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Abstract

Linguistic typology provides features that have a potential of uncovering deep phylogenetic re-
lations among the world’s languages. One of the key challenges in using typological features for
phylogenetic inference is that horizontal (spatial) transmission obscures vertical (phylogenetic)
signals. In this paper, we characterize typological features with respect to the relative strength of
vertical and horizontal transmission. To do this, we first construct (1) a spatial neighbor graph
of languages and (2) a phylogenetic neighbor graph by collapsing known language families. We
then develop an autologistic model that predicts a feature’s distribution from these two graphs.
In the experiments, we managed to separate vertically and/or horizontally stable features from
unstable ones, and the results are largely consistent with previous findings.

1 Introduction

Centuries of research in historical linguistics have identified groups of languages deriving from single
common ancestors. Each of these groups, called a language family, is organized as a tree that reflects its
evolutionary history. Such language families include Indo-European, Austronesian and Bantu languages.

Despite the huge success, historical linguistics fails to link some languages with others, and hence
they are called language isolates. For example, Basque, Burushaski and Japanese have no established
relatives. Although there are several attempts to uncover deep phylogenetic relations, in which the results
are often represented as macrofamilies, they remain controversial (Dolgopolsky, 1998; Greenberg, 2000).

We argue that the limitation of the mainstream approach is that it relies on lexical traits. Language
families are established by demonstrating that its member languages share cognates, or words that have
a common etymological origin.1 Lexical data are also the main target of modern statistical methods that
are typically used to date the common ancestor (Swadesh, 1971; Gray and Atkinson, 2003). Language
isolates are called so exactly because they lack reliable cognates.

For this reason, we follow a different line to research that makes use of typological data for phyloge-
netic inference (Tsunoda et al., 1995; Dunn et al., 2005; Teh et al., 2008; Longobardi and Guardiano,
2009; Murawaki, 2015). Linguistic typology is a cross-linguistic study that classifies the world’s lan-
guages according to structural properties such as basic word order (SVO, SOV, etc.) and the presence or
absence of tone. On the one hand, typological features, by definition, allow us to compare an arbitrary
pair of languages including language isolates. On the other hand, they pose several new challenges to us.
While the sharing of cognates is a direct indicator of shared ancestry, the sharing of the same basic word
order SOV, for example, is only a weak signal because it occurred multiple times in multiple places. We
believe that computer-intensive statistical methods can help taming the inherent uncertainty.

In this paper, we give a step forward toward typology-based phylogenetic inference. We specifically
tackle the problem that horizontal (spatial) transmission obscures vertical (phylogenetic) signals. Like

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1In historical linguistics, cognates are distinguished from loanwords. We broadly refer to both the traditional comparative
method and modern statistical methods as lexicon-based approaches because they require cognate identification. Note that
historical linguists often use regular sound changes, in addition to cognates themselves, as features to determine the relative
order of multiple branching events (Pellard, 2009).

836



Figure 1: Map of languages in WALS.

loanwords, typological features can be borrowed from one language to another. In fact, non-tree-like
evolution has been one of the central topics in linguistic typology (Trubetzkoy, 1928). Lexicon-based
approaches, especially statistical ones, often address this problem by narrowing the scope to basic vo-
cabulary, or a list of basic concepts. Words on the list are assumed to be resistant to borrowing (Swadesh,
1971), and some are even claimed to be extremely stable (Pagel et al., 2013). By contrast, typological
features, in their original forms, are a mosaic with varying degrees of resistibility. We need to start with
quantitatively characterizing each typological feature in this respect.

We present a probabilistic model that directly contrasts vertical and horizontal transmission of typolog-
ical features. We begin by noting that anthropologists have worked on similar problems. From this field,
we borrow a graph-based model (Towner et al., 2012) and extend it to model typological features. In this
model, languages of the world are mapped to two neighbor graphs. One encodes vertical transmission
and the other represents horizontal transmission. These two graphs are used to predict the distribution
of a given feature, and the relative strength of the two modes of transmission is inferred. As a practical
application, we use this model to impute missing values that are ubiquitous in the typological database.

In the experiments, we first evaluated the proposed model with missing value imputation and con-
firmed that the proposed model outperformed simple baselines for this task. We then used the model
to estimate the relative strength of the two modes of transmission. Our model managed to separate
vertically and/or horizontally stable features from unstable ones, and the results are largely consis-
tent with previous findings. Our code is available online at https://github.com/yustoris/
autologistic-coling-2016.

2 Data and Preprocessing

As the database of typological features, we used the online edition2 of the World Atlas of Language
Structures (WALS) (Haspelmath et al., 2005). As of 2016, it contained 2,679 languages and 192 features.
The language–feature matrix was very sparse, however. Less than 15% of elements were present. We
focused on 48 features, which covered at least 20% of languages. Some previous studies discarded
languages with few observed features (Murawaki, 2015; Takamura et al., 2016). To avoid an unexpected
bias, we used all but 72 languages in the database. The languages we excluded were sign languages,
pidgins and creoles, which were all classified as other in WALS.

An item of the language–feature matrix was a categorical value. For example, Feature 81A “Order of
Subject, Object and Verb” has 7 possible values, SOV, SVO, VSO, VOS, OVS, OSV and No dominant
order, and every language took one of the 7 values. We used these categorical feature values as they
were. Although the mergers of some fine-grained feature values seem desirable (Daumé III and Camp-
bell, 2007; Greenhill et al., 2010; Dediu, 2010; Dunn et al., 2011), we leave them for future work.

Languages were associated with single-point geographical coordinates (longitude and latitude), as
shown in Figure 1. We constructed a spatial neighbor graph by linking any pair of languages that were
within the distance of R km.3 We set R = 1,000 following da Silva and Tehrani (2016). The average

2http://wals.info/
3Grouping languages by distance is a very rough approximation. Ideally, the spatial neighbor graph should reflect geo-

graphic features such as mountains, rivers and oceans (Bouckaert et al., 2012).
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number of spatial neighbors was 89.1.
We also constructed a weighted variant of the spatial neighbor graph such that spatially distant pairs

of languages carried smaller weight. We set 1− r/R to each edge where r was the distance between the
neighboring languages.

Detailed phylogenetic trees were not provided by WALS, but each language is given two levels of
groupings: family and genus.4 We used genera to construct a phylogenetic neighbor graph in which
every pair of languages within a genus was linked. The average number of linguistic neighbors was 30.8.

3 Background

3.1 Horizontal Transmission in Phylogenetic Inference

Although our ultimate goal is to infer past states of languages of the world, incorporating both vertical and
horizontal transmission into a model is a notoriously difficult task due to excessive flexibility. Although
the conventional tree model also requires a huge search space, it can be handled by computer-intensive
statistical models (Felsenstein, 1981; Gray and Atkinson, 2003). Intuitively, the degree of uncertainty
increases as we trace the states of languages back to the past, but at the same time, the tree model reduces
the degree of freedom by repeatedly merging nodes into a parent. Horizontal transmission brings extra
freedom that currently cannot be modeled without imposing some strong assumptions on it (Nelson-Sathi
et al., 2010).

Most previous studies on phylogenetic inference employ the tree model even if they take horizontal
transmission into account (Greenhill et al., 2010; Dediu, 2010; Dunn et al., 2011). Given typological
features and a tree that is constructed by human experts or a lexicon-based phylogenetic model, they
estimate the rate of change of each typological feature over time. We speculate that if a typological
feature is prone to horizontal transmission, it is likely judged to be unstable by the exclusively vertical
model. However, this cannot be confirmed in a straightforward manner.

Typologists have identified several geographical areas where the distribution of typological features
suggests extensive horizontal transmission (Campbell, 2006). These areas are called linguistic areas,
and features shared there are referred to as areal features. Daumé III (2009) incorporated linguistic
areas into a phylogenetic tree and demonstrated that the use of linguistic areas improved phylogenetic
reconstruction. In his Bayesian generative model, each feature of a language has a latent variable which
determines whether it is derived from an areal cluster or the tree. As shown in Table 2 of his paper,
summary statistics of this variable indicate how likely a feature is transmitted vertically or horizontally.
Although linguistic areas are discussed in depth in linguistic typology, horizontal transmission does not
necessarily result in areal clusters. For this reason, we make a weaker assumption as to the form of
horizontal transmission. We use a single spatial neighbor graph of the world although not all pairs of
languages are reachable in this graph.

3.2 Feature Stability Indices

Instead of reconstructing past states of languages, linguists often draw information from the current
distribution of typological features. They claim that some features are more stable than others. In an
extreme case, it is argued that some features reflect time depth of 10,000 years or more (Nichols, 1994).

With the notion of stability, some typologists try to quantitatively characterize typological features.
They typically devise stability indices through series of deterministic arithmetic operations (Nichols,
1992; Nichols, 1995; Parkvall, 2008; Wichmann and Holman, 2009). This line of research was reviewed
by Wichmann (2015) while Dediu and Cysouw (2013) conducted empirical comparison of several meth-
ods.

The intuition behind these methods is that if the same feature value is shared by a group of languages,
defined vertically or horizontally, the feature in question must be stable. For a given feature, Nichols
(1992) calculated the ratio of languages not taking the modal value in a given group and then computed

4Other resources such as Glottolog (Hammarström et al., 2016) and Ethnologue (Lewis et al., 2014) provide more detailed
hierarchical classifications. However, there seems to be no way of selecting groups of languages at some specific level(s) of
phylogenetic granularity.
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the inter-group average. If groups are defined phylogenetically, the result implies vertical (in)stability and
the same is true of areally defined groups. Parkvall (2008) also considered how often feature values were
shared among a given group but designed a more complex formula to calculate genealogical cohesiveness
CFAM and areal cohesiveness CARE. Here per-group indices are simply averaged. The final stability
index was defined as S = CFAM/CARE. Wichmann and Holman (2009) presented a similar method but
focused on vertical stability. Their stability index was adjusted for unrelated languages.

While we share the basic idea with these previous studies, our model is different from theirs. Instead
of treating each group separately, we directly model the global distribution of a given feature with the
hope that our model captures some universal tendencies. It is built upon a theoretical foundation of prob-
ability theory. Although computer intensive, the model itself is much simpler than series of arithmetic
operations. Finally, we incorporate vertical and horizontal transmission into a single model. Since the
two modes of transmission are directly contrasted, the outcome is more easily interpretable.

3.3 Autologistic Model for Cultural Traits
We find that a parallel can be drawn between anthropology and linguistics with respect to vertical and
horizontal transmission. In anthropology, the two modes of transmission are known as phylogenesis
and ethnogenesis, respectively (Collard and Shennan, 2000). Phylogenesis assumes the transmission
of cultural traits primarily from ancestral to descendant populations while ethnogenesis assumes heavy
influence from transmission between populations. Thus some models developed in the field of anthro-
pology are applicable to linguistic data.

Towner et al. (2012) propose a variant of the autologistic model to contrast vertical and horizontal
transmission. The autologistic model (Besag, 1974) is widely used to model the spatial distribution
of a feature. It assumes that the value of a random variable depends probabilistically on the values
of its neighbors. Towner et al. (2012)’s extension incorporates two neighbor graphs with associated
weight parameters. Once these parameters are inferred from data, the relative strength of the dependency
according to the graphs can be measured.

Towner et al. (2012) applied the autologistic model to cultural traits (features) of Western North Amer-
ican Indian societies, such as the presence or absence of agriculture, the tendency toward exogamy, and
types of social structure. They constructed a spatial neighbor graph using longitude and latitude data
of the societies while a phylogenetic neighbor graph was created by collapsing known language fami-
lies. They empirically demonstrated that both transmission modes were non-negligible for the majority
of traits. The same model was applied to folktales of Indo-European societies by da Silva and Tehrani
(2016). At an intermediary step toward discovering folktales with deep historical roots, the model was
used to filter out those with strong horizontal signals.

Our model is based on Towner et al. (2012)’s but differs mainly in three points. First, the latter
only deals with binary features while we extend the model to handle categorical features. Although the
original database of cultural traits was coded categorically, Towner et al. (2012) chose its small subset by
dropping unsuitable features and by merging feature values. Second, the latter has four model variants
that are compared using model selection criteria. Since the model comparison is performed for a fixed
set of parameters, parameters are chosen by grid search. We omit model comparison for simplicity
and directly optimize parameters with a gradient-based method. Third, since Towner et al. (2012) only
use high-coverage features, they simply drop languages with missing values from the neighbor graphs.
By contrast, the typological database is too sparse to ignore missing values. To cope with the inherent
uncertainty, we resort to a sampling-based method.

3.4 Missing Value Imputation
The idea behind missing value imputation (MVI) of typological features in previous studies is that some
features depends on others. Greenberg (1963) presents several rules that hold true for the world’s lan-
guages, one of which is as follows: In languages with prepositions, the genitive almost always follows
the governing noun, while in languages with postpositions it almost always precedes. In practical ap-
plications, we do not limit our scope to pairs of features but use a set of features to predict missing
features.
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At a preprocessing step, Murawaki (2015) used a variant of multiple correspondence analysis (Josse
et al., 2012) for MVI. Takamura et al. (2016) chose a logistic model to investigate the predictive power
of features. In their experiments, the discriminative classifier was given all but one feature of a given
language and predicted the value of the remaining feature. They repeatedly selected one language for
evaluation and trained the classifier using all other languages in the typological database.

Another idea, which we explore in this paper, is that phylogenetically or spatially close languages
tend to share the same feature value. Note that proximity is implicitly utilized by the dependency-
based approach because languages with similar feature combinations happen to be phylogenetically or
spatially close ones. In fact, Takamura et al. (2016) conducted a type of ablation experiments in which
they modified the training data (1) by removing languages sharing the same ancestor with the target
language or (2) by excluding languages spatially close to the target. They demonstrated that accuracy
dropped in either setting. This implies that vertical and horizontal clues are useful for MVI although they
did not control for the tendency of smaller training data to decrease test accuracy.

In this paper, we exploit phylogenetic and areal proximity more directly for MVI. Note that the
proximity-based approach is complementary to the dependency-based one. A combined model is ex-
pected to improve accuracy, but we leave it for future work.

4 Autologistic Model

4.1 Model

Like feature stability indices explained in Section 3.2, our model assumes that if the same feature value
is shared by a group, the feature in question is stable. However, the collection of such groups is implicitly
represented as a single neighbor graph. For each language, the model counts how many of its neighbors
share the same feature value.

Our model incorporates both phylogenetic and spatial neighbor graphs. Given these graphs, our model
predicts the distribution of each feature. If the same feature values are shared by many pairs of languages
in the phylogenetic graph, it implies a strong vertical association, and the same holds for the spatial
association.

Formally, let x = (x1, x2, · · · , xL) be the sequence of feature values, where xi is the value of the i-th
language and takes one of K categorical values (K differs according to feature types). Given a neighbor
graph, the model checks if a language shares the feature value with its neighbors. For the unweighted
spatial neighbor graph, let S(x) be the number of pairs sharing the same value. For the weighted variant,
the number of pairs is replaced with the sum of the edge weights. Analogously, let T (x) be the number
of pairs in the phylogenetic graph sharing the same value.5 For each feature value k, Uk(x) is the number
of languages taking the value. Then the probability of x is given by

P (x|θ, λ, β) =
exp (θS(x) + λT (x) +

∑
k βkUk(x))∑

x′ exp (θS(x′) + λT (x′) +
∑

k βkUk(x′))
. (1)

The denominator is the normalization term. βk corresponds to the probability of taking the value k if
the two neighbor graphs are not counted. θ and λ are parameters for spatial and phylogenetic associa-
tions, respectively. If θ (λ) is positive, spatial (phylogenetic) neighbors help predicting the value of the
language in question. We estimate θ, λ, and β for each feature type while keeping the same spatial and
phylogenetic neighbor graphs.

4.2 Inference

Given a feature distribution x, we want to infer θ, λ and β. If all languages are present, the objective
function to maximize is log P (x|θ, λ, β). Unfortunately, the typological database is very sparse, and we
have to deal with the inherent uncertainty. Suppose that x is decomposed into the observed portion xobs

and the remaining missing portion xlat. We use the notation xobs ⊕ xlat to recover x. Marginalizing xlat,
5Up to this point, we placed vertical elements before horizontal ones. Hereafter we follow Towner et al. (2012) by reversing

the order in the model description.
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Model
Accuracy (%)

Macro Micro
Global majority 55.30 54.22
Neighborhood 59.20 59.18
Proposed (Spatially unweighted) 61.98 61.97
Proposed (Spatially weighted) 61.84 61.82

Table 1: Results of missing value imputation.

we derive the modified log-likelihood function

L(θ, λ, β; xobs) = log
∑
x′
lat

P (xobs ⊕ x′lat|θ, λ, β). (2)

We perform gradient-based training to maximize the objective. A simple gradient ascent algorithm would
update λ as follows:

λ← λ + ηt
∂L(θ, λ, β; xobs)

∂λ
, (3)

where ηt is a learning rate that decays according to time t. Instead of the simple gradient ascent algorithm,
an adaptive extension of the optimization algorithm called Adam (Kingma and Ba, 2015) is used. θ and
β are updated similarly.

The derivative of the log-likelihood function with respect to λ is

∂L(θ, λ, β; xobs)
∂λ

= Ex′
lat∼P (x′

lat|xobs,θ,λ,β)

[
S(xobs ⊕ x′lat)

]− Ex′∼P (x′|θ,λ,β)

[
S(x′)

]
. (4)

Both terms are computationally intractable due to the combinatorial explosion in the number of possible
state x′. We approximate the expectation with samples. We collect samples of x′ from the probability
distribution and take the average of S(x′) to estimate the expectation. We use Gibbs sampling to gen-
erate samples of x′. They are obtained by iteratively updating x′i, one element of x′ while keeping the
remaining portion x′−i fixed. The next value of x′i is stochastically selected according to

P (x′i = k|x′−i, θ, λ, β) ∝ exp (θgi,k + λhi,k + βk) , (5)

where gi,k is the number of i’s neighbors in the spatial neighbor graph taking the value k (or the sum of the
edge weights for the weighted spatial neighbor graph). hi,k is defined analogously for the phylogenetic
neighbor graph. For the first term of Eq. 4, we only update x′lat while keeping xobs unchanged. All
elements are updated for the second term.

λ and θ are initialized with 0. βk is set to the log-probability of taking the value k in xobs. In this initial
setting, Eq. 5 reduces to the empirical probability according to xobs and forces xlat to largely imitate xobs.

5 Experimental Results

5.1 Missing Value Imputation
We indirectly evaluated the model performance with missing value imputation. If neighboring languages
have some predictive power, our model must predict missing values better than chance. Although we
have no ground truth for the missing portion of the original database, we can evaluate MVI by hiding
some observed features and checking how well they were recovered. For each feature type, we conducted
10-fold cross validation.

We used the default settings for the hyperparameters of Adam (Kingma and Ba, 2015) (not to be
confused with the parameters of the autologistic model): β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We
ran 100 iterations for parameter estimation. After that, we sampled xlat as follows. After 50 burn-in
iterations, we collected 150 consecutive samples, one per iteration. For each language, we chose the
most frequent feature value among the collected samples as the final output.

We compared the proposed model with two simple baselines.
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Feature type Accuracy (%)
143G Minor morphological means of signaling negation 99.31

11A Front Rounded Vowels 93.99
90C Postnominal relative clauses 93.39

130A Finger and Hand 88.91
18A Absence of Common Consonants 87.34
38A Indefinite Articles 36.23
37A Definite Articles 35.48
1A Consonant Inventories 34.85

144A Position of Negative Word With Respect to Subject, Object, and Verb 28.45
144L The Position of Negative Morphemes in SOV Languages 16.75

(a) Features ranked by MVI accuracy of the proposed model.

Feature type Difference (%)
51A Position of Case Affixes +14.03
90A Order of Relative Clause and Noun +11.31

116A Polar Questions +10.81
3A Consonant-Vowel Ratio +9.25

69A Position of Tense-Aspect Affixes +9.17
26A Prefixing vs. Suffixing in Inflectional Morphology -3.72

144B
Position of negative words relative to beginning and end of clause

and with respect to adjacency to verb
-4.55

144L The Position of Negative Morphemes in SOV Languages -7.26
4A Voicing in Plosives and Fricatives -7.79

129A Hand and Arm -8.75

(b) Features ordered by gain or loss. The proposed model is compared with the neighborhood baseline.

Table 2: Top 5 and bottom 5 features selected by two criteria.

Global majority Choose the most frequent value among xobs and always output the value.

Neighborhood For each language, collect neighbors in xobs and draw a value from the empirical distri-
bution. If one of the two graphs has no observed neighbor, choose the other. If both are available,
randomly choose one. If neither is available, draw from the empirical distribution according to the
whole xobs.

The proposed model itself had two variants: one with the unweighted spatial neighbor graph and the
other with the weighted graph.

The results are shown in Tables 1 and 2(a). Our model outperformed the two baselines although
the improvement was not so impressive as that of the dependency-based methods (Murawaki, 2015;
Takamura et al., 2016). The edge weighting for the spatial neighbor graph had little effect on imputation
performance.

Table 2(b) and Figure 2 compare the proposed model (spatially unweighted) with the neighborhood
baseline in detail. As observed by Takamura et al. (2016), huge improvements were observed for Feature
81A “Order of Subject, Object and Verb” and some other word order related features. By contrast, the
accuracy dropped sharply for Feature 144L “The Position of Negative Morphemes in SOV Languages,”
which might be explained by its mosaic-like distribution.

5.2 Parameter Estimation
In the next experiment, we used all observed features and estimated parameters θ, λ and β for each
feature type. We chose the unweighted spatial neighbor graph for this experiment. We used the same
hyperparameter settings for Adam and ran 100 iterations for parameter estimation.
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Feature type θ

143G Minor morphological means of signaling negation 0.0330
11A Front Rounded Vowels 0.0233

144A Position of Negative Word With Respect to Subject, Object, and Verb 0.0206
19A Presence of Uncommon Consonants 0.0183
81A Order of Subject, Object and Verb 0.0177
94A Order of Adverbial Subordinator and Clause 0.0031
37A Definite Articles 0.0024
8A Lateral Consonants 0.0020
3A Consonant-Vowel Ratio 0.0011

144L The Position of Negative Morphemes in SOV Languages -0.0120

(a) Features ranked by the spatial association θ.

Feature type λ

143G Minor morphological means of signaling negation 0.0833
7A Glottalized Consonants 0.0486

90A Order of Relative Clause and Noun 0.0426
90C Postnominal relative clauses 0.0347
87A Order of Adjective and Noun 0.0334
26A Prefixing vs. Suffixing in Inflectional Morphology 0.0016
38A Indefinite Articles -0.0007
69A Position of Tense-Aspect Affixes -0.0033

144L The Position of Negative Morphemes in SOV Languages -0.0043
129A Hand and Arm -0.0059

(b) Features ranked by the phylogenetic association λ.

Table 3: Features ranked by θ and λ. Top 5 and bottom 5 features are shown for each parameter.

Table 3 shows top- and bottom-ranked features for each parameter, and Figure 3 depicts the relations
between the two parameters. 43 out of 47 features were in the top-right quadrant, meaning that they were
both spatially and phylogenetically predictive. Nearly all word order-related features were given positive
λ, which was consistent with previous findings (Daumé III, 2009). Wichmann and Holman (2009) also
judged Feature 38A “Indefinite Articles” as “very unstable” although their result disagree with ours for
Feature 69A “Position of Tense-Aspect Affixes” (stable) and Feature 129A “Hand and Arm” (stable).

In this study, we used genera to construct the phylogenetic neighbor graph, and thus λ can be seen
as a genus-level global stability index. Although Feature 83A “Order of Object and Verb” is considered
phylogenetically stable by the model, it is well known that the OV languages of India and predominantly
VO languages of Europe constitute the Indo-European language family. Much work needs to be done to
uncover deep phylogenetic relations. Despite the limitation, we argue that our present study presents a
first necessary step toward typology-based phylogenetic inference.

6 Conclusion

In this paper, we quantitatively characterized features of linguistic typology with respect to vertical and
horizontal transmission. We presented an autologistic model with which we can estimate the relative
strength of transmission. Our model is simple and extensible, and the result are easy to interpret because
the two modes of transmission are directly contrasted.

The high sparsity of the typological database remains a huge problem. Although our model recovers
missing values better than simple baselines, the gain is not large. In the future, we would like to incorpo-
rate into the autologistic model a more effective imputation method that takes advantage of inter-feature
dependencies.
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