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Abstract

In order to organize the large number of products listed in e-commerce sites,each product is
usually assigned to one of the multi-level categories in the taxonomy tree. It is atime-consuming
and difficult task for merchants to select proper categories within thousands of options for the
products they sell. In this work, we propose an automatic classification tool topredict the match-
ing category for a given product title and description. We used a combination of two different
neural models, i.e., deep belief nets and deep autoencoders, for both titlesand descriptions. We
implemented a selective reconstruction approach for the input layer duringthe training of the
deep neural networks, in order to scale-out for large-sized sparsefeature vectors. GPUs are uti-
lized in order to train neural networks in a reasonable time. We have trained our models for
around 150 million products with a taxonomy tree with at most 5 levels that contains28,338
leaf categories. Tests with millions of products show that our first predictions matches 81% of
merchants’ assignments, when “others” categories are excluded.

1 Introduction

E-commerce has grown rapidly in recent years. Giant e-commerce companies like Amazon, e-Bay,
Taobao and Rakuten list millions of products on their sites sold by thousand ofmerchants. As of May
2016, Japan’s largest e-commerce site Rakuten Ichiba1 hosted 186 million active products sold by 43,363
different merchants. In order to organize products so that customers can navigate and search them easily,
products are categorized into multi-level categories. “Women’s Fashion> Tops> Sweaters> Long-
sleeved knit> Crew neck” is an example for such categories. Rakuten Ichiba contains around 30 thou-
sand categories of up to 5 levels. Merchants need to manually assign each product to one of those
categories, which is a tedious task and prone to error. Moreover, merchants may not be accurate while
assigning products, the cateogry assignment of the same product listed bydifferent merchants may not
be consistent. Automatic category recommendation for given product information helps to solving these
problems.

Product classification is a text classification with a large hierarchical product taxonomy, and a lot of re-
search have been conducted with various methodologies (Gupta et al., 2016; Shen et al., 2012; Kozareva,
2015; Qiu et al., 2011). Product classification includes the following challenges: 1) the products sparsely
distributed in a large number of categories and data distribution is quite skewed, 2) the length of product
titles and descriptions is diverse, 3) even though there are tons of product data, it is not guaranteed that
pairs of current product title and assigned category are correct.

In this paper we propose a large-scale classification method for e-commerce products to classify them
into thousands of multi-level categories. We use 172 million product title and description data for making
predictions on products from Rakuten Ichiba. Please note that our techniques can be applied to other
languages as well. Titles and descriptions are preprocessed to extract words, model numbers, sizes and
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http://creativecommons.org/licenses/by/4.0/

1http://www.rakuten.co.jp
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counts. Deep belief nets (DBN) and deep autoencoders (DAE) are used to build models for given data
sources. Combining results from different models and different data sources, final predictions are made.
Input feature vectors are very high dimensional and sparse for the deep models we train, which makes
it impractical to train in usual way. We apply the selective reconstruction ideaby Dauphin et al. (2011)
for training DBN and DAE. DBN and DAE with selective reconstruction are implemented on GPUs
in order to process a large product base within a reasonable amount of time. Conventional methods
like multinomial Naive Bayes are not practical to be used in that scale. We compared our results with
passive-aggressive learning, and confirmed large accuracy improvement.

We can summarize our contributions as follows:

• We propose a large-scale classification method for e-commerce products toclassify them into
28,338 categories organized in 5 level.
• E-commerce-specific features, like product models, sizes, counts are extracted from a corpus which

mainly contains Japanese text.
• DBN and DAE with selective input reconstruction are implemented on GPUs.
• We conducted experiments with 172 million product titles.
• Our comparisons with merchants’ assignments suggest 81% match, when “others” categories are

excluded. We observed that our predictions can sometimes be more accurate than human labeling.

The remainder of this paper is organized as follows. Section 2 introduces related work. Section 3 and
Section 4 overview exploited deep models and explain our proposed framework. In Section 5 we explain
tokenization and feature extraction from product data. Section 6 presents experimental results of product
classification, with varying settings. Section 7 concludes the paper.

2 Related Work

2.1 Text classification in large taxonomies

Xue et al. (2008) worked on deep classification in large-scale text taxonomy. They proposed two stage
algorithm consisting of a search stage and classification stage. A languagemodel was trained with over
1 million web documents and 130,000 documents was classified into over 130,000categories. Qiu et
al. (2011) proposed a variant Passive-Aggressive (PA) algorithmwith latent concepts and evaluated
the method with LSHTC dataset2, which include over 13,000 categories and over 100,000 documents.
Kosmopoulos (2015) proposed an extended hierarchical classificationto predict the correct leaf by es-
timating the probability of each root-to-leaf path. LSHTC dataset has also been used to evaluate the
method. Ha-Thuc et al.(2011) exploited classification approach without labeled data. In their algorithm,
ontological knowledge was used to define the meaning of categories insteadof relying on human-labelled
documents. A typology consisting of 1,131 categories was used in the evaluation.

2.2 Product classification

There are various works devoted to multi-level category predictions for e-commerce products. Chen
and Warren (2013) used multi-class-SVM with cost-sensitive function. They used 1,073 categories from
UNSPSC taxonomy3, which includes over 17,000 categories, and over 1 million products. Guptaet.
al (2016) used word clustering and idf values to obtain document vector from product description and
showed this document representation worked well in their product classification. Kozareva (2015) has
worked on product classification with Yahoo! product data. They compared several classifiers and 5
kinds of features, and showed neural network embedding representation outperformed in product classi-
fication with over 300 categories in their category taxonomy.

Shen et. al (2011; 2012) proposed hierarchical classification, whichdecomposes into a coarse level
and a fine level task, and used graph algorithm to discover automatically groups of highly similar classes
as product category instead of relying on human-defined hierarchy. The model was trained with 83
million products from eBay.

2http://lshtc.iit.demokritos.gr
3http://www.unspsc.org/
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2.3 Text classification with deep learning

In the last couple of years, deep learning algorithms have been exploited totext classification.
Zhang et al. (2015) showed that character-level convolutional network is an effective method in

the text classification, and compared various models, including BoW (Bag ofWords), word embed-
ding, word-based ConvNet and long-short term memory with several kinds of large-scale dataset. Lai
et al. (2015) have also worked on recurrent convolutional neural network (RCNN). A recurrent struc-
ture was used to capture contextual information as far as possible when learning word representations.
They compared various models with 4 kinds of datasets, including small numberof classes and middle
size of instances. Kim (2014) reported sentence classification with Convolutional Neural Network. A
simple improvement was considered to the convolutional architecture that two input channels are used
to allow the employment of task-specific and static word embeddings simultaneously. Evaluation has
been conducted with 6 kinds of datasets, including a few classes and small number of instances. Wang
et al. (2015) worked on semantic clustering and convolutional neural network for short text classification
and used 2 kinds of datasets, which consists of small number of classes and instances.

Ha et. al (2016) used deep learning-based product classification method, which consists of multiple
recurrent neural networks (RNNs). They evaluated the method with morethan 94 million products with
approximately 4,100 leaf categories from NAVER shopping.

3 Deep Models Exploited

Recently, neural models gained attention for classification and semantic compression tasks. Deep belief
nets are multiple layer neural networks used for classification tasks. Theycontain all-to-all connec-
tions between layers. Top layer of a DBN represents class probabilities ofa given input vector. Hinton
et al. (2006) proposed greedy layer-wise pre-training for DBN. Each layer (Restricted Boltzmann Ma-
chines) is trained by constructive divergence, using 1-step Gibbs sampling. Given class labels for top
layer, the network is fine-tuned after greedy layer-wise pre-training is completed.

Deep autoencoders are used for finding compressed representations, i.e., semantic hashes (Salakhut-
dinov and Hinton, 2009; Hinton and Salakhutdinov, 2011) of given data,so that related input items have
closer hash values (Hinton and Salakhutdinov, 2006). Similar to DBN, DAE contains multiple layers of
restricted Boltzmann machines (RBM) which are stacked on top of each other. Each RBM is trained one
after another in a greedy way and the overall network is fine-tuned aftergreedy pre-training is completed.
Unlike DBN, DAE does not contain any class layer on top; DAE training is fullyunsupervised.

Matrix multiplication is the core operation for training deep networks. Weight for each layer corre-
sponds to a matrix of sizev × h, wherev is the input layer length andh is the output layer length.
For large and sparse inputs, sparse operations can be used to construct output layer of an autoencoder.
However, input layer should also be reconstructed from dense outputvectors for which sparse operations
cannot be used in the original algorithm. This is prohibitively time-consuming for large-dimensional
input data. In order to train with very high dimensional and sparse inputs, Dauphin et al. (2011) applied
reconstruction sampling for stacked denoising autoencoders. In this work, we apply reconstruction sam-
pling for DBN and DAE, both for pre-training of the first layer autoencoder and during fine-tuning by
stochastic gradient descent.

Let us give an example for reconstruction sampling. Let us consider a network with visible layer
of sizev and first hidden layer of sizeh. Then, size of the weight matrixW for the first autoencoder
becomesv × h. For the forward pass for a minibatch of 3 input vectors,3 × v matrix X is multiplied
with W to generate3 × h batch output matrixY . After Y goes some non-linear operations, during the
backward pass input̄X is reconstructed from̂Y by X̄ = Ŷ ×W T (we ignore bias parameters for the
sake of simplicity). SayX[1, a] = X[1, b] = X[2, b] = X[2, c] = X[2, d] = X[3, a] = X[3, e] = 1 and
others are all0. Then, for this minibatch, we use only rowsa, b, c, d, e of W during training. This means,
while reconstructinḡX only h×5 matrixW [a, b, c, d, e]T is multiplied withŶ . For each minibatch, only
a portion of the weight matrix is trained. After all training batches are processed, training is completed
for all rows ofW .
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Classify(title, descr, category-ids, trained-models)
// trained-models:DBN-{title,descr}-*, DAE-{title,descr}, hashed-training-{titles, descrs}

title-word-vec← feature-extractor(title) // Regex for product codes etc. and Kuromoji Analyzer
descr-word-vec← feature-extractor(descr)

// Nearest points (found by kNN over semantic hashes) are used for both steps
title-semantic-hash← compute-DAE(DAE-title, title-word-vec)
descr-semantic-hash← compute-DAE(DAE-descr, descr-word-vec)
title-nearest-points← nearest-points(title-word-vec, hashed-training-titles)
descr-nearest-points← nearest-points(descr-word-vec, hashed-training-descrs)

// Classifier outputs for first step
title-l1-kNN-probs← kNN-classify(title-nearest-points, level1-category-ids)
descr-l1-kNN-probs← kNN-classify(descr-nearest-points, level1-category-ids)
title-l1-DBN-probs← compute-DBN(DBN-title-l1, title-word-vec)
descr-l1-DBN-probs← compute-DBN(DBN-descr-l1, descr-word-vec)
l1-probs← average(title-l1-kNN-probs, descr-l1-kNN-probs, title-l1-DBN-probs, descr-l1-DBN-probs)
N← argmax(l1-probs) // Predicted level-1 category id

// Step 2
title-kNN-probs← kNN-classify(title-nearest-points, leaf-category-ids)
descr-kNN-probs← kNN-classify(descr-nearest-points, leaf-category-ids)
title-N-DBN-probs← compute-DBN(DBN-title-N, title-word-vec)
descr-N-DBN-probs← compute-DBN(DBN-title-N, descr-word-vec)
probs← average(title-kNN-probs, descr-kNN-probs, title-N-DBN-probs, descr-N-DBN-probs)
final-prediction-id← argmax(probs)

Figure 1: 2-step classification for a given product title with trained models.

4 Classification Models

Classification is implemented in two steps. In first step, first level categories are predicted. There are 35
first level categories in Rakuten Ichiba. In the second step, leaf categories are predicted.

In each step, two classifiers, DBN and kNN (k-Nearest Neighbors) are used for each of two different
data sources (titles and descriptions). Category predictions are made by averaging probability distribution
scores of four different classifiers. DBN accepts 0-1 word vectorsof high dimensions, and returns class
probabilities as output. DAE is used to find semantic hash values for 0-1 wordvectors. These semantic
hashes are then used for k-nearest-neighbor classification.

For each data source, one DBN model is trained for first level classification and 35 different models
are trained for sub-categories under each first level category. In total, we have2 × (1 + 35) = 72 DBN
models trained. However, we have only 2 DAE models for semantic hashing oftitles and descriptions.
In the first step, first level category IDs are used for kNN classification and in the second step, leaf level
category IDs are used for kNN classification using the same semantic hashes. Two step classification
using trained models is summarized in Figure 1.

kNN classification using high dimensional semantic hash values and hundredsof millions of points
(training items) is not practical if all points are traversed during the neighbor search. Therefore, points are
first clustered using hierarchical k-means (Böcker et al., 2004). Nearest neighbor search is implemented
in the cluster whose center is the closest to the search point.

In the second step for classification, DBN classifiers return results fromthe same level-1 category tree.
On the other hand, kNN classifiers can return any category. It is possible to build different DAE models
and different kNN classifiers for each level-1 category, just like we dofor DBN classification models.
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However, doing so increases the number of models twice and it requires 4 kNN searches to classify a
product, instead of 2. Besides decreasing run-times for training and classification, having a global model
for kNN helps decreasing the error propagation ratio. If level-1 category is mispredicted in step 1, there
is no way DBN classification can find the correct category. But, mixing with global kNN result may
correct mispredictions made in step 1.

5 Tokenization and Feature Extraction

We use product titles and descriptions for classification, which are mainly in Japanese. Merchants in
Rakuten Ichiba are free to assign their own titles and descriptions for the products they are listing. We
assume no dictionary is available for meta-information, like manufacturer name.However, we extract
model numbers, counts and sizes from the text. Remaining text is tokenized using Kuromoji4 Japanese
morphological analyzer to extract words.

We first normalize text by converting all Japanese characters to full-widthand all non-Japanese char-
acters to lower cases. All HTML tags are cleaned from descriptions. Products’ model numbers are
predicted using regular expressions, by checking alphabet/number combinations, possibly with spaces
and dashes. For example, the words “iPhone 4s” is normalized to “iphone4s”. Sizes are estimated by
checking whether there exists quantity keywords following numbers. For example, “12.3 cm” is normal-
ized to “12.3cm” and “12cm x 3 cm” is converted to “12cmx3cm”. There may be some conflicts with
model number extractor and size extractor. In this case, we keep both model numbers predictions and
sizes, like “iPhone 4Gb” to be normalized as “iphone4gb 4gb”. Japanesehave counters for different type
of objects. For example, “本” is used to count long and cylindirical objects and “枚” is used to count flat
objects. Counters following numbers are not tokenized and kept together, like “3枚”.

Japanese words are not split by spaces, so it is not straight-forwardto split words. We use Kuromoji
in search mode for tokenization of Japanese text and take the base form as word features. Stop words
defined in Kuromoji plug-in for Lucene5 and punctuation marks are excluded from the dictionary.

As a result of above feature extraction process, we have around 26 million words for titles and 47 mil-
lion words for descriptions. These numbers are much bigger than dictionary sizes of natural languages,
because of the nature of e-commerce data. Pre-processing for model number, size and count extraction,
as well as misspelled words and failing to properly tokenize Japanese text increase the number of words.
It is especially difficult to tokenize Katakana words which are used for writing imported words from
other languages and prone to misspelling. We choose a frequency threshold, so that words appearing
only a few times in the corpus are not selected as features to be used. Although less-frequent words are
more expressive for products, by eliminating them we eliminate most of the noisyinformation as well.
Eliminating less-frequent words also helps making the classifier practical and more robust for classifica-
tion of new products. Sparse word vectors of the dictionary size after elimination of less-frequent words
are accepted as input features for deep network classifiers, which weexplain the details in the following
sections.

6 Experimental Results

In this section, we discuss details of experiments in terms of prediction matching ratios with merchants’
assignments and run-time discussions for the methods and implementations we explained in the paper.

6.1 Dataset and Model Properties

We used Rakuten product dataset, which is available under Rakuten Data Release program6. We pro-
cessed 280 million (active and inactive) products listed by over 40,000 merchants. Products are assigned
to 28,338 active categories. There are many products sharing the same title which we remove before-
hand. After deduplication by titles, around 40% of products were eliminated,remaining 172 million
titles. 90% of those products were randomly selected as being training data, and remaining 10% as test.

4http://www.atilika.org/
5http://lucene.apache.org/
6http://rit.rakuten.co.jp/opendata.html
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We extracted features from training data as explained in Section 5. As a result, 26 million words were
extracted for titles and 47 million words were extracted for descriptions. Words appearing more than
50 times in the training data were selected as features for training first-step DBN and DAE networks.
As a result, the number of word features (dictionary size) was 968,471 for titles and 1,461,625 for de-
scriptions. We built 4-layer step 1 DBN for titles with layer sizes{968471, 1000, 2000, 35}, and for
descriptions{1461625, 650, 2000, 35}. 35 is the number of level-1 categories. For DAE, last layer size
is 64, meaning we built 64-D semantic hash values for each input word vector.

Input layer is still very large for training deep networks, but the word-vectors are very sparse which
makes it possible for deep networks to be trained in reasonable time using the selective reconstruction
method explained in Section 3, using latest generation GPUs. Average number of words for a title is 12.9
and average number of words for a description is 98.7. Hence, for a input vector batch of size 100, at
largest1290× 1000 parameters were trained for titles and at most9870× 650 for descriptions.

DBNs in step 2 for each level-1 category used different feature sets. Dictionary sizes for level-1
categories are much smaller when compared with that of whole corpus. Mostfrequent 500,000 words
were taken as features for second step DBNs. By doing so, if there aremore words than 500,000 in a
level-1 category, words appearing only once or twice were eliminated. Therefore DBN models for titles
and descriptions in step 2 is of size{min(v, 500000), 1800, 2000,n}, wherev is the dictionary size and
n is the number of leaf categories in the corresponding level-1 category.

For kNN classification, after training DAEs (where we selected k to be 10),semantic hash values were
calculated for training data. Those vectors then goes into hierarchical k-means clustering, where the set
of hash vectors are clustered into 64 in each level until the number of pointswithin a cluster falls below
10,000.

6.2 Hardware and Software Setup

We used a Ubuntu 14.04 Linux server with 4 Nvidia TitanX GPUs for our experiments. Each GPU has
12GB memory and 3072 processing cores. The server has two 12-coreIntel CPUs running at 2.4GHz.
The system has 96 GB main memory.

Extraction of word features was implemented on CPU, using regular expressions and Kuromoji ana-
lyzer. It took around 8 hours to extract features from 280 million titles and descriptions.

DBN and DAE were implemented using CUDA library with C++. Earlier work by Raina et al. (2009)
shows that GPU implementation of deep network training can be more than two order of magnitudes
faster when compared with single-core CPU implementations. In our implementation, besides the kernels
we have written for original operations like selective reconstruction, we exploited CUDAMat (Mnih,
2009), cuBLAS and cuSPARSE libraries (NVIDIA, 2015) for efficient matrix operations. During training
iterations, model weights were kept in GPU memory and input word vectors were stored in main memory
in sparse format. For even larger models, it is possible to store model weightsin main memory and
communicate working parameters in each batch with GPUs, and/or stream inputfeatures from disk
drive. However, these choices considerably slows down GPU training times. During greedy layer-wise
pre-training, upper layers were constructed on memory using on-memory sparse input word vectors and
trained lower-layer weights. This is a more practical solution than storing each layer output and streaming
it for training upper layers, because intermediate layers are not sparse, requiring huge amount of storage
for intermediate layers for large number of training samples.

Hierarchical k-means clustering and kNN search using hierarchical k-means tree were also imple-
mented using GPUs, using the guidelines explained in Cevahir and Torii’s work (2013). With our settings
explained above, it took several days to train deep models and k-means tree using 4 GPUs.

6.3 Prediction Recalls

We compared prediction results with merchants’ assignments in our test data. Merchants’ assignments
in Rakuten Ichiba are quite noisy, having the same products by different merchants distributed through
different categories and more than 40% of products are in “Others” leafcategories (such as “Women’s
Fashion> Tops> Sweaters> Long-sleeved knit> Others”). However, it was not easy to eliminate noise
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Figure 2: Top level category matching percent recalls (first step matchingfor 35 level-1 categories).(a)
All categories including leaf-level categories named “Others”,(b) excluding leaf-level categories named
“Others”.
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Figure 3: 2-step category matching percent recalls.(a) All 28,338 categories including leaf-level cate-
gories named “Others”,(b) excluding leaf-level categories named “Others”.

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

Title-DBN Descr.-DBN

Title-KNN Descr.-KNN

All Combined DBNs combined

Figure 4: 1-step category matching percent recalls for all 28,338 categories including “Others”.
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Figure 5: Comparison of category matching results grouped by first-levelcategories for title-DBN with
a Passive-Aggressive algorithm with kernel slicing (Yoshinaga and Kitsuregawa, 2010).

for millions of test data in 28,338 categories by hand, hence we present prediction recalls considering
the merchants’ assignments as the basis.

Figure 2a depicts level-1 categorization matching percent ratios up to top-10 predictions in first step
and Figure 3a depicts final categorization matching ratios after step 2. We excluded items from “Others”
categories in evaluation results depicted in Figure 2b and Figure 3b as many products in those categories
were miscategorized by merchants. Titles usually better define products, sotitle-based approaches yield
better matching ratios than description-based approaches. DBN matching ratios were better than kNN
classification, but the overall combination of methods by score averaging yielded much better matching
ratios than each individual method.

Both using different data sources and different models affected the increase in matching ratios. The
DBNs combinedline in Figure 3a shows the matching ratios when only DBN models for titles and
descriptions are combined. First prediction matches by 70% with the merchantassignments, which is
better than individual model results, but combining kNN models as well increases the overall matching
ratio for the first prediction 4% more.

The effect of making categorization in 2-steps, instead of using big 1-stepmodels, can be observed by
comparing results from Figure 3a and Figure 4. In Figure 4, categorization results are presented by using
direct classification in one step with features used in the first step of 2-stepapproach. Although 2-step
approach suffered from error propagation, number of features used in the second step is much larger,
hence the overall matching ratios are better. Matching ratios of individual approaches had large gaps, but
the gap reduces to 1.8% if combined models were compared for first predictions.

In order to confirm the effectiveness of deep network training for classification, we compared our
results with a passive-aggressive (PA) learning algorithm (Crammer et al., 2006) with kernel slicing,
using OPAL tool (Yoshinaga and Kitsuregawa, 2010). Figure 5 depicts the comparison between second
step DBN classification and PA classification matching results using title data only for products grouped
by level-1 categories. Please note that, we also tried one-step direct classification to 28,338 categories
with PA, but it was not able to be trained on single server with 96 GB main memory,because of the
memory overflow problem. It can be confirmed from the figure that DBN works better for 23 categories
out of 35. Categories that PA works better were usually very small. The overall performance difference
was between title-DBN and title-PA is more than 10%.

Although overall performance was worse for the passive-aggressive approach, one may think that it
can still be used to increase accuracy by combining with the models which we have explained above.
However, the scores given by the algorithm was not suitable for combiningby score averaging.

6.4 Sample Results

Although we provide results for matching between our predictions and merchant categories, the actual
correct prediction ratios are different. There are four possibilities in case of a mismatch between a
prediction and the corresponding merchant: merchant correct / prediction incorrect, merchant incorrect /
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Product title: Sweet Mother - Isaac Andrews
Merchant Cat.: Books, Magazines & Comics> Western Books> Books For Kids
Predicted Cat.: Books, Magazines & Comics> Western Books> Fiction & Literature

Product title: トヨトミ［KS-67H］電子火式流型石油ストブ KS67H
Merchant Cat.: Flowers, Garden & DIY/DIY & Tools> Others
Predicted Cat.: Consumer electronics> Seasonal home appliances>

Heating appliance> Oilstove> 14+ tatami (wooden) , 19+ tatami (rebar)

Product title: レンタル【RG87】はかまフルセット/大学生/小学生/高校生/中学生
Merchant Cat.: Women’s Fashion> Japanese style> Kimono> Hakama
Predicted Cat.: Women’s Fashion> Kimono> Rental

Product title: 夜咄用具スキヤろうそく大
Merchant Cat.: Kitchenware, tableware & cookware> Japanese tableware> Tea utensils> Other
Predicted Cat.: Kitchenware, tableware & cookware> Japanese tableware> Small bowl

Table 1: Sample results. Omitted description information. Images are for reference, not used for classi-
fication.

prediction correct, both correct, both incorrect. See Table 1 for sample results for those 4 cases.
In case merchant is correct and prediction is incorrect, confidence scores for predictions are lower.

In the first example in Table 1, although it is predicted as a Western book, the type of the book is
mispredicted. Second example is a typical mismatch case where merchant is incorrect. Products in
“Others” categories, which account for 40% of all products, have high probability of being misplaced. It
is possible to predict detailed correct categories for such products. Inthe third example, both merchant
and our prediction can be considered as correct, as the product is a hakama style kimono, but it is rental.
The candle in the last example is used for tea ceramonies, but it is not a tea utensil. It is predicted as
small bowl because of the explanations about candle stand in the productdescription, but the prediction
confidence score was quite low, 0.045.

7 Conclusion and Future Work

In this work, we have presented a categorization system for large scale e-commerce data using product
titles and descriptions. We have trained our system with a dataset having hundreds of millions of products
and tens of thousands of categories. Our tests confirm high matching ratiosof predictions with merchant-
assigned categories. We used different data sources and differentalgorithms for classification, where the
final scores are calculated by averaging of scores of different models’ results. Exploration and evaluation
of different combination techniques of results are left as future work.

Although we have utilized all textual content about products in this work, weignored image content
as it takes a lot of time to process images. Our initial evaluations utilizing image data, which we have not
discussed in this work, suggest that it is possible to increase the system performance by several percent.
We leave full evaluation of the prediction system with image data as a future work.
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