout (Srivastava et al., 2014) to outputs of each layer including the input
layer. When no dropout is used, the network overfits the training data quickly and loses the generalization
power. Notice that dropout at the input layer turns off bits of characters at random positions in the
sequence. Applying dropout to character sequences yields +2 F1 score (absolute). To stabilize the
network training, we use gradient norm clipping to prevent gradients from diverging (Pascanu et al.,
2012). We set the maximum total norm of the gradients as 1. We tested several configurations of
hyperparameters of the network and picked parameters that work well across the all seven languages.
Although one may obtain further improvements by tuning hyperparameters as well as depth and width
of the network for each dataset individually, we kept the hyperparameters and model configuration same
for each language to demonstrate that one can achieve adequate results with the same model across many
languages.

Hidden Size
Depth 64 128 256

1 52.06 56.27 57.98
2 60.31 68.72 70.77
3 67.22 71.09 70.84
4 70.16 71.70 71.60
5 70.79 72.19 70.53

Table 5: F1 scores on Czech test set for networks with different depths and hidden sizes. Depth denotes
the number of layers the network has and Hidden Size denotes the number of hidden units for each layer.
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4.3 Network Shape
We experimented with different configurations by varying the number of layers the network has (depth)
and number of hidden units in each layer (width). We evaluated different volumed networks on Czech
dataset which is modest in size and have conventional training, development and test splits. We summa-
rized the results in Table 5.

Table 5 shows that increasing the depth of the model is more beneficial than increasing the width of
the model. Although the wider model (width=256) yields better results when the network is shallow, its
advantage disappears as the network gets deeper. Nevertheless, performance of narrow model (width=64)
is limited compared to the model with medium width (width=128).

4.4 Need for a Decoder
As discussed in Section 3.5, the deep BLSTM does not output probabilities that always favor a single tag
within a word. Character level NER is a structured learning problem, i.e. there are dependencies between
the outputs that are difficult to capture by the deep BLSTM which only has access to the input sequence.
To quantify the effect of capturing these dependencies, we ran a simpler baseline model for comparison.
We did not apply Viterbi decoding to the output probability distributions of the network and picked the
most probable tag for each character. Then, we used majority voting between characters of the same
word to assign single tag to a word. With this scheme, we observed 2 F1 (absolute) performance drop on
Czech dataset.

4.5 Results and Discussion
Here we present the performance of our model on languages with diverse characteristics. Since our
model only uses the labeled training data, and no external resources such as gazetteers, we selected
previous works which report the top scores without use of any additional data to make a fair comparison.
We also included the best results which do make use of arbitrary external resources for each language.
We summarized all the comparisons in Table 6.

The results highlight that our model attains good performance and it is robust across variety of lan-
guages. We achieve similar to or better than the state-of-the-art in Named Entity Recognition that use no
external resources. Abdul-Hamid and Darwish (2010) employ a CRF sequence labeling model which is
trained on features that primarily use character n-gram of leading and trailing letters in words and word
n-grams. They assert that the proposed features help overcome some of the morphological and ortho-
graphic complexities of Arabic. Although they do not utilize any external resource, they apply Arabic
specific input preprocessing before training which may be the reason for better performance. Demir
and Ozgur (2014) employs a window-based classifier approach with language independent features for

Arabic Czech Dutch English German Spanish Turkish

Best
84.30 [1] 75.61 [2] 82.84 [3] 91.21 [4] 78.76 [5] 85.75 [5] 91.94 [6]
79.90 68.38 78.08 80.79 - - 82.28

Best w/o External 81.00 [7] 68.38 [2] 78.08 [3] 84.57 [3] 72.08 [3] 81.83 [3] 89.73 [2]
CharNER 78.72 72.19 79.36 84.52 70.12 82.18 91.30

Table 6: Phrase-level F1 scores. The bottom row presents our model’s results across seven languages.
The middle row consists of models that report the top scores while not using any external resources,
comparable to our model. The top row presents state-of-the-art models that achieve the best results in
each language utilizing external resources like word embeddings or Gazetteers. The top row also reports
the scores of best models when they only use NER training data, if available. Works are numbered in
the order of appearance: [1] (Darwish, 2013), [2] (Demir and Ozgur, 2014), [3] (Gillick et al., 2016), [4]
(Ma and Hovy, 2016), [5] (Lample et al., 2016), [6] (Seker and Eryigit, 2012), [7] (Abdul-Hamid and
Darwish, 2010)

3Code repository: https://github.com/ozanarkancan/char-ner
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Czech and Turkish. We outperform their results by a considerable margin for both languages. Gillick
et al. (2016) reports the top scores with no external resources for Dutch, English, German and Spanish.
They achieve higher F1 score for German dataset, however, our model performs better for Dutch and
Spanish despite having 50% less parameters. Our result is on par with (Gillick et al., 2016) for English
dataset.

Most state-of-the-art NER models are obtained by handcrafting good word-level features and generally
utilizing external information sources. Models usually resort to additional training resources: (1) when
training and test set are not from the same data generating distribution (English) or (2) training set is small
(Arabic and Czech). Ma and Hovy (2016) report the best published F1 score (91.21%) for CoNLL-2003
English dataset. Without pretrained word embeddings however, their model loses approximately 10 F1
score (absolute). Lample et al. (2016) also relies on unsupervised word representations extracted from
unannotated corpora. They announce the best results for German and Spanish datasets. On the other
hand, Demir and Ozgur (2014) utilize pretrained word embeddings along with their corresponding word
cluster ids to achieve top performance on Czech dataset. Darwish (2013) outperforms (Abdul-Hamid and
Darwish, 2010) by 3.4 F1 score by exploiting cross-lingual features and knowledge bases from English
data sources. Moreover, language specific expertise can be incorporated to improve the performance.
The current state-of-the-art system for Turkish (Seker and Eryigit, 2012) achieves 91.94% F1 score by
using language dependent features along with gazetteers. Finally, Gillick et al. (2016) achieves the best
result for Dutch by using concatenated Dutch, English, German, Spanish training sets as one. Even
though we do not use any additional training source, the performance of our model is competitive for
Czech, Dutch, Spanish and Turkish.

5 Contributions

We describe a character-level tagger employing a deep bidirectional LSTM architecture and evaluate it
on the Named Entity Recognition task. We showed that taking characters as the primary representation
is superior to considering words as the basic input unit. Our main contribution is to show that the same
deep character level model is able to achieve good performance on multiple languages without hand
engineered features or language specific external resources.

In our current research, we are exploring ways to boost the performance of our model using semi-
supervised and transfer learning. Moreover, our method may be promising for languages written without
space characters such as Chinese and Japanese since word segmentation error affects the score of NER.
Also, there is nothing specific to NER in our model, we are planning to evaluate it on other tasks such as
part-of-speech tagging and shallow parsing.
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