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Abstract

Recent work for learning word representations has applied successfully to many NLP applica-
tions, such as sentiment analysis and question answering. However, most of these models assume
a single vector per word type without considering polysemy and homonymy. In this paper, we
present an extension to the CBOW model which not only improves the quality of embeddings but
also makes embeddings suitable for polysemy. It differs from most of the related work in that it
learns one semantic center embedding and one context bias instead of training multiple embed-
dings per word type. Different context leads to different bias which is defined as the weighted
average embeddings of local context. Experimental results on similarity task and analogy task
show that the word representations learned by the proposed method outperform the competitive
baselines.

1 Introduction

Different from traditional one-hot sparse vector representation, word embeddings are dense and low-
dimensional. Due to natural advantage in word similarity computation, word embeddings are useful in a
variety of applications, such as information retrieval (Uddin et al., 2013; Ganguly et al., 2015), sentiment
analysis (Santos et al., 2014; Nguyen et al., 2015), question answering (Tellex et al., 2003) and parsing
(Socher et al., 2013). Researchers learn word embeddings in various ways. Matrix Factorization methods
for generating dense word embeddings have been used for years (Lund et al., 1996). While in recent
years, neural network and deep learning have become popular approaches for learning word embeddings
since Bengio et al. (2003) introduced feed forward neural network into traditional n-gram language
models. For example, Collobert and Weston proposed a new objective function to learn word embeddings
and improved word embeddings’ quality (Collobert et al., 2008). Huang et al. (2012) presented a new
neural network architecture which incorporated both local and global document context, and offered an
impressive result. The word2vec toolkit developed by (Mikolov et al., 2013a; Mikolov et al., 2013b)
implemented both Skip-gram and CBOW models which could provide high-quality word embeddings.

In spite of many successful applications, most word embeddings have a common problem that each
word is represented by a single vector, subsequently ignoring polysemy. For example, the word bank
cannot have high cosine similarity with the word river and money at the same time since these two
words are so dissimilar and the single vector representation of word bank cannot express two different
meanings. Thus, several multi-prototype models have been proposed to alleviate the problem caused
by the polysemy and homonymy. Guo et al. (2014) took advantages of bilingual resources and affinity
propagation clustering algorithm to learn multiple embeddings corresponding with multiple word senses.
Due to the limitation of bilingual resources, they couldn’t train their model on large scale corpus. Huang
et al. (2012) pre-clustered the contexts of a word into K classes, and then learned K embeddings per
word. K was a predefined value that would make matters confusion because different words usually
had different number of senses. Neelakantan et al. (2014) shifted clusters into the training progress and
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proposed a non-parametric clustering model which could dynamically generate new cluster center by
similarity threshold λ and thus could learn different number of embeddings per word type. Although
they solved the problem caused by predefined K cluster centers, hyper-parameter λ was still hard to be
defined, because the similarity thresholds for different words might be different. Moreover, they were
sensitive to noise. Once a noise point happened, a new cluster center would be created. Therefore it
would lead to mistakes due to no actions were taken to remove these incorrect clusters. Yang et al.
(2016) proposed a supervised fine tuning framework to transform the existing single-prototype word
embeddings into multi-prototype word embeddings based on lexical semantic resources. It was a good
idea to obtain multi-prototype word embeddings, but it depended on the existing embeddings which had
lost some information during the training process.

To the best of our knowledge, most of the prior work deal with the polysemy problem by learning
multiple embeddings per word type. In this paper, we present a novel approach to take the polysemy
phenomena into consideration. It is based on the assumption that the same word in different contexts
has different meanings and so the polysemy problem appears. Traditional single word embedding is ap-
proximately the weighted mean of its different contextual semantics. Polysemic words owning the same
appearance may mean that they share a common intrinsic quality, and the differences among them are
reflected by different contexts. In other words, the different contexts of a word exert different influences,
and the given context is a good indication of the direction of the word meaning. Therefore, we propose
a method to model the intrinsic quality of words and obtain the influences affected by contexts.

In this paper, we make the following contributions:

• The composition and structure of our word embeddings are the word center adding the offset in-
duced by the word contexts, which make it flexible to deal with the polysemy problem.

• There is no need to cluster before or during training process, which removes the inaccuracy caused
by clustering. Each component of our word embeddings can be updated or trained thousands of
times during the training process which makes it robust and less susceptible to outliers.

• We quantify the influencing degree of the local contexts by training weighted parameters. In this
way, the first part in our word embeddings named word center can be trained more accuracy and
less ambiguous.

2 Background: CBOW (Continuous Bag-of-Words Model)

As a popular toolkit provided by Mikolov et al., word2vec1 has gained lots of attractions in recent years.
Two models CBOW and Skip-gram (Mikolov et al., 2013a; Mikolov et al., 2013b) are used, which make
it possible to train on more than 100 billion words in one day and generate high-quality word embeddings.
Word2vec provides two frameworks for these two models. One is based on Hierarchical Softmax and the
other is based on Negative Sampling. According to (Mikolov et al., 2013b), Negative sampling (NEG) is
a simplification of Noise Contrastive Estimation (NCE) (Gutmann et al., 2012), which can improve both
of the training speed and the quality of word embeddings. So we choose Negative sampling to optimize
our model.

The CBOW model uses the contexts of word w to predict w. Thus, for the given contexts, word w is
a positive sample and other words are negative samples. In the CBOW model, v(w) ∈ Rd is the word
embedding of word w ∈ W , where W is the word vocabulary and d is the dimension of the embedding.
C(w) ∈ Rd is the average embedding of the context for word w.

Given the context of word w, the probability that a word u can be observed is given by,

P (u|Context(w)) = σ(C(w)T θu) =
1

1 + e−C(w)T θu (1)

where θu are training parameters of word u according to the source code of Word2vec. For the positive
samples where u = w, the CBOW model is maximizing formula (1), while for the negative samples

1https://code.google.com/p/word2vec/.
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u ∈ NEG(w) the model will minimize it which can be done as maximize 1− σ(C(w)T θu). NEG(w)
is the sets of negative samples for word w. So rewrite formula (1), given a samples u, CBOW model will
maximize:

g(w) =
∏

u∈w∪NEG(w)

p(u|Context(w)) (2)

where

p(u|Context(w)) =

{
σ(C(w)T θu), Lw(u) = 1;

1− σ(C(w)T θu), Lw(u) = 0,

Lw(u) =
{

1, u = w;
0, u 6= w,

Then the whole expression of g(u) can be written as:

g(w) =
∏

u∈w∪NEG(w)

[σ(C(w)T θu)]L
w(u) · [1− σ(C(w)T θu)]1−L

w(u)

Given a training corpus C, the word embeddings are learned by maximizing the following objective
function:

G =
∏
w∈C

g(w) (3)

For compute easily, the objective function take the log and switchs from product to sum:

L = logG = log
∏
w∈C

g(w) =
∑
w∈C

log g(w)

=
∑
w∈C

∑
u∈{w}∪NEG(w)

L(w, u)

where
L(w, u) = Lw(u) · log[ σ( CTw θ

u)] + [1− Lw(u)] · log[1− σ(CTw θ
u)] (4)

For the negative sampling method, Mikolov et al. found that the powered unigram distribution
U(m)3/4 outperformed significantly the unigram and the uniform distributions. The distribution that
the noisy contextual words are randomly sampled by is as following:

P (w) =
punigram(w)3/4

Z
(5)

where punigram(w)3/4 is the number of occurrences of the words and Z is the normalization constant.

3 The RLC (Reuse Local Context) Model

3.1 The Embedding Structure of RLC
Different from traditional one-hot vector representation approach, each dimension of word embedding
represents a latent feature of the word, mentioned by (Guo et al., 2014). And the word analogical task
introduced by (Mikolov et al., 2013a) means that the influence between words can be simply computed
by addition and subtraction. Because of these, we can assume that the dimensions between a word
embedding are relatively independent which means there are no cross influence between them. Then
we introduce a weighted parameter for each word as a filter to control the influence degree given by the
context of the word. And the center of the word embedding will be shifted after adding the contextual
influences to word embeddings.

In our approach, the word embedding structure of word w can be written as following:

[Xew;Xmw] (6)
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whereXew ∈ Rd is the word embedding center point of wordw,Xmw ∈ Rd is the weighted parameters.
Using this structure can obtain different word embeddings according to different contexts. If there

are no contextual words, the center point of word embedding Xew can be used instead. Considering
a context and a word sampled from it, it is impossible for the context to have negative influence to the
word. So we use the sigmoid function to limit Xmw within the range of 0 to 1. And the combination
formula of word embedding for w is as follows:

Xw = Xew + σ(Xmw) · 1
m

m∑
i=1

Xewi (7)

where m represents the number of words in the context of w; Xewi is the ith word in the context of w.

3.2 The Algorithm of RLC
We introduce our algorithms into CBOW model, named RLC on CBOW (RLCC). Then, we build our
objective function. Unfortunately, the probability computing method that used by CBOW model is not
suitable for our approach according to formula (1-3). Because they calculate the probability of word
u given context Context(w) using inner product of C(w) and θu. While, θu are training parameters
corresponding to the sample word u, which are of no use after training. So we cannot combine the
influences of the given context with parameters u. If we combine every word in Context(w) by formula
(7), then the computational complexity of our model will be heavily increased. But we find that the
function of θu is semantic representation for word u and it is also a kind of word embedding for word u
which can be replaced by the true word embedding. So we update the probability p(u|Context(w)) by:

p(u|Context(w)) =

{
σ(C(w)TXu), Lw(u) = 1;

1− σ(C(w)TXu), Lw(u) = 0,
(8)

where
Xu = Xeu + σ(Xmu) ∗Xc

Xc =
1
m

m∑
i=1

Xewi = C(w) (9)

where ”∗” denotes the product of corresponding vector components,Xc denotes the average embeddings
for the current context of word w.

Negative sampling maximizes the probability of positive samples given the context and at the same
time minimizes the negative ones. But there are some problems for our approach to simply use Negative
sampling. In the training process, negative samples are treated completely irrelevant with the given
context, and the probability that they are observed would be minimized. This is beneficial for the model
to differentiate data from noise. While from the right part in formula (7) recorded as Xinfluence =
σ(Xmw)· 1m

∑m
i=1Xe

w
i we can see that minimizing observed probability will be achieved by decreasing

Xmw, and this satisfies our goal. Unfortunately, the decreased value of σ(Xmw) for every iteration is
||C(w)||22 which has a mean greater than zero and should not be considered as probability. Meanwhile,
according to the paper of (Mikolov et al., 2013b), we should ensure the effect that the number of negative
samples should be in the range of 5-20 for small training datasets and in the range of 2-5 for large
datasets. That means the number of negative samples is at least two times bigger than positive samples
which makes matter worse. So we introduce extra learning rates to solve the problem:

η = Lw(u) ∗ α + β (10)

where α and β are hyperparameters.
The influences of context to positive samples must be positive, so we introduce the sigmoid function to

limit Xmu within the range of 0-1. But it is not reasonable for negative samples, because the influences
of context to negative samples could be negative. Meanwhile, Xc given as in formula (9) still has strong

765



correlation with the context embedding C(w) after multiply by the weight σ(Xmu) which is harmful
to the update of Xeu in positive samples during the training process. We introduce new extra weighted
parameters Tm during training process to solve the problem which can be seen as the weight for negative
samples:

Xmu new = (1− γ) · Tmu + γ · σ(Xmu) (11)

where γ = Lw(u) ∗ (1− λ) + (1− Lw(u)) ∗ λ,λ ∈ [0, 1]. For example, if we set λ = 0, then σ(Xmu)
will be used as the weighted parameter when the sample is positive one.

In this case, formula (7) should be rewritten according to formula (11):

Xw = Xew +Xmw new · 1
m

m∑
i=1

Xewi (12)

Combining the given objective function (3-4) and the above analysis, we can infer the update gradient
in each iteration as follows and the pseudo-code is showing in the Algorithm 1.

∂L(w, u)
∂Xew

= [Lw(u)− σ(C(w)TXu)] ∗ 1
m
∗ ( Xu + C(w) ∗Xmu new)

∂L(w, u)
∂Xeu

= [Lw(u)− σ(C(w)TXu)] ∗ C(w)

∂L(w, u)
∂Xmu

= [Lw(u)− σ(C(w)TXu)] ∗ C(w) ∗Xc ∗ σ(Xmu) ∗ (1− σ(Xmu)) ∗ η ∗ γ
∂L(w, u)
∂Tmu

= [Lw(u)− σ(C(w)TXu)] ∗ C(w) ∗Xc ∗ (1− γ)

(13)

Algorithm 1 : Training Algorithm of RLC model

1. Input : Corpus C.

2. Initialize : Xw and Tw, ∀ w ∈ V ocab,Xw ∈ R2d, Tw ∈ Rd, randomly.

3. while next sentence in (C) not null do
4. e = 0.

5. Cw = 1
m

∑
u∈Context(w)Xeu

6. for u = {w} ∪NEG(w) do

7. Xmu new = (1− γ) · Tmu + γ · σ(Xmu)

8. Xu = Xeu +Xmu newCw

9. q = σ(CTwXu)

10. g = η1(Lw(u)− q)
11. e := e+ g( Xu + CwXmu new)/m

12. Xeu := Xeu + gCw

13. Xmu := Xmu + gCw
2σ(Xmu)(1− σ(Xmu))ηγ

14. Tmu := Tmu + gCw
2(1− γ)

15. end for
16. for u ∈ Context(w) do
17. Xeu := Teu + e
18. end for
19. end while
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4 Experiments

Following previous work (Huang et al., 2012; Neelakantan et al., 2014), we choose Wikipedia cor-
pus2 (Shaoul et al., 2010) snapshotted at April 2010 to train embeddings. The Wikipedia corpus con-
tains a total of about 2 million articles and 990 million tokens. In all of our experiments we remain
220682 words as the vocabulary by removing all the words with less than 55 occurrences and set the
maximum context window (m/2) to be 8 which means 8 words before and after the word occurrence.
Our hyper-parameter values are selected by manual exploration of results when using a small corpus
attached by Word2vec toolkit, named text8 which has 31893 words in the vocabulary and 16 million
words in the corpus after removing the words with the occurrences less than 20. In RLCC we set
λ = 0.5, α = 0.4, β = 0.6. Also we train embeddings in different dimensions and compare our
methods with many state-of-the-art models.

Table 1 shows the training time of our models on the small data set text8, compared with other models
from previous work. All the methods are evaluated using a single-machine with 16 threads. We see that
the training speed of our model is faster than Skip-gram model but is slower than CBOW model. This
indicates that our model can be acceptable with respect to efficiency.

Model Time (minute second)
dim-50 dim-100 dim-300

CBOW 55s 1m10s 2m33s
Skip-gram 5m35s 7m32s 18m57s

RLCC 1m52s 3m1s 7m14s

Table 1: Training Time Comparison

4.1 Word Similarity

The two datasets that we used to evaluate our word embeddings are as follows: the WordSim-353 (Finkel-
stein et al., 2001) dataset and the Contextual Word Similarities (SCWS) dataset (Huang et al., 2012).
WordSim-353 is a standard dataset for evaluating word embeddings which consists of 353 pairs of word
types. The similarity of each word pair is manually rated in a scale from 0 to 10 by 13 to 16 human
judgements, and each pair receives an average score. But these scores are given without any information
of the context which makes our embeddings hard to use. Fortunately, we are surprised to see that our
embeddings outperform competitive baselines and even the state-of-the-art embeddings by only using
the word center embeddings Xe.

Because of the absence of contextual information in the WordSim-353 dataset, Huang et al. (2012)
developed Stanford’s Contextual Word Similarities (SCWS) dataset which consists of 2003 word pairs
and associated sentential contexts. So the SCWS dataset overcomes the issue caused by no contextual
information in WordSim-353 and the models designed to deal with polysemous problems could have a
good testbed. Most of those models train multiple embeddings per word type to tackle the polysemous
problems and there are many approaches to measure the similarities of multi-prototype embeddings
according to (Reisinger et al., 2010). Then we select the best results for each model to compare with our
model.

Table 2 shows our results compared to previous methods on WordSim-353 dateset and Table 3 gives the
results on SCWS dataset. All the models mentioned are trained in the same Wikipedia corpus snapshotted
at April 2010. The scores Huang et al. we used in the table is using the word embeddings trained and
provided by (Huang et al., 2012). MSSG and NP-MSSG are the best scores provided by (Neelakantan
et al., 2014). We train Skip-gram and CBOW models using 10 negative samples and a context window
size of 8 on the same corpus. RLCC* is our model, and the results shown in the table are gained by
only using Xe in our models. Some results are not provided in these tables because we could not find
the embeddings or results provided by the authors. From Table 2 we can see that our model is able

2http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
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Model Different dimensions ρ × 100
dim-50 dim-100 dim-300

Huang et al. 64.2 - -
C&W 55.3 - -
MSSG 63.2 - 70.9

NP-MSSG 62.4 - 68.6
CBOW 65.0 66.5 65.8

Skip-gram 68.6 71.7 72.7
RLCC* 70.8 73.0 75.0

Table 2: Experimental Results on the WordSim-353 dataset. The numbers in the table are Spearmans
correlation recorded as ρ× 100 between the model’s similarities and human judgments. The best results
according to each dimension are in bold face.

to learn more semantic word embeddings and noticeably improves upon previous models. We believe
that the improvement is mainly attributed to the fact that the learned center word embedding Xe is less
ambiguous.

Table 3 shows that our model gets the best result on both the 50-dimension embeddings and the 300-
dimension embeddings. Obviously, our approach can better deal with polysemous problems than the
traditional multi-prototype word embeddings.

Model Dim NUContext UContext
C&W 50 57.0 -

CBOW 50 64.7 -
Skip-gram 50 63.4 -

Huang et al. 50 58.6 65.7
MSSG 50 62.1 66.9

NP-MSSG 50 62.3 66.1
RLCC 50 65.3 67.3
CBOW 100 65.8 -

Skip-gram 100 64.9 -
RLCC 100 66.0 68.4
CBOW 300 66.6 -

Skip-gram 300 66.7 -
MSSG 300 65.3 69.3

NP-MSSG 300 65.5 69.1
RLCC 300 67.6 69.7

Table 3: Experimental results on the SCWS dataset. ”NUContext” is the abbreviation for ”Not use the
contextual information”. For those multi-prototype embeddings, the globalSim metric which is each
word’s global context vector ignoring the many senses is used. While in our model, we still use Xe for
each word, ignoring the weighted parameters. ”UContext” is the abbreviation for ”Use the contextual
information”. In this time, for multi-prototype embeddings models, avgSimC method is applied which
weights the similarity by how well each sense fits the context at hand (Neelakantan et al., 2014). All of
the best results for each dimension are marked by underline, while in the two situations of using context
or not, they are marked by bold.

4.2 Word Analogies

The word analogy task is introduced by (Mikolov et al., 2013a). It is a comprehension test task which
is designed to measure the quality of word embeddings. This task consists of questions like, ”a is to b
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as c is to ?”. The dataset we applied in this task is built by Mikolov et al., which contains five types
of semantic questions and nine types of syntactic questions with 8869 and 10675 questions respectively.
The questions, for example, ”Tokyo is to Japan as Beijing is to ?”, are answered by finding the word
whose embeddings are the most similar one with WJapan−WTokyo +WBeijing under cosine similarity.

According to (Neelakantan et al., 2014), both MSSG and NP-MSSG models achieve 64% accuracy
which exceed (Huang et al., 2012) but are worse than the Skip-gram model. So we compare our model
with CBOW and Skip-gram models only in this task. The results shown on Table 4 demonstrate that
our model outperforms both the CBOW and Skip-gram models in most words’ analogy task especially
in answering semantic questions. It means that our embeddings are less constrained by syntax and are
more semantic.

Model Dim Sem. Syn. Tot.
CBOW 50 59.6 59.4 59.5

Skip-gram 50 52.5 55.9 54.6
RLCC* 50 66.3 60.1 62.5
CBOW 100 72.8 70.2 71.2

Skip-gram 100 67.8 69.2 68.6
RLCC* 100 80.0 70.8 74.3
CBOW 300 77.9 75.4 76.4

Skip-gram 300 83.1 73.4 77.2
RLCC* 300 90.7 71.8 79.0

Table 4: Experimental results of the word analogy task show as percent accuracy. We trained CBOW
and Skip-gram using the same corpus as our model used, and the training parameters were also the same
as we described before.

5 Related Work

In recent years, neural network and deep learning have become popular approaches for learning word
embeddings, which make it possible to study dense and high quality word embeddings. Bengio et al.
(2003) introduced feed forward neural network into traditional n-gram language models, which might be
the foundation work for neural network language models(NNLM). In NNLM, words were represented
by a low-dimensional vector and the parameters could be learned in unsupervised methods. Collobert et
al. (2008) proposed a new objective function to learn word embeddings instead of the time consuming
softmax layer presented in (Bengio et al., 2003) and much improved training speed. Mnih et al. (2007)
reduced the computational complexity of the Bengio’s model by replacing the softmax layer with a tree-
structured probability distribution.

Mikolov et al. (2013a) and Mikolov et al. (2013b) removed the hidden layers of neural network and
proposed log-liner neural language models named Skip-gram and CBOW. These two models extremely
reduced the computational complexity and could train word embeddings on more than 100 billion words
in one day with a single machine. With the help of negative sampling method, both of the two models
could obtain state-of-the-art word embeddings.

In the previous work, several multi-prototype models have been proposed to alleviate the problem
caused by the polysemy and homonym. Guo et al. (2014) took advantages of bilingual resources and
affinity propagation clustering algorithm to learn multiple embeddings corresponding with multiple word
senses, because a polysemous word in one language could not be exactly a polysemous word in another
language. Huang et al. (2012) pre-clustered the corpus into specified classes, and relabeled the tokens
into different classes, then learned specified numbers of embeddings per word type. The number of each
word senses was predefined as a fixed value that would make matters confusion because the different
words might have different number of senses. Neelakantan et al. (2014) shifted clusters into the training
progress and proposed a non-parametric clustering model which could dynamically generate new clusters
based on word meaning. Fine tuning was also a good idea to generate muti-prototype word embeddings.
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Yang et al. (2016) proposed a supervised fine tuning framework to transform the existing single-prototype
word embeddings into multi-prototype word embeddings based on lexical semantic resources.

6 Conclusion

In this paper, we present a novel model to reuse the local context and enhance word embeddings for both
monosemous and polysemous words. The proposed model is an extension to CBOW and it is designed
to embed a word as a word semantic center and a weighted parameter. Weighted parameter denotes
the influences given by the contexts. Experimental results show that embeddings trained by our model
outperform competitive baselines and even state-of-the-art embeddings. When we focus on polysemy,
our approach could shift the embedding of polysemous word into the corresponding semantic space
according to the given context. In the future, we plan to make our model more explainable.
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