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Abstract

Besides providing the relevant information, amusing users has been an important role of the
web. Many web sites provide serendipitous (unexpected but relevant) information to draw user
traffic. In this paper, we study the representative scenario of mining an amusing quiz. An existing
approach leverages a knowledge base to mine an unexpected property then find quiz questions on
such property, based on prototype theory in cognitive science. However, existing deterministic
model is vulnerable to noise in the knowledge base. Therefore, we instead propose to leverage
probabilistic approach to build a prototype that can overcome noise. Our extensive empirical
study shows that our approach not only significantly outperforms baselines by 0.06 in accuracy,
and 0.11 in serendipity but also shows higher relevance than the traditional relevance-pursuing
baseline using TF-IDF.

1 Introduction

Unlike the traditional purpose of the web providing relevant information or answers to user questions,
conversely, recent web services ask users unexpected trivia questions to amuse them. Bing provides a
set of interesting quizzes with an image of the day on the front page. Figure 1 describes an amusing quiz
question generation on a long ‘neck’ of giraffe, which we use as a motivating scenario throughout
this paper.

Inspired by Figure 1, we study the problem of finding a “serendipitous” property a such as ‘neck’
for any given entity e. Table 1 categorizes existing automatic quiz generation efforts pursuing relevance
and unexpectedness, respectively. Inspired by Jeopardy!, Seyler et al. (2015) focus on relevance to the
domain and a certain difficulty level. Inspired by Bing questions, Lee et al. (2016) seek unexpected
entity-property pair (e, a).

In clear contrast, we complement the solution space by pursuing the intersection of finding unexpected
but still relevant properties, which is often named as serendipitous (or Case B). As the existing determin-
istic model (DM, Lee et al. (2016)) fails to distinguish Case B and C, we propose a new probabilistic
model (PM).

e DM: Unexpectedness of ‘neck’ can be found by building a deterministic prototype using the average
of (normalized) property frequencies of all MAMMALS. As the frequency of ‘neck’ foragiraffe
is far higher than the average, this can be found.

e PM: DM is effective when the underlying data (i.e., knowledge base) to derive probabilities are
not noisy, but an automatically harvested knowledge base inevitably contains noise. For example,
Probase, mining textual patterns such as “<property> of <category>,” may contain ‘some part’ as
a property of a giraf fe, which can be recognized as a desirable unexpected property by DM. We
propose a probabilistic model that overcomes this problem.
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Our extensive evaluation results using real-life Flickr data and the Probase knowledge base validate
that our approach not only significantly outperforms baselines by 0.06 in accuracy and 0.11 in serendipity,
but also shows higher relevance than the traditional relevance-pursuing baseline using TF-IDF.

Unexpected
Expected
P (Lee et al., 2016)
Relevant
Case A Case B
(Seyler et al., 2015)

Irrelevant - Case C
Figure 1: Bing quiz scenario used by DM (Lee et
al., 2016). Table 1: Dimensions of a mining problem.

2 Related work

This paper studies the serendipitous property mining problem of finding relevant yet unexpected proper-
ties for a given entity based on a knowledge base. Therefore, our work is closely related to knowledge
acquisition. Also, mining unexpected part of knowledge can be considered as serendipitous mining or
outlier detection.

2.1 Knowledge acquisition

Our serendipitous property mining system leverages automatically harvested knowledge on the web. Par-
ticularly, measuring unexpectedness requires knowing the expectation, which requires worldly knowl-
edge. The basis of such knowledge acquisition works is taxonomies that contain categories and their
entities (Carlson et al., 2010; Suchanek et al., 2007; Wu et al., 2012). Among them, Probase (Wu et al.,
2012) provides a conditional probability of an entity for a category, and also that of a property given an
entity, from which we probabilistically model the expectation (i.e., prototype in our approach).

Besides the automatically harvested knowledge bases, other types of knowledge such as a traditional
DB (Merzbacher, 2002) or a linked open data (Marie et al., 2013) are manually generated and often
do not cover new entities, like new idols possibly attracting click-through. Therefore, we rely on an
automatically harvested knowledge base.

2.2 Serendipitous mining

The primary metric for recommender system is prediction accuracy. However, focusing solely on this
metric is reported to limit user satisfaction by always recommending predictable items, such as a new
comedy for a comedy fan who can discover it without recommendation. To amuse users, serendipitous
mining is studied in recommendation and search. Several approaches (Onuma et al., 2009; Nakatsuji et
al., 2010) focus on finding serendipitous items such as funny zombie movie, which is both relevant and
unexpected, from user-item matrices. Another direction is pursuing serendipity in search: The existing
approaches propose to consider emotional expressions (Hauff and Houben, 2012; Bordino et al., 2013)
or presentations such as bold font (O’Brien, 2011), to detect surprises and apply that in search results.
These efforts cannot be applied to our problem as a user-item matrix or the text format is unavailable, but
our knowledge-based signals are orthogonal and thus can be straightforwardly applied to improve both
lines of the work.

2.3 Outlier detection

The unexpected property mining can be considered as an outlier detection problem. Outlier detection
has been extensively studied with different approaches. Deviation-based approaches find observations
whose removal greatly reduces the sample variance (Arning et al., 1996). Distance-based approaches
define a distance measure and consider observations whose distance to others is above a threshold as
outliers (Knorr and Ng, 1997; Ramaswamy et al., 2000; Fan et al., 2006). Density-based approaches
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consider observations which have little or no neighbors as outliers (Jin et al., 2006). Most of these ap-
proaches are designed, trained, or tuned for a target domain using labeled data or using user specified
parameters, which is not suitable for our scenario targeting diverse categories. Moreover, these solutions
categorize observations into two: normal observations and outliers. Lee et al. (2016), mining quiz ques-
tions given images, also leverage the similar notion of classifying the properties into the two, which we
use as a baseline and show their ineffectiveness in our experiments, due to their inability to distinguish
noise and serendipitous properties.

3 Knowledge base

We leverage an automatically harvested knowledge base for human-like unexpected and relevant property
mining. In particular, we leverage Probase ‘is-a’ knowledge and its property data to mine probabilities,
which is essentially equivalent to deriving probabilities from a huge corpus. Probase is a large knowl-
edge base containing millions of categories and their information including entities, properties, and their
typicalities which we describe below.

Is-A knowledge

The backbone of Probase is probabilistic knowledge of huge amount of ‘is-a’ relations between entities
and categories (Wu et al., 2012)!. For example, Probase contains a relation: “giraffe is-a MAMMAL”
where giraffe is an entity and MAMMAL is a category. A category may contain many entities (e.g.,
MAMMAL contains giraffe and platypus), and an entity may also belong to several categories
(e.g., giraffe belongs to both MAMMAL and ANIMAL). Such relationships are mined from a huge
amount of web documents using patterns (Wu et al., 2012).

Property knowledge

Properties are words representing a certain aspect of an entity. For example, ‘neck’ is a property of
the entities in category MAMMAL. Properties of an entity are obtained by several approaches including
pattern-based extraction methods (Lee et al., 2013).

Typicality

Based on the number of pattern occurrences, we can compute the conditional probability of a certain
element given a condition, which we also call typicality. For example, given category MAMMAL, peo-
ple would usually think of typical mammals such as dog. In particular, Probase has diverse types of
typicalities including the entity typicality for a category, and property typicality for an entity.

P(E|C) is a conditional probability of entity E given category C'. For example, we can obtain the
probability P(E = giraffe|C' = mammal), representing how typical entity giraffe is for category
MAMMAL. Such probability can be obtained using all occurrences of MAMMAL, and the co-occurrences
of MAMMAL and giraffe:

Freq(mammal, giraffe)

P(FE = giraffe]C = mammal) = (1)

Freq(mammal)

where Freq(x, y) represents the co-occurrence of = and y, and Freq(x) indicates the occurrence of z in
Probase. We can similarly compute other probabilities including P(C'), P(E), P(C|E). Also, we can
obtain P(A|E) where A is a property and FE is an entity.

We can consider a typicality as the amount of people’s interest in the topic since it is derived from
how frequently we discuss the topic. We usually have general topics of interest for entities in a certain
category: ‘lifespan’, ‘diet’, ‘size’ and so on for mammals. But, if the heart of a giraffe is often discussed
in comparison to other mammals, it can be an unexpected topic about a giraffe.

"Probase knowledge base is publicly available online at https://concept.research.microsoft.com/.
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4 Methods

In this section, we describe our approach to model prototype and mine serendipitous properties. We
follow the framework presented in (Lee et al., 2016) that leverages the category of a given entity, and
propose a method for unexpected property mining. Therefore, we assume that we have the given topic
entity e, and its category c.

4.1 Modeling a prototype

Identifying an unexpected property of an entity requires comparison to what we consider expected. If we
expect most mammals have a heart with the size in a specific range, the extra large heart of a giraffe
can be unexpected. Therefore, defining the prototype of a category—which represents the human ex-
pectation for entities in the category— is the key step to find serendipitous properties. We may consider
selecting a typical entity among the existing entities in the category (such as dog for MAMMAL). How-
ever, typical properties such as ‘lifespan’ can be missing with dog due to data sparsity. In this case,
‘lifespan’ of any entity can be rather considered unexpected.

DM (Lee et al., 2016) models a deterministic prototype model RPM as a hypothetical entity using the
average typicalities in the category. Note that, instead of the values of properties, their typicalities are
leveraged to directly capture the human interest on the properties for entities and the category. That is,
high P(height|giraffe) means that ‘height’ draws human interest so that it is discussed frequently with
giraffe on the web. If some property is frequently mentioned with most entities in a category, it can
be considered the representative property of the category. Then, we can consider some property of an
entity is unexpected if the property is particularly more frequently mentioned with the entity than with
other entities in the category.

Thus, using the average of typicalities allows us to compute the representativeness of the property for
the category (e.g., MAMMAL). Formally, RPM is defined as an ordered set of the average of property
typicalities in the category c as follows:

ROM = {avg.e, P(ale) P(ele) | ais a property} @

where P(ale) is the property typicality given entity, and P(ec) is the entity typicality given category
(Section 3). This hypothetical prototype does not suffer from missing properties caused by data sparsity.
However, this approach is vulnerable to noise of another cause: ‘some part’, wrongfully identified as a
property, would be considered unexpected due to its infrequency.

Instead of this deterministic approach, we leverage a probabilistic method similar to (Eskin, 2000),
which is originally designed for intrusion detection, to model the prototype. Unlike its category-agnostic
approach using a Markov chain, we leverage the category information to model the prototype with beta
distributions. In particular, we define a prototype of category c hypothetically as an ordered set of random
variables R. = { X, ¢|a is a property } (an example distribution of X, . is shown as the blue dashed line
in Figure 2(b)). That is, unlike DM using averages to produce an ordered set of expected typicalities, we
build probability distributions.

Given this model, we can consider that the properties of an entity in the cate-
gory are realizations of the random variables. To illustrate, suppose we have R, =
{Xlifespan,mammah Xtail,mammal; Xheart,mammal}a and typicalities of dog P(lifespan|d0g),
P(tail|dog), and P(heart|dog) are 0.3, 0.6, and 0.1 respectively. Then, we consider 0.3, 0.6 and
0.1 are realizations of Xjifespan,mammals X tail, mammal aNd Xheart mammal With the corresponding
probabilities P(Xlifespan,mammal = 0.3), P(Xlifespan,mammal = 0.6), and P(Xlifespan,mammal == 0.1).
By measuring the likelihood of this event (having 0.3, 0.6, and 0.1) using these probabilities, we can
measure how unexpected this entity or its properties are. Later in Section 4.2, we will argue how this
model distinguishes Case B and C in Figure 2 and explain how we measure the unexpectedness.

Formally, we consider an entity of the category as an ordered set of properties represented as { P(ale)}
(e.g., {0.3, 0.6, 0.1}) each of which is drawn from the corresponding random variable in R.. The co-
occurrences of properties and entities can be modeled to be drawn from a multinomial distribution. Then,
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Figure 2: Distribution of X, ..
the typicality P(ale) for each a constitutes parameter probabilities p1, . . . , px of the multinomial distri-
bution Mult(n|p1,...,pr). We exploit a Dirichlet distribution of a single dimension, which is a beta

distribution, to model P(ale) since a Dirichlet distribution is a conjugate prior of a multinomial distribu-
tion. That is, each random variable X, .. in prototype K. is modeled as a beta distribution corresponding
to a property of entities in category c: X, . ~ Beta(z; g c, Ba,c)-

Now we have to learn the parameters specifying the beta distributions Beta(x; v, ¢, Bq,c) of the pro-
totype R.. In particular, we use a set O, . of property typicality P(ale) for each entity e in the identified
category c as samples together with its occurrence probability P(e|c), that we obtain from Probase. That
is, we give a larger weight to a more typical entity in the model. Let X, . be a random variable mod-
eled by a beta distribution Beta(x; o, Ba,c). We find parameters o . and 3, . so that X, . generates
the observation O, = {zf, . = P(ale)|e € c} with their associated occurrences P(e|c). Then, we
have P(z1 < Xoe < @2) = D¢t 21<P(ale)<a» L (€]). Thus, the mean 1 of the beta distribution
Beta(z; ata,e, Bac) is D .c. Plale) P(e|c), and the variance o2 is Y- . (P(ale) — 1)? P(e|c). The pa-
rameters o . and 3, . can be fitted by the widely adopted method of moments using the mean and the
variance, of exploiting the first and second moments of Beta(x; ¢, Ba.c)-

4.2 Mining unexpected properties

With the obtained probabilistic prototype R. = {X,|a is a property} for category ¢, we discover
serendipitous properties of the given entity, and show why noisy properties are not mined. We can
consider that entities in the category are created by drawing each property typicality P(ale) from the
beta distribution of the prototype. If a property typicality of the given entity is unlikely based on the
prototype, we can consider the property is serendipitous.

We show how a property of the topic entity can be compared with that of the prototype. We divide the
comparison into three cases that we have described in the introduction (Table 1): relevant and expected,
unexpected but relevant (serendipitous), and noisy. Figure 2 shows examples of the component random
variables X, . of the model for Case A, B, and C in Table 1. Then, we consider how likely the given
entity to be generated.
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Case A: Property is relevant and expected

First, Figure 2(a) depicts a distribution skewed to high values. For example, ‘lifespan’ is a common prop-
erty for the most of entities in MAMMAL. Therefore, high P(lifespan|giraffe) does not mean giraffe
has an unexpected property.

Case B: Property is unexpected, but relevant (serendipitous)

In contrast, Figure 2(b) shows a distribution skewed to low P(a|e). In this case, we expect a relatively
low value, and thus high P(ale) of the topic entity implies a serendipitous event. For example, although
the most entities in MAMMAL have a property ‘neck,’ it is not frequently mentioned, and hence we expect
to have low P(neck|e) value. Therefore, the distribution of Xpeck mammal 1S skewed to low values. Then,
the high value of P(neck|giraffe) indicates that giraf fe has an serendipitous property ‘neck.’

Case C: Property is noisy

Unlike Case A and B modeling relevant properties, the prototype may include a random variable rep-
resenting a noisy property. Specifically, when a noisy property is modeled, it looks like Figure 2(c). A
noisy property does not show a general tendency, and it is rather randomly distributed as often modeled
by a uniform distribution. That is, since a noisy property is modeled like a uniform-esque distribution
as shown in Figure 2(c), the most value of P(ale) is expected to happen, and would not be considered
serendipitous.

Computing unexpected relevance

Based on these observations, we compute our measure of serendipitous properties. Formally, as exploited
in (Eskin, 2000), we compute the log-likelihood of an entity-property probability P(X, . = z{, .) of the
given topic entity using the obtained distribution for X, . of R.. In addition, we use a minus sign to
obtain a measure indicating a more serendipitous property with a greater value.

I(zg.) = —log(P(Xae=2g,))

a,c a,c

= —log Beta(z; aqg.c, fa,c) 3)

Upon this value, we also consider that a serendipitous property of a well-known or more typical entity
can more easily draw user attention. Thus, we quantify the degree of being serendipitous for property a
of entity e that belongs to category c as follows.

Hc,e,a) = I(wqc)Plelc) )

We measure this value for each property of the given topic entity, and consider one with the highest score
the most interesting, so that we present it to users.

5 Evaluation

In this section, we evaluate our systems using various measures evaluating several facets of the proposed
work. Throughout the evaluation, we compare our method PM with DM (Lee et al., 2016) in the same
setting of using Flickr and Yahoo! Answers.

5.1 Serendipitous property discovery

In this section, we analyze and evaluate serendipitous property mining. Table 2 first shows examples
of the top serendipitous entity-property pairs for diverse categories returned by PM and DM. We can
observe that DM is prone to pick long phrasal nouns or noisy properties, which are less commonly
mentioned. DM considers (possum, plural) and (intel, fourth piece) unexpected because the conditional
probabilities P(pluraljmammal) and P(fourth piece|company) are very low while P(plural|possum)
and P(fourth piecelintel) are not. On the other hand, our approach does not propose noisy properties, by
modeling such noises together. Instead, our approach suggests entity-property pairs such as (marsupial,
embryo), (microsoft, founder), or (china, population) that would lead to interesting information. For
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Table 2: Mined unexpected entity-property pairs for diverse categories.

Category | PM DM
mammal | (marsupial, embryo), (wolf, strength),
(giraffe, heart), (muskrat, best part),
(chimpanzee, brain), ... (otter, presence), ...
company | (microsoft, founder), (intel, fourth piece),
(facebook, founder), (dell, model number),
(amazon.com, success), ... (coca-cola, original color), ...
country (china, great wall), (china, great wall),
(china, population), (china, choices),
(india, population), ... (india, reserve bank), ...
metal (copper, resistivity), (copper, discovery),
(gold, price), (lead, presence),
(gold, purity), (iron, presence),
(lead, density), ... (aluminum, presence), ...
drug (cocaine, price), (marijuana, 80 pounds),
(marijuana, legalization), (cocaine, freebase form),
(marijuana, odor), ... (cocaine, last use), ...

Table 3: Unexpectedness of discovered properties

Method | SS@5
PM 0.31
DM 0.25

example, unlike other mammals, a marsupial has a pouch on her stomach to carry her babies. China is
known to have the largest population in the world.

We also quantitatively evaluate the accuracy, or how well the discovered serendipitous properties are
aligned with human judges. The serendipitous property (Case B in Table 1) should be relevant to the
given entity and category pair, but peculiar in the category. In addition, the property is the most useful
in our scenario drawing users if the property leads to a novel information (less known). We build a
labeled dataset by annotating the mined property with the serendipitous score on a scale of 0, 1/3, 2/3
and 3/3. In particular, 3/3 point is given if the property is relevant, peculiar, and novel; 2/3 point is
given if the property is relevant, and peculiar; 1/3 point is given if the property is relevant; and 0 point is
given if the property is irrelevant. For example, the population of China is extraordinarily large which is
serendipitous, but this property is well known so that we give 2/3. We have built a gold standard of size
386 independently labeled by three assessors from which we observe sufficient agreement (0.64 pairwise
cosine similarity), and thus use the average of the scores assigned by the assessors. We leverage SS@5,
the average serendipitous scores of the top-5 properties for each entity.

Table 3 shows the evaluation result of serendipitous property discovery methods. We see that ours
show the highest score. While our approach might find a typical property for a typical entity (e.g., ‘size’
for dog), the discovered properties are mostly relevant, and often peculiar. On the other hand, DM
frequently present irrelevant ones such as noisy properties (e.g., 2 cups, olddddddd guns), and thus show
the lower scores.

5.2 Trivia question mining evaluation

We plug in our method into the framework of (Lee et al., 2016) that seeks trivia quizzes from image
tags. We compare the trivia quiz mining results using our serendipitous property mining module and
that of (Lee et al.,, 2016). Our evaluation procedure is based on an serendipitous document mining
work (Bordino et al., 2013). Bordino et al. (2013) use both rank-agnostic accuracy of top-IV results
(Section 5.2.1) and rank correlation of treating its rank differently (Section 5.2.2).
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5.2.1 Relevance and serendipity

We measure both relevance, and serendipity (i.e., pleasant surprise) using the evaluation procedure intro-
duced by (Ge et al., 2010). to evaluate a recommender system or a serendipitous web search method. It
shares the same spirit as our goal that we amuse users with serendipitous properties.

Both for relevance and serendipity, we label question relevance into relevant (1) and irrelevant (0).
We randomly show a query image and one of the top IV result questions from any methods so that an
assessor is not biased to a certain method. Note that no other information is shown to the assessor.

Then, we first measure the average relevance of the results for all images in J for each method.
Formally, we compute the relevance as follows.

Zj chv reljk
N|J|

Average relevanceQN =

6))

where rel; j; is the relevance (1 or 0) of the rank k question for j € J.

Measurements of serendipity have been established in the context of evaluating recommendation sys-
tems (Ge et al., 2010; Shani and Gunawardana, 2011). Specifically, (Ge et al., 2010) evaluates serendipity
as the ratio of unexpected but relevant results based on a benchmark model that generates expected rec-
ommendations, which are relevance-pursuing results. That is, from the result questions of each method,
we remove the expected ones that are retrieved by the benchmark model. Then the remainder is con-
sidered unexpected. By checking the relevance of the remainder, we measure the relevance of the unex-
pected results.

As a benchmark model, we might consider Yahoo! Answers search results or TF-IDF-based results
using the host page keywords. Unfortunately, Yahoo! Answers returns very few or no results when there
are more than two keywords, which is often much less than the number of keywords an image has (e.g.,
“giraffe zoo savanna” gives no result on Yahoo! Answers). To make the matters worse, obtaining top
100 results for subsets of keywords on Yahoo! Answers and joining the results also gives few or no
intersection. Therefore, we use TF-IDF to obtain the benchmark results.

Formally, suppose that BM QN is the top IV questions retrieved by the benchmark model, and RSQN
is the top N questions retrieved by a method we want to test. Then, we calculate the unexpected recom-
mendation set as follows.

UNEXPQN = RSQN — BMQN (6)

These unexpected recommendations may or may not be relevant to the query, but we want unexpected
but still relevant ones. Therefore, we measure the serendipity based on the relevance of each item in
UNEXP. Based on relevance labels rel; ;. of k-th result for image j, serendipity is defined as follows.

Z(j,k)eUNEXP@N rel;k
N

SRDP(RS)QN = (7

Table 4: Average question relevance and serendipity at V.

Method | Rel.@5 Rel.@10 | SRDPQ5 SRDPQI10
PM 0.6689  0.6607 0.6662 0.6275
DM 0.5672  0.5820 0.5562 0.5819
TF-IDF | 06190  0.6048 - -

Table 4 shows the average relevance and the serendipity of each method. As a reference, we also
include TF-IDF, which does not consider unexpectedness, to show the results of a typical relevance-
pursuing model. Note that TF-IDF is the benchmark model and hence it does not provide unexpected
questions for serendipity.

We may anticipate that the methods pursuing serendipity may have lower relevance, since such meth-
ods would avoid highly relevant results, which are often expected. Thus, DM shows lower relevance
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Table 5: Average Kendall coefficient for the questions.

Methods | QI. Q2. Q3. Q4.
PM 0.4960 0.3980 0.2486 0.3538
DM 0.0558 -0.0764 -0.2567 -0.2026

than PM because it gives lower score to those close to the average, but it may instead acquire and lever-
age noisy properties as unexpected. For example, DM may consider ‘fourth piece’ of Intel, which is
extracted due to ambiguity and hence rare in the category, as unexpected. Therefore, it leverages such
a property and in turn mines irrelevant trivia quizzes. We can also see that our approach shows higher
serendipity than the baseline regardless of N. As in relevance, the baseline shows low serendipity be-
cause they highlight noisy properties as we have already seen in Section 5.1. Note that we can see PM
show comparable or better relevances with TF-IDF as our approach pursuing serendipitous properties
distinguishes noises.

5.2.2 Kendall’s tau-b rank correlation coefficient

We evaluate the results considering their ranks using Kendall’s tau-b rank correlation coeffi-
cient (Kendall, 1938). Kendall’s coefficient ranges from -1 (perfect ranking disagreement) to +1 (perfect
ranking agreement).

We build a reference ranking according to the several evaluation dimensions since “pleasant” in
serendipity (pleasant surprise) can be interpreted in different ways. Therefore, we use several criteria
such as ‘more relevant questions rank higher’ based on (Bordino et al., 2013) and evaluate individual
dimensions. Specifically, we generate a task with a photograph and two randomly chosen result trivia
quizzes out of those returned by all tested methods. A result trivia quiz that is more suitable for each of
the following criteria is labeled as ‘better.’

e Q1. The trivia quiz is relevant to the image.
(i.e., ‘pleasant’ means ‘relevant’)

e Q2. If someone is interested in the image, they would also be interested in the trivia quiz.
(i.e., ‘pleasant’ means ‘interesting given interest to the image’)

e Q3. Even if you are not interested in the image, the trivia quiz is interesting to you personally.
(i.e., ‘pleasant’ means ‘interesting regardlessly to the image’)

e Q4. You learn something new about the image from the trivia quiz.
(i.e., ‘pleasant’ means ‘novel’)

Note that Q2 and Q3 try to evaluate both the image or topic-centric view of interestingness (Q2), and
the intrinsic interestingness of the trivia quiz (Q3) as in (Bordino et al., 2013). For example, if a method
shows high performance on Q3 but not on Q2, its trivia quiz tends to deviate much from the image/topic.
However, the method is anyway presenting interesting trivia quiz.

A human assessor has to label each of criteria for a given task. As used in (Bordino et al., 2013),
the reference ranking for each criterion is built by a simple voting-based approach, by ranking items
with the greater number of ‘better’ votes higher. Since this evaluation may heavily depend on human
assessors, we validate the gold standard by measuring the agreement. Thirty tasks are randomly sampled
and evaluated by four human assessors. We measure Fleiss’ kappa (Fleiss, 1971) to obtain x = 0.57,
which shows moderate agreement (Landis and Koch, 1977). In addition, considering only confident
answers by removing those tasks with any ‘not sure’ vote, we obtain higher agreement x = 0.71, which
shows substantial agreement.

The evaluation result using Kendall coefficient is shown in Table 5. We can see that our method
outperforms the baseline. In particular, our approach retains a high positive correlation with the refer-
ence rankings based on user perception. On the other hand, the baseline method shows low or negative
correlation with all reference rankings.
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6 Conclusions and future work

This paper studies the serendipitous property mining problem of finding relevant yet unexpected prop-
erties for a given entity. Although the serendipitous information mining is important for industry to
increase website traffic, it has not been studied actively on general knowledge due to lack of knowledge
or having noisy knowledge. Such noisy knowledge is challenging as noisy properties can be evaluated as
unexpected. We empirically show that probabilistic modeling of a prototype for each category alleviates
the noise problem, while the existing approach is prone to pick up the noisy properties that may signifi-
cantly detract the user experience of the applications like trivia questions. Our evaluation results suggest
that our approach shows not only higher serendipity than the baselines, but also higher relevance than a
traditional baseline using TF-IDF optimized for relevance.

We expect many research topics can be stemmed from our work. One possibility of modeling a
prototype would be neural embedding. Comparing its performance with our probabilistic model will be
a good research direction. Meanwhile, our approach is limited to properties, and the proposed framework
evaluates one property of an entity at each time. But taking relations into account, or considering more
than one properties/relations may give even more interesting questions and facts. Also, we expect a
similar approach can be exploited to mine outstanding issues from social network data which have a
considerable amount of noise.
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