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Abstract

Semantic role labeling (SRL) is the task of identifying and labeling predicate-argument structures
in sentences with semantic frame and role labels. A known challenge in SRL is the large num-
ber of low-frequency exceptions in training data, which are highly context-specific and difficult
to generalize. To overcome this challenge, we propose the use of instance-based learning that
performs no explicit generalization, but rather extrapolates predictions from the most similar in-
stances in the training data. We present a variant of k-nearest neighbors (kNN) classification with
composite features to identify nearest neighbors for SRL. We show that high-quality predictions
can be derived from a very small number of similar instances. In a comparative evaluation we
experimentally demonstrate that our instance-based learning approach significantly outperforms
current state-of-the-art systems on both in-domain and out-of-domain data, reaching F1-scores
of 89,28% and 79.91% respectively.

1 Introduction

Semantic role labeling (SRL) is the task of annotating predicate-argument structures in sentences with
shallow semantic information. One prominent labeling scheme for the English language is the Proposi-
tion Bank (Palmer et al., 2005), which annotates predicates with frame labels and arguments with role
labels (see Figure 1 for examples). Frame labels disambiguate the predicate meaning in the context of
the sentence. Role labels roughly correspond to simple questions (who, when, how, why, with whom)
with regards to the disambiguated predicate. SRL has been found useful for a wide range of applications
such as information extraction (Fader et al., 2011), question answering (Shen and Lapata, 2007; Maqsud
et al., 2014) and machine translation (Lo et al., 2013).

Current state-of-the-art SRL approaches train classifiers with bags of features (Johansson and Nugues,
2008; Björkelund et al., 2009; Choi and Palmer, 2011) to predict semantic labels for each constituent in
a sentence. These approaches typically employ classifiers such as logistic regression or SVM that learn
for each feature a measure of impact on the classification decision and abstract away from local contexts
in specific training examples.
Local bias. We argue that such approaches are not ideal for SRL due to a strong local bias of features
within specific contexts. Low-frequency examples in SRL are often not noise to be abstracted away, but
rather correspond to exceptions that require explicit handling.

For example, consider the task of argument labeling: Arguments that are syntactically realized as
passive subjects are typically labeled A11. However, there exist numerous low-frequency exceptions
to this rule. For instance, passive subjects of certain frames (such as the frame TELL.01) are most
commonly labeled A2. See Figure 1 for an example. Other examples of local bias include different
types of diathesis alternation which affect specific frames and argument types (Kipper et al., 2008), the
syntactic realization of higher order roles (A2 to A5) which is highly irregular among frames (Palmer et
al., 2005), and the realization of roles in non-agentive frames. These phenomena are observed only in
specific and often low-frequency contexts of composite features, but are highly relevant to SRL.

1This corresponds to the linguistic intuition that active subjects are commonly thematic agents, while direct objects and
passive subjects are most commonly the thematic patient or theme of a frame (van der Plas et al., 2014)
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SELL.01
A0: seller (agent)
A1: thing sold (patient)
A2: buyer (recipient)
A3: price paid

TELL.01
A0: speaker (agent)
A1: utterance (topic)
A2: hearer (recipient)The silver  was  sold by the man.

SBJ
PMOD

VC NMOD

a) Passive subject

A1

VC

Creditors  were  told to  hold  off.

SBJ
ORPD IM PRT

b) Passive subject of TELL.01

A2

Figure 1: Example sentences with a passive subject (underlined). Passive subjects are typically labeled A1 (e.g. Sentence a),
but there are exceptions to this rule (e.g. frame TELL.01 in Sentence b).

STATEMENT COMPOSITE SUPPORT

(1) 57% of all subjects are labeled A0 P 17,788 instances
(2) 33% of all subjects are labeled A1 P 17,788 instances

(3) 74% of active subjects are labeled A0 P+V 13,737 instances
(4) 86% of passive subjects are labeled A1 P+V 4,051 instances

(5) 100% of passive subjects of SELL.01 are labeled A1 P+V+F 137 instances
(6) 88% of passive subjects of TELL.01 are labeled A2 P+V+F 53 instances

Table 1: Observations based on CoNLL09 training data: The more atomic features we include in a composite, the more
discriminative (and descriptive) it becomes, but generally with lower support.

Feature contexts. We propose to explicitly capture local bias with feature contexts by constructing
composites of standard SRL features. Refer to Table 1 for a list of observations over the CoNLL09
shared task gold data (Hajič et al., 2009) for different numbers of features combined into composites:
Statements 1 and 2 involve only the syntactic path feature P that models the syntactic function of an
argument. Statements 3 and 4 use a composite feature of P and V, the predicate voice feature (either
active or passive). Finally, statements 5 and 6 use a composite feature of P, V and F, the specific frame
context.

We make three observations in Table 1: First, the more atomic features we include in a composite
feature, the more discriminative it becomes and the more explicitly it captures local bias. For instance,
statement 6 is a composite of three atomic features and explicitly captures the exception for passive sub-
jects of TELL.01 discussed earlier. Second, higher order composite features tend to have lower support
(i.e. number of training examples that share this combination of atomic features). The use of composite
features can therefore aggravate sparsity issues in training data. Finally, since composite features make
the interplay of features explicit, they can be rendered as human readable statements. Classification
decisions using such features can be easily interpretable for error analysis and extension.

Instance-based Learning for SRL Based on these observations, we propose to use instance-based
learning (Aha et al., 1991; Daelemans and Van den Bosch, 2005) for SRL. Such learning does not ab-
stract away from specific feature contexts, but rather considers the overall similarity of a test instance to
instances in the training data. It has been shown to be applicable to a range of NLP tasks such as PoS
tagging (Daelemans et al., 1999), dependency parsing (Nivre et al., 2004) and word sense disambigua-
tion (Veenstra et al., 2000). The arguably most well-known approach of this kind is k-nearest neighbors
classification (kNN) in which the class label is determined as the majority label of the k most similar
training examples (Cover and Hart, 1967).

We propose to identify nearest neighbors using composite features, i.e. instances that share the most
similar combination of atomic features. We use a function to assign to each composite of atomic features
a discrete distance value, effectively rendering the search for nearest neighbors as a search within a
Parzen window (Parzen, 1962). The variable k represents the minimum support within this window that
we require.

Figure 2 illustrates our proposed approach: To classify the underlined argument in the sample sentence,
we search for nearest neighbors using composite features. A distance 1 composite feature consists of
P+V+F and AL, the lemma of the argument head. Nearest neighbors at this distance are therefore all
training instances in which “creditor” is a passive subject of TELL.01. As the diagram on the right hand
side in Figure 2 shows, this finds only one match, labeled A2, which is below the minimum support k
that we require. We therefore increase the window to distance 2, which relaxes the argument head lemma
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Figure 2: Example of argument labeling with nearest neighbor classification and a composite feature distance function.

restriction on composites features. Nearest neighbors at this distance are all passive subjects of TELL.01
in the training data. As the diagram shows, there are six nearest neighbors within a distance 2 window.
From this neighborhood, we extrapolate the label A2 as prediction.

Contributions We propose a simple and highly effective instance-based learning model for semantic
role labeling2. We develop a nearest k-window variant of kNN in which we use a composite feature dis-
tance function to explicitly capture local contexts in sparse data. We give a full description of our SRL
system, dubbed K-SRL, motivate and illustrate the atomic and composite features we use, and describe
an easy-first algorithm for modeling global argument labeling constraints (Section 2). We present a de-
tailed experimental evaluation that shows that our proposed approach significantly outperforms existing
state-of-the-art systems (Section 3).

2 Instance-based Learning for SRL

We use instance-based learning for SRL as a sequence of two classification tasks: First, joint predicate
identification and classification (referred to as predicate labeling), followed by joint argument identi-
fication and classification (referred to as argument labeling). See Figure 3 for an illustration. In this
section, we describe the proposed nearest k-window classifier (Section 2.1) and discuss the specific fea-
tures used (Sections 2.3 and 2.2), before presenting how we include global constraints into argument
labeling (Section 2.4).

1. PREDICATE LABELING

(Joint PI+PC)

2. ARGUMENT LABELING

(Joint AI+AC)

Creditors  were  told to  hold off.

TELL.01

A2 A1 A0

HOLD.01

Figure 3: K-SRL system outline.

2.1 Nearest k-Window Classification
Algorithm 1 outlines our nearest k-window classification algorithm. It takes as input unlabeled instances
and performs feature extraction. A distance function assigns each feature an integer distance value, with
1 as the closest distance. The search for nearest neighbors begins with a window of distance 1. The
algorithm retrieves for each unlabeled sample all training examples whose distance from the current
sample lie within this window. If the window contains fewer than k training instances, we increase the
window size until it passes a threshold. Among the instances in the window, the algorithm determines

2In this work, we focus on verbal predicates since they are comprehensively and consistently labeled in available PropBank
releases. We aim to revisit SRL for other types of predicates once current efforts to consistently annotate noun predicates, light
verb constructions and adjectives (Bonial et al., 2014) are completed.
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the relative frequencies of each label. For instance, if the window contains 10 similar instances of
which 9 are labeled A0 and one is labeled A1, the relative frequencies of A0 and A1 are 90% and
10% respectively. We interpret this relative frequency as a measure of confidence. The label with the
highest relative frequency is returned as the most confident prediction. A label is returned only if its
associated confidence is higher than a threshold (denoted by θ). If either insufficient examples in the
nearest neighborhood are found, or the associated confidence is below the threshold, we return a fallback
label. For the subtask of predicate labeling, the fallback label is the most common sense of a verb. For
argument labeling, the fallback is to not label the word as an argument.

Algorithm 1 Nearest k-Window Classification

ws← 1
if ws ≤ maximal distance then

for each x ∈ Unknown Sample do
Add to I all y ∈ Training Set, where distance(x, y) ≤ ws
if |I| ≥ k then

Determine majority class label I
if the relative frequency of the label for x ≥ θ then

Return I , the label and its relative frequency for x
end if

else
ws = ws+ 1

end if
end for

end if

2.2 Features for Instance-based Predicate Labeling
Atomic Features The Proposition Bank distinguishes different frame options for a verb based on syn-
tactic subcategorization and coarse-grained polysemy (Palmer et al., 2005). For instance, the verb return
may evoke the frames RETURN.01 (return to a place, as in John returned to Boulder) and RETURN.02
(return an item to someone, as in John returned the stapler to Mary). The key difference of the two
in subcategorization is that RETURN.02 may take a syntactic object while RETURN.01 may not. Be-
sides objects, other differentiators in subcategorization involve particles, complements and prepositional
objects mediated by different prepositions.

We use each component of a subcategorization frame as one feature: The subject lemma S, the verb
lemma VB, the verb particle VP, the object lemma O and the prepositional object PP . Each of these
features may also be empty if unobserved. In addition to such lexical features, we define a set of binary
features that indicate whether a subcategorization frame component is observed or not: S? for subjects,
O? for objects and PP? for prepositional objects. Finally, we use the verb voice V since some frames are
more commonly observed in passive voice.

Composite Feature The set of atomic features described above constructs one single composite fea-
ture, denoted as Fx for a given instance x. The distance between xtest (test instance) and xtrain (training
instance) corresponds to the total number of non-empty features that the two instances do not share, de-
fined as d(x, y) = |Fxtest ∪ Fxtrain | − |Fxtest ∩ Fxtrain |. This distance function in essence corresponds
to Jaccard distance, without normalizing to a value between 0 and 1.

2.3 Features for Instance-based Argument Labeling
Atomic Features Table 2 includes a list of atomic features. Besides four well-established features
from previous work (i.e. the predicate frame F, the predicate voice V, the argument head lemma AL and
the argument head PoS tag AP), we define the following two novel atomic features:
(1) Syntactic-Semantic Path P: A variant of the syntactic path that, instead of traversing only the syntactic
tree, traverses semantic arcs from preceding classifications whenever possible. It is designed for the
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FEATURE SHORTHAND

Predicate frame F
Predicate frame class FC

Predicate voice V

Syntactic-semantic path P

Argument head lemma AL
Argument head pos AP

Table 2: Argument labeling features, with
novel features in bold.

The man drank some coffee and opened a book.

AL: man

AP: noun

P: A0 of verb in conjunction V: active F: OPEN.01

A0 A1

CONJ

OBJ

FC: agentive verb

ARGUMENT FEATURES PATH FEATURES VERB FEATURES

Figure 4: Features extracted for the underlined word (man) with re-
gards to the predicate OPEN.01.

COMPOSITE DISTANCE EXAMPLE

AL+V+P+F 1 “man” ∧ A0 of verb in conjunction ∧ active ∧ OPEN.01
AP+V+P+F 2 any noun ∧ A0 of verb in conjunction ∧ active ∧ OPEN.01

V+P+F 3 any word ∧ A0 of verb in conjunction ∧ active ∧ OPEN.01

AL+V+P+FC 4 “man” ∧ A0 of verb in conjunction ∧ active ∧ agentive verb
AL+V+P+FC 5 any noun ∧ A0 of verb in conjunction ∧ active ∧ agentive verb

V+P+FC 6 any word ∧ A0 of verb in conjunction ∧ active ∧ agentive verb

Table 3: Distance value assigned to each composite feature, with an example for features extracted in Figure 4.

phenomenon of raised arguments, defined as syntactic constituents of a preceding verb. For instance,
in Figure 4, man is a constituent of the verb drank as well as a raised argument for the verb open. In
this example, we build the path from man to open by first traversing the semantic arc (A0) from man to
drank and then the syntactic arc (CONJ) from drank to open. The resulting syntactic-semantic path is
verbalized as ”A0 of verb in conjunction”.
(2) Frame Class FC: This feature categorizes frames based on whether they may take a thematic agent
as argument. Some frames, such as FESTER.01 and HOVER.01, cannot and are therefore considered
non-agentive. Non-agentive frames define no A0 and therefore realize semantic roles differently3.

Composite Features Table 3 lists all composite features along with their associated distances, in-
cluding features extracted for the sample sentence in Figure 4. As described in Section 1, the relevant
context for argument labeling includes: 1) The syntactic-semantic relationship between predicate and
argument (P+V), 2) The frame-specific context of this syntactic-semantic relationship (F or FC), and
3) The argument-specific context (AL or AP). We require each of the three components to be represented
in each composite feature in order to capture argument contexts. We define a distance function that as-
signs the closest distance 1 to the most discriminative of these composite features (i.e. AL+P+V+F). The
function assigns higher distances to composites with fewer or less specific features (AP is a less specific
representation of the argument context than Al).

This approach draws inspiration from backoff modeling, a well known method for addressing spar-
sity in language modeling with n-grams (Katz, 1987): If insufficient training data exists, such models
commonly backoff to lower histories (for instance, a 3-gram model may back off to a 2-gram language
model). The six distance values assigned to composite features in Table 3 may be interpreted in a similar
spirit since our approach broadens the search to nearest neighbors with less specific composite features
if insufficient training data exists.

2.4 Easy-First Argument Labeling

While argument labeling decisions are made locally, each core semantic role (labels A0 through A5)
may only be assigned once per predicate (Che et al., 2009). To include this global constraint, we use a
greedy approach in which already assigned core labels are removed from consideration for the remaining
predictions. Our approach follows an easy-first philosophy (Goldberg and Elhadad, 2010) where clas-

3For example, while active subjects are most commonly labeled A0 (agent) of a verb (”the dog ate”, ”the bird sang”), they
are typically the A1 (theme) of non-agentive frames (”the wound festered”).
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Algorithm 2 Easy-First Argument Labeling

for each predicate p ∈ Unknown Sample do
A← ∅
C ← Candidate arguments of p, their labels and confidence value in sorted order by confidence
for c ∈ C with the highest confidence value in C do

Remove c from C
if Label of c /∈ Set of labels in A then

Add c to A
end if

end for
end for

sifications for all predicate arguments are ordered by confidence and highest confidence predictions are
made first. Algorithm 2 outlines this approach.

3 Experiments

In this section we evaluate K-SRL, our proposed instance-based labeling approach for SRL. We conduct
a comparison study to evaluate its performance against previously published state-of-the-art systems.
We also examine how different parameters of K-SRL impact its performance, including the minimum
support variable k, different components in composite features, and our interpretation of relative label
frequencies in the nearest neighborhood as an indication of confidence for assigning labels.

3.1 Experimental Setup

We use the benchmark data sets from the CoNLL-2009 shared task (Hajič et al., 2009) and compare our
results against the top two scoring systems of the CoNLL-2009 shared task as well as two recent state-
of-the-art systems: 1) CHEN (Zhao et al., 2009), which uses maximum entropy classifiers. 2) CHE (Che
et al., 2009), which uses SVM classifiers. 3) MATEPLUS (Roth and Woodsend, 2014a), a state-of-the-art
extension of a previous system (Björkelund et al., 2009) that uses logistic regression classifiers and word
embeddings. 4) PATHLSTM (Roth and Lapata, 2016), the current state-of-the-art which uses logistic
regression classifiers for predicates and neural network models with word embeddings for arguments.
Our default settings for K-SRL are k = 3 and confidence threshold θ = 0, both determined through
experimentation. For both settings, we present parameter sweep experiments.

We compute the precision, recall and F1 to measure the quality of the systems. In our study, we focus
on verbal predicates and their roles, which we evaluate using the scoring metric of the CoNLL-2009
shared task. We recomputed the measures for the previous state-of-art systems using their published
results to focus on verbal predicates and their roles4.

3.2 Evaluation Results

Tables 4 and 5 summarize the results for our comparison study on in-domain and out-of-domain data
respectively. As can be seen, K-SRL outperforms all previous approaches by a significant margin on
both data sets. In the in-domain setting, K-SRL achieves 89.28% F1-score, outperforming PATHLSTM,
the currently published state-of-the-art approach, by 1.1 percentage points. In the out-domain setting, K-
SRL achieves 79.91% F1-score, outperforming MATEPLUS, the best previous system on out-of-domain
data in our evaluation, by over 3 percentage points, and PATHLSTM by an even larger margin.

3.3 Additional Experiments

We conduct a detailed empirical examination to evaluate different aspects of our approach and make the
following observations:

4As a result, the numbers for previous work reported here are slightly different from the published numbers.
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SYSTEM PRECISION RECALL F1

CHE 87.43 83.92 85.64
CHEN 88.45 84.22 86.28
MATEPLUS 89.59 86.07 87.79
PATHLSTM 90.24 86.24 88.19

K-SRL 91.21 87.42 89.28

K-SRLlocal 90.19 87.15 88.64

K-SRL(−AL) 90.33 86.55 88.4
K-SRL(−F ) 88.74 85.11 86.89
K-SRL(−FC) 91.17 87.53 89.31

Table 4: Evaluation results on in-domain data.

SYSTEM PRECISION RECALL F1

CHE 76.25 71.24 73.66
CHEN 78.1 71.64 74.73
MATEPLUS 79.46 74.21 76.74
PATHLSTM 79.92 73.31 76.47

K-SRL 82.09 77.84 79.91

K-SRLlocal 80.38 77.78 79.06

K-SRL(−AL) 81.69 77.28 79.42
K-SRL(−F ) 80.96 76.88 78.86
K-SRL(−FC) 81.69 77.71 79.65

Table 5: Evaluation results on out-of-domain data.
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Figure 5: Parameter sweep over k on in-domain data.
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Figure 6: Parameter sweep over k on out-of-domain data.

Highest quality predictions from small neighborhoods. To determine the best setting for k, we conduct
a parameter sweep experiment. Figures 5 and 6 summarize results of SRL for k from 1 to 20 on both
in-domain and out-domain data. The results show that the best F1 scores are achieved at relatively low
settings for k, with best results obtained with k = 3 for in-domain and k = 4 for out-of-domain data. At
higher k, F1-score drops gradually, indicating that this approach loses its ability to capture local bias. At
lower k, the approach overfits, decreasing F1-score especially in the out-of-domain scenario (↓1.8 pp).
These observations confirm our initial conjecture that SRL is affected by a strong local bias and that a
small nearest neighborhood suffices to make high quality predictions.
Global constraints improve argument labeling. We run an ablation test in which we make only local
predictions without modeling global constraints as described in Section 2.4, which reduces the F1-score
by .6 and .8 percentage points respectively on in-domain and out-of-domain data (see K-SRLlocal in
Tables 4 and 5). These results are in line with previous evaluations on the impact of modeling global
argument constraints (Toutanova et al., 2008; Roth and Lapata, 2016).
Frame and argument contexts are important. To assess the importance of individual features in
their contexts, we run ablation tests in which we remove individual atomic features from composites, as
summarized in Tables 4 and 5. Specifically, removing the frame feature F from argument labeling (K-
SRL(−F ))), which causes all argument labeling predictions to be made without frame-specific contests,
leads to the most significant decrease on F1 scores (↓2.5 pp and ↓1 pp) in our ablation tests. Omitting
argument head lemma feature AL (K-SRL(−AL)), the only feature capturing argument-level selectional
preference (Resnik, 1997) in our approach, results in evident reduction on F1 scores (↓0.8 pp and ↓0.5
pp). Meanwhile, the removal of frame class feature (K-SRL−FC) impacts only the out-of-domain
scenario slightly (↓0.3 pp). This observation indicates that small neighborhoods with the frame feature
often suffice to capture exceptions for non-agentive verbs.
Relative frequencies measures confidence. We assess our interpretation of relative frequencies in the
nearest neighborhood as a measure of confidence by running a parameter sweep over θ. The results are
depicted in Figures 7 and 8. As can be seen, precision improves at higher θ, while recall decreases,
indicating that the quality of label prediction positively correlates with the associated confidence. We
measure the best F1-scores at θ = 0.5 and θ = 0.6 respectively, but F1-score remains relatively stable
between θ = 0.0 and θ = 0.7, indicating a balanced trade-off within these parameters. These observa-
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tions indicate that relative frequencies can serve as a good measure of confidence and be used to influence
the precision-recall trade-off.

3.4 Discussion
Our instance-based learning approach is designed to capture the strong local bias of SRL. We note that
even in out-of-domain evaluation scenarios, a very small nearest neighborhood suffices to make high
quality predictions. Our experimental results demonstrate the effectiveness of this approach compared to
previous state-of-the-arts for both in-domain and out-of-domain scenarios.

The state-of-the-art results are also remarkable in light of the relatively simple feature set we used.
While previous work has investigated the use of word clusters (Choi and Palmer, 2011), word embed-
dings (Roth and Woodsend, 2014b; Roth and Lapata, 2016) and explicit learning of selectional prefer-
ence (Zapirain et al., 2013) for better generalization across the training data, such features are absent in
our current approach. Instead, for predicate labeling we use only the subcategorization frame and for
argument labeling a simple set of 6 basic atomic features. This is in stark contrast to previous works that
often employ dozens of different features classes (Johansson and Nugues, 2008; Björkelund et al., 2009;
Choi and Palmer, 2011).
Interpretability of classification decisions. Our approach has the advantage of interpretability since
each classification is determined through a specific composite feature that can be translated into a human
readable statement (as illustrated in Table 3). This enables us to easily understand classification results
and debug misclassifications, and thus facilitates the process of defining atomic features and compos-
ites for SRL. At the same time, we note that explicitly modeling composites does add another layer of
complexity in feature engineering to this task. We plan to further investigate this in future work.

4 Conclusion and Outlook

We introduced an instance-based learning approach for semantic role labeling that is designed to address
the large number of low-frequency exceptions in training data. We proposed to construct composites
based on a few existing well-known features to identify similar instances. Our experimental results
indicates that our model built on top of this approach significantly outperform existing systems, leading
to new state-of-the-art results in SRL for verbal predicates and their roles.

We intend to focus more specifically on feature engineering for instance-based SRL. In particular, we
plan to explore automatic feature selection methods especially in the context of composite features. We
also plan to evaluate generalization features such as word clusters or word embeddings in the context of
instance-based SRL.

Finally, we plan to extend our system to different types of predicates including nouns and complex
predicates (Bonial et al., 2014), as well as evaluate its applicability to SRL in different languages (Xue
and Palmer, 2005).
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