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Abstract

Parsing texts into universal dependencies (UD) in realistic scenarios requires infrastructure for
morphological analysis and disambiguation (MA&D) of typologically different languages as a
first tier. MA&D is particularly challenging in morphologically rich languages (MRLs), where
the ambiguous space-delimited tokens ought to be disambiguated with respect to their constituent
morphemes. Here we present a novel, language-agnostic, framework for MA&D, based on a
transition system with two variants, word-based and morpheme-based, and a dedicated transition
to mitigate the biases of variable-length morpheme sequences. Our experiments on a Modern
Hebrew case study outperform the state of the art, and we show that the morpheme-based MD
consistently outperforms our word-based variant. We further illustrate the utility and multilingual
coverage of our framework by morphologically analyzing and disambiguating the large set of
languages in the UD treebanks.

1 Problem Statement

A decade following the emergence of statistical parsers for English (Charniak, 1996; Bod, 1995), the
CoNLL data sets presented a new challenge: the development of data-driven statistical parsers that can
be trained to parse any language given an appropriately annotated treebank (Buchholz and Marsi, 2006;
Nivre et al., 2007). These data sets facilitated the development of accurate, language-agnostic, depen-
dency parsers (Nivre et al. (2006), McDonald (2006) etc.), but not without shortcomings: they require
that input tokens be morphologically analyzed and disambiguated in advance.

This latter assumption breaks down in realistic parsing scenarios where the morphological analysis
of an input token may consist of multiple syntactic words to participate in the parse tree (Tsarfaty et
al., 2010). The universal dependencies (UD) initiative aims to remedy this by presenting a harmonized
set of treebanks, now 54 and counting, with a unified annotation scheme and multilayered annotation.
Specifically, UD data distinguishes the input space-delimited tokens from the (morpho)syntactic words
that participate in the parse tree (Nivre et al., 2016).

Efforts towards parsing texts into universal dependencies in realistic scenarios thus require language-
agnostic infrastructure for automatic morphological analysis and disambiguation (MA&D) of data from
typologically different languages. MA&D is particularly challenging in morphologically rich languages
(MRLs), where space-delimited input tokens may have multiple analyses, only one relevant in context.
This morphological ambiguity of a token is typically represented as a lattice. The term Morphological
Disambiguation (MD) refers to selecting a single path through the morphological analysis (MA) lattice.

In Semitic languages, MD is particularly challenging (Adler, 2007; Bar-haim et al., 2008; Shacham
and Wintner, 2007; Pasha et al., 2014; Habash and Rambow, 2005). To illustrate, Figure 1 shows the
MA lattice of the Hebrew phrase ‘bclm hneim’! (literally: in-shadow-of-them the-pleasant, meaning: in
their pleasant shadow). Different paths in the lattice represent different disambiguation decisions. In
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belm/NNP

Figure 1: An example of an MA lattice of the phrase “bclm hneim” (“in their pleasant shadow”) in
transliterated Hebrew. Edges mark syntactic words, and double circles mark white spaces.

the context of ‘bclm hneim’, the correct path of ‘belm’ is ‘b-cl-(fl)-hm’, “in-shadow-(of)-them”. In the
context of another sentence, the token ‘bclm’ may be “Betzelem”, the name of a famous organization.

In MRLs, MD is also more subtle than simply segmenting the space-delimited tokens. Many MRLs
are fusional, and clitics may be fused into hosts. In Figure 1, in the phrase ‘b-cl-(fl)-hm’ (literally: in-
shadow-(of)-them), the possessive ‘fl” (of) is fused into the pronoun ‘hm’ (them) and remains implicit in
the surface form. Such fusion results in an ambiguous number of morphosyntactic nodes that participate
in the analysis, impacting downstream applications as syntactic and semantic parsing, translation, etc.

Previous work on MA&D in MRLs, and in Semitic languages in particular (Adler, 2007; Bar-Haim et
al., 2005; Shacham and Wintner, 2007; Pasha et al., 2014), relied on language-specific lexica and cannot
be executed cross-linguistically. General CRF implementations, such as MarMoT (Miiller et al., 2013),
that can be applied across languages, assume an unrealistic, gold pre-segmented setting (Bjorkelund et
al., 2013). For generic morphological segmentation, Morfessor (Smit et al., 2014) uses a max-likelihood
in semi-supervised settings, but it cannot handle the rich labeling of morphological segments.

In this paper we present a general, language-agnostic solution the for the MA&D task. We target joint
morphological segmentation and tagging, as has been advocated in monolingual cases (Zhang and Clark,
2011; Bar-haim et al., 2008; Adler and Elhadad, 2006; Habash and Rambow, 2005), in universal settings.
Our technical approach extends the transition-based framework for structured prediction of Zhang and
Clark (2011). We define and implement two MD variants: word-based and morpheme-based. We present
the best MA&D results to date, and demonstrate that the morpheme-based variant consistently outper-
forms our word-based one, while providing state-of-the-art results on full-fledge, fine-grained, MD of
Hebrew. Furthermore, our MA&D framework is intentionally designed with language independence in
mind. Devoid of requiring language-specific resources, we show robust and competitive MA&D perfor-
mance on MRLs and non-MRLs alike, for circa 50 languages in the most recent release of UD treebanks
(Nivre et al., 2016).

2 Challenges and Formal Settings

We propose a data-driven framework for MA&D of MRLs and non-MRLs alike. The MA component im-
plements a function that maps each input sentence to its MA lattice, and the MD component implements
a transition-based model that accepts the lattice as input and returns a selected path as output.

Formally, our transition system is a quadruple S = (C, T, ¢s, Cy), where C'is a set of configurations,
T is a set of transitions, ¢, is an initialization function, and C; C C'is a set of terminal configurations.
A transition sequence y of length n, y = cg,t1(co), ..., tn(cn—1), starts with an initial configuration
cop = cs(z) for the input sentence x and ends with a terminal configuration ¢,, € Cy, where t; € T and
¢n = tp(cn—1) € Cr. We employ an objective function F' where z is the input sentence and GEN (z) is
the set of possible transition sequences for x:

F(x) = argmazrycqpn(z)Score(y) (D

To compute Score(y), y € GEN(x) is mapped to a global feature vector ®(y) € Ny, where each
feature is a count of occurrences of a pattern defined by a feature function ¢. The feature vector ®(y) is
defined via a set of d feature functions {<Z>Z-}f:1. The way & is defined effectively determines the quality
of the parser, since the feature model captures linguistic information to which the model learns to assign
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weights. Given this vector, Score(y) is computed by multiplying ® (i) with a weights vector & € R®.

d
Score(y) = @(y) - T =D Y wigi(cy) )

cjey i=1

Following Zhang and Clark (2011), our system learns the weights vector & € R via the generalized
perceptron, using the early-update averaged variant of Collins and Roark (2004). The algorithm iterates
through a gold-annotated corpus, each sentence is disambiguated (decoded) with the last known weights,
and if the decoded result differs from the gold standard, the weights are updated. As in Zhang and Clark
(2011), decoding is based on the beam search algorithm, where a number of possible parse sequences
are evaluated concurrently to mitigate irrecoverable prediction errors. At each step, the transition system
applies all valid applicable transitions to all candidates. The B highest scoring expanded candidates are
maintained and passed on to the next step. Those that don’t make the B mark, fall off the beam.

Our MRL setting (cf. Tsarfaty et al. (2010)) poses three technical challenges to this general scheme:
(i) the formal challenge: how should we define a transition system for MA&D?

(ii) the learning challenge: how can we define feature functions that learn morphological phenomena?
(iii) the decoding challenge: how can we effectively compare morpheme sequences of variable length?

3 Our Proposed Solution

Let = z...x), be an input sentence of k tokens and L = M A(x), ..., M A(x) be the morphological
ambiguity lattice for =, where L is a contiguous series of word-lattices L; = M A(z;) connected top to
bottom, as illustrated in Figure 1. Each word lattice L; is a set of sequences of morphemes, and each
sequence is a single disambiguated analysis for z;. We define the morphosyntactic representation (MSR)
of an arc in the lattice as a tuple m = (s, e, f, t, g) with lattice nodes s and e marking the start and end
of a morpheme, a form f, a part-of-speech tag ¢, and a set g of attribute:value grammatical properties.

Defining Configurations. A configuration for the MD transition system is a quadruple (L, n, i, M)
where L = M A(x) is the sentence-lattice, n is a node in L, i is the O-based index of a word-lattice in L,
and M is a set of disambiguated morphemes (i.e., selected arcs). The terminal configuration is defined to
be Cy = {(L,top(L),tokens(L), M)} for any L, M, where tokens(L) is the number of word-lattices
that form L. The initial configuration function cs concatenates the L; lattices of the tokens into a single
structure L = M A(x1) + ... + M A(xy), and sets n = bottom(L),i = 0 and M = ().

Defining Transitions. There are two conceivable ways to make morphological disambiguation deci-
sions, in a word-based (WB), and in a morpheme-based (MB), fashion, in the terminology of Tsarfaty
and Goldberg (2008). In WB models (a.k.a token-level in the UD terminology), the disambiguation de-
cision determines a complete path of morphemes between token-boundaries. In the lattice, this refers
to selecting a path between two token-boundary nodes (double circles). MB disambiguation decisions
(also termed lexical-level, or word-level in UD) occur at any node in the lattice indicating a morpheme
boundary, with more than one outgoing arc, choosing a specific arc m among them.

Interim: Word-Based or Morpheme-Based? WB and MB strategies face contradicting, and comple-
mentary, challenges. In WB models, disambiguation decisions are complex, and learning how to score
them is expected to suffer from data sparseness. MB models, on the other hand, over-generalize in terms
of possible morphological combinations, and learning to score combinations may fail to generalize and
be prone to over-fitting. On top of that, morpheme sequences are longer than word sequences, which, in
a transition-based system, is known to be more error prone. Finally, variable-length sequences introduce
length biases which negatively impact performance. Since MA&D is the base for the NLP pipeline, it is
critical to settle this debate empirically and establish the basis for downstream tasks.

Parameterizing Transitions. A transition system is required to distinguish between all possible deci-
sions it can make at a given point. At the same time, the model should be able to generalize from seen
decisions to unseen ones, and effectively learn to disambiguate open-class words and out-of-vocabulary
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items. To satisfy these desiderata, we define a delexicalization projection for a pre-defined set of parts-of-
speech tags O capturing open-class categories. Simply put, this projection neutralizes the lattice-nodes
specific indices, and, for any tag t € O, it further neutralizes the lexical form. Formally:

(*7*7*7t7g> ifteO

3
(., f,t,g) otherwise ©)

DLEXo(m) = {

3.1 Word-Based Modeling

The Transition System For word-based (WB) modeling, a single transition morphologically disam-
biguates whole word-lattices such that the node n of a configuration is always at a word boundary (a
node that is a bottom, top, or both, of word-lattices of ). We define the transitions in the WB system as
an open set of transitions termed M D, specifying the parameter s as a single path:

MDy: (L,n,i,M)— (L,q,i+1,M U {my,..,m;}) 4)

Here, {mo, ..., mj} € L form a contiguous path of arcs, where my starts at node n, m; ends at node ¢
(they can be the same arc), and s is the projected paths s = DLE Xo(my), ..., DLEXo(m;). A terminal
configuration will therefore contain the union of contiguous paths of word-lattices in L, together forming
a complete morphological disambiguation of the ambiguous tokens of the input sentence.

Learning We define three types of word-lattice properties: o - the surface form of the token itself, a
- the DLFE X -projected lattice (all MSRs projected by the delexicalization function), and p - a chosen
disambiguated path, which only exists for previously processed lattices. Using these properties, we
define baseline feature templates modeled after POS tagging: unigram, bigram, and trigram combinations
of 0 and a, and p-based features, which predict the next disambiguation decision based on the previous
one(s).

3.2 Morpheme-Based Modeling

The Transition System For morpheme-based (MB) modeling, a single transition chooses an outgoing
arc of the current node n in the lattice, requiring a disambiguation decision if (and only if) there is more
than one outgoing arc. Again we define the transitions as an open set of transitions termed M Dy, now
specifying s as a single arc:

MDg: (L,n,i,M)— (L,q,j, M U{m}) (5)

Here, m is a morpheme (n, q, f,t,g9) € L,and s = DLEX(m). If node ¢ is at a word boundary, then
j = 1+ 1, otherwise j = ¢. For a terminal configuration, each m € M is an outgoing arc of the end
node of another arc in M (with the exception of the first morpheme, starting at bottom(L)) forming a
contiguous path that disambiguates .

Learning In the MB model we can access specific information concerning the current node inside
the word-lattice. We define the properties f, ¢ and g, corresponding to arcs’ form, part-of-speech and
morphological attribute:value pairs. We use these properties in various unigram, bigram, and trigram
combinations, in parallel with the WB model. As in the WB model we also define the property p as the
path in the previously disambiguated word-lattices. We define the property n to be the set of DLFE X -
projected outgoing morphemes of the current node (this parallels the property a of WB models, but at
morpheme granularity). Similarly to the WB case, we use unigram, bigram, and trigram combinations
of these properties as well.

Decoding Since the number of arcs in lattices’ paths for x may vary, so do the number of transitions
in our morpheme-based transition system. This violates a basic assumption of standard beam search
decoding — that the number of transitions is a deterministic function of the input.

There are two inherent biases in varied-length transition sequences driven by the general perceptron
algorithm. The beam search algorithm tests the best candidate after each step for goal fulfillment. A short
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sequence may temporarily be the best candidate and fulfill the goal, while longer (and possibly correct)
sequences are incomplete and may be lost. On the other hand, long sequences have more features,
therefore their score may be arbitrarily inflated. So the score may be higher for longer paths, even
though a shorter one may be correct and may fall off the beam.

To address these challenges we introduce a special transition we call ENDTOKEN (ET), that explicitly
increments ¢, instead of implicitly in M D,. So, in equation (4) we set j = ¢ and apply:

T:(L,n,i,M)— (L,n,i+1,M) (6)

ET is required to occur exactly once at the end of the word-lattice, when n is the top of some word-
lattice in L. Set aside from other transitions, ET has its own set of features. Other than incrementing
1, ET has no effect on configurations, but it does cause a re-ordering of candidates in the beam during
decoding, at each token boundary. Note that ET kicks in only for variable length lattices. On same-length
lattices, ET is skipped and equation (4) remains as is — the process essentially falls back on the standard,
same-length decoding.

An MD transition sequence thus becomes the union of disjoint sets of configurations ¥ = ymq U Yet,
and changes Score in Equation (2), where |y.| is the # of tokens in L with variable length paths. :

Z wmd¢md ymd + Z wet¢et yet Z Z wmd¢md Ck Z Z wet¢et (7)

=1 7j=1 CLEYmd 1=1 ClE€Yet J=1

While the number of morphemes, and therefore |y,,4|, can vary, |ye| is deterministic per lattice.
Using this anchor, the features of the ET transition provide a counter-balance to the effects of varied-
length sequences by scoring fully disambiguated paths of each word-lattice individually, occuring a fixed
amount of times for all paths.

ENDTOKEN vs. IDLE transitions Variable-length sequences in beam search also exist in the struc-
tured prediction of constituency trees. Zhu et al. (2013) introduced an IDLE transition (also adopted
in Honnibal and Johnson (2014) and Zhang et al. (2014)) that, like ET, has no effect on configuration,
but unlike ET, occurs only at the end of the parsing sequence, an arbitrary number of times, until all
parsing sequences are complete.

While IDLE transitions make sense when applied after a complete hierarchical structure is predicted
— where they may learn to rerank candidates based on features that are visible at the top of the structure
(the root) — it is futile to use last-seen features that arbitrarily exist at the end of a morphological
disambiguation (linear) sequence, to rerank candidates again and again. This is because at the end of the
sequence, we can no longer save candidates that were lost earlier on due to length discrepancies .

To mitigate this, one might try to create IDLE padding with global features spanning the entire disam-
biguated path. Even then, the learned model parameters would not generalize well, since these features
will be applied an arbitrary number of times — the maximal length of an occasional word lattice we are
at — which has no linguistic significance, and may arbitrarily inflate certain scores.

ET transitions, in contrast, occur right when they are needed — at the boundary of a word-lattice. This
position enables the reordering of candidates right after a length discrepancy may have been introduced.
Moreover, ET scores are counted against the global score a fixed number of times per lattice, for all, any
length, candidates. This enables a fair comparison of all paths per lattice.

4 Empirical Evaluation

We empirically evaluate the proposed models, and investigate their strengths, weaknesses, and bounds.
We start with a detailed investigation of MA&D in the Semitic language Modern Hebrew, which is
known for its rich morphology and significant ambiguity. We then verify the cross-linguistic coverage of
the models on the set of UD treebanks (Nivre et al., 2016), to validate their efficacy.

We implement yap (yet another parser), a general-purpose transition-based framework for structured
prediction, based on beam search and the generalized perceptron. We extend it with the models described
herein. We implement the WB, MB variants, ET transitions, and evaluate different feature settings.

341



Word-Based
(a) unigram +bigram +trigram +next unigram +next with bigram
85.73 (86.72) 86.9 (87.88) 86.7 (87.66) 92.19 (92.76) 91.98 (92.59)
+ET | 89.09 (89.81) 89.93(90.71) 90 (90.85) 93.39 (93.94) 92.84 (93.46)
Morpheme-Based
(b) unigram +bigram +trigram +next unigram  +next with bigram
90.67 (91.41) 91.12 (91.88) 90.09 (91.82)  93.56 (94.16) 93.89 (94.49)
+ET | 92.68 (93.36) 92.74 (93.55) 92.64 (93.47) 94.27 (94.92) 94.33 (94.9)

Table 1: Dev. set results for Word-Based (a) and Morpheme-based (b) MD: F for full morphological
disambiguation (form, part of speech, morphological properties). (n parenthesis: F; for form and POS
only. The +ET lines indicate a variant that employs the ENDTOKEN transition at token boundaries.

We report the F; metric comparing the MSRs of predicted vs. gold lattice arcs, for full morphological
disambiguation (segmentation, POS tags, and all morphological properties), and for segmentation and
POS tags only. For comparison with previous work, we also report token-level accuracy (while F} awards
partial success on word-lattices, token-level accuracy requires exact match on a whole path per token).

4.1 The Case for Modern Hebrew

Setup We evaluate MA&D performance on the Modern Hebrew section of the SPMRL 2014 Shared
Task (Seddah et al., 2014), which has been derived from the Unified-SD treebank of Tsarfaty (2013).
We updated the treebank to provide consistent theories for the treebank annotation and lexicographic
resources (Itai and Wintner, 2008), a consistency that we found lacking in the SPMRL 2014 Hebrew
section. We use the standard split, and train on the standard train set (5k sentences). Here we provide
results and in-depth analysis on dev and confirm our findings on test.

A pre-condition for the execution of our MD models is an M A(z) function that generates word-lattices
for x (§2). We start off with a morphological analyzer that we implemented, called HEBLEX, which re-
lies on the Ben-Gurion Hebrew Lexicon used by Adler and Elhadad (2006). The lexicon contains full
analyses for 567,483 words and 102 prefixes. HEBLEX uses the lexicon to determine the various combi-
nations of prefixes and words that form valid tokens. This process is far from trivial due to morphological
fusion, as some morphemes are implicit (§1).

Although the lexicon is quite large, there are still tokens which are out-of-vocabulary (OOV). OOV
tokens may be of two types: it may be that an entire string is out of the lexicon (mostly proper nouns)
or that the affixes and the open class items are seen, but their combination has not yet been encountered.
We address OOV by assigning proper noun analyses to entire tokens, as well as to all arcs combined with
seen affixes. This adds ambiguity to the lattices, but gives the MD the chance to select a correct path.

In our experiments we aim to quantify exactly the effect of lexical coverage of the MA on MD ac-
curacy. To this end, we add an option to infuse missing gold analyses into the MA lattices provided by
HEBLEX and present two sets of results: once disambiguating lattices with infused gold analyses (ideal
MA), and once without infusing gold analyses (realistic MA).

Results Tables (1a), (1b) present our investigation of the WB and MB models on the dev test, respec-
tively, with different feature templates. Our results show that the MB disambiguation consistently out-
performs our WB variant, in various feature template settings. Moreover, the ET transition consistently
improves performance, with best results for Hebrew at F; scores of 94.3 (94.9) for full MD (seg/POS
only). The token-level accuracy for our best results are 93.07 (93.9) for full MD (seg/POS).

These results were obtained on infused lattices, that include the gold path as one of the alternatives.
In order to gauge the effect of incomplete lexical coverage, we disable infusion of the gold analyses
into the HEBLEX lattices. We then observe a drop to F; scores of 89.62 (92.06) and token accuracy
of 87.72(90.85). To set our results in context, we applied our best model in “English-like” settings for
tagging, with gold pre-segmented text. F) then increases to 96.82 (97.44). That is, in “English-like”
settings, our tagging accuracy (97.44) is as high as state-of-the-art English tagging (Manning, 2011).
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MarMoT (Miiller et al., 2013), a state of the art CRF tagger, obtains £ 93.38 on full MD on this set.

Next we aim to verify that ET transitions indeed act as intended. We classify a sequence length
error as either an overshoot (predicted morphological disambiguation sequence is longer than gold) or
undershoot (predicted shorter than gold). Without ET, in the infused setting, 36.8% of sentences have
incorrect length and the overshot:undershoot ratio is 6.6:1. Adding ET transitions results in 31.8% length
errors, correcting 20.62% of the overshoot errors, resulting in ratio of 4:1. In the un-infused setting,
41.4% of the sentences have incorrect length with a ratio of 6.39:1. Adding ET results in 36% length
errors, correcting 20.67% of the overshoot errors, resulting in ratio of 3.7:1.

Hebrew previous results are non-trivial to compare to due to significant changes of the treebank
along the way and unavailable code of previous work. The most relevant results to ours are by Adler
(2007), who reports state-of-the-art results for Modern Hebrew in realistic (non-infused) setting, with
self-reported token accuracy of 90% (93%) on a different evaluation set. For his prediction on our dev
set, F evaluation yields 85.74 (87.95), much lower than ours. Segmentation F for Adler is 96.35, while
ours is 97.6. We confirm our findings on the test set, for which Adler F yields 82.91 (85.56). Our best
model now yields 86.23 (88.85) and 92.96 (93.73) in realistic and infused settings, respectively.

4.2 The Case for Universal Dependencies

Setup We evaluate the cross-linguistic coverage of our MD models on the UD set. We parse 48 UD
treebanks from the UD1.3 release (Nivre et al., 2016), training on the train set and evaluating on rest.”

We implement a universal data-driven morphological analyzer, that can be trained out-of-the-box
along with our MD models for any treebank in the CoNLL-U format. We generate a dictionary for
each language from its train set by collecting all seen analyses of each token in the training data, where
an analysis is composed of MSRs that contain a lemma, POS, and the full set of morphological features.
The dictionary maps each token to a set of MSR sequences, which then compose their ambiguous MA
lattices. For out-of-vocabulary (OOV) tokens, the MA pre-computes the cardinality of each coarse POS
— the number of unique tokens per coarse POS — and consider the top 5 POS as “open-class”. For
these top 5 POS, the MA computes the 50 highest-frequency MSRs (POS + morph. properties) to be
used as the OOV lattice of an OOV token. When applying MA to the training set, we add the OOV
lattice to tokens whose known analysis contains an open-class POS. The model thus encounters during
training a larger space of states than the observed one, and learns to accurately apply transitions in OOV
circumstances at test time.

Results Table 2 reports F; accuracy for full MD and seg/POS for UD languages that do not require
segmentation. For most large train sets (> 200k tokens), we observe 2-3 points absolute drop from
infused (ideal) to uninfused (realistic) setting. This suggests that when large train sets exist, our data-
driven MA is a viable economic alternative to costly hand-crafted monolingual lexical resources. To
scrutinize our realistic results we also report non-OOV-only F for Sk limited uninfused setting. Here we
see that for ~80% of languages, our results are on a par with a state-of-the-art tagger, MarMot, retrained
on these data, within 0.035 (or less) points gap. This demonstrates that our disambiguation capacity is on-
par with MarMot, where performance gaps come mostly from our OOV strategy (which is intentionally
restrained, to allow handling of MRL segmentation that is handled by MarMot). Table 3 shows results for
UD MRLs that require segmentation, contrasting results on gold pre-segmented input and un-segmented
raw data. For raw data we see a minor, ~0.02, drop in F}, compared to gold-segmented settings. That is,
our model still retains the competitive MA&D performance, in a single, universal, trainable model —
we attribute this to our joint segmentation and tagging strategy, which overcomes error propagation.’

2We do not present results for 6 languages: cs,kk,es_ancora,en_esl,pt_br,ja_ktc, as some or all form fields are empty.

3Shortly before submitting this article, UDPipe (Straka et al., 2016), a tool for tokenization, morphological analysis, tagging
and parsing, had been released. As its name suggests, UDPipe is a pipeline implementation packaging together separate tools
for different tasks. Our approaches and ultimate goals are rather different. We present joint morphological segmentation and
tagging, as opposed to a pipeline. Moreover, our framework can be extended into a single transition-based system performing
all tasks jointly, overcoming overheads and error propagation, as we intend to address next.
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Lang. sents 5k Sent. Trainset Full Trainset Lang. sents 5k Sent. Trainset Full Trainset
words inf. no inf. MM inf. | noinf. | MM words inf. no inf. MM inf. | noinf. | MM
bg 8907 0.933 | 0.914 (0.959) | 0.937 (0.964) || 0.946 | 0.926 | 0.948 la 2660 || 0.797 | 0.696 (0.814) | 0.797 (0.876) || 0.787 | 0.709 | 0.797
124474 || 0.969 | 0.96 (0.983) | 0.976 (0.987) || 0.979 | 0.969 | 0.982 37819 || 0.904 | 0.847 (0.927) | 0.935(0.967) || 0.897 | 0.854 | 0.935
cu 5077 0.901 | 0.853(0.911) | 0.893 (0.927) || 0.908 | 0.851 | 0.897 la_ 16258 || 0.916 | 0.895(0.922) | 0.922(0.938) || 0.935 | 0.914 | 0.945
46025 || 0.964 | 0.931 (0.977) | 0.959 (0.978) || 0.965 | 0.929 | 0.962 ittb 276941 || 0.978 | 0.965 (0.985) | 0.979 (0.986) || 0.986 | 0.977 | 0.988
da 4868 0.932 | 0.88(0.944) | 0.943 (0.966) || 0.934 | 0.894 | 0.943 la_ 11986 || 0.857 | 0.773 (0.859) | 0.841 (0.886) || 0.892 | 0.843 | 0.892
88979 || 0.953 | 0.91(0.954) | 0.961(0.972) || 0.954 | 0.922 | 0.961 proiel 132376 || 0.949 | 0.896 (0.959) | 0.943 (0.967) || 0.969 | 0.943 | 0.97
el 1929 || 0.912 | 0.876 (0.918) | 0.921 (0.944) || 0.914 | 0.876 | 0.921 v 673 0.797 | 0.745 (0.927) | 0.817 (0.931) || 0.801 | 0.739 | 0.817
47449 || 0.977 | 0.965 (0.989) | 0.979 (0.99) || 0.978 | 0.965 | 0.979 12629 || 0.876 | 0.841 (0.971) | 0.898 (0.971) || 0.88 | 0.835 | 0.898
en 12543 || 0.904 | 0.887 (0.927) | 0.904 (0.937) || 0.927 | 0.914 | 0.93 nl 13000 || 0.836 | 0.797 (0.889) | 0.823 (0.911) || 0.88 | 0.863 | 0.872
204586 || 0.923 | 0.911 (0.951) | 0.923 (0.954) || 0.942 | 0.932 | 0.945 197134 || 0.866 | 0.841 (0.923) | 0.861 (0.928) || 0.902 | 0.891 | 0.897
en_ 3650 0.95 | 0.944 (0.955) | 0.96 (0.969) 095 | 0944 | 0.96 nl_ 6641 0.939 | 0.934 (0.967) | 0.95(0.971) || 0.943 | 0.94 | 0.952
lines | 66374 || 0.95 | 0.944 (0.955) | 0.96 (0.969) 0.95 | 0944 | 0.96 lassysmall | 88929 || 0.954 | 0.95(0.973) | 0.961 (0.974) || 0.956 | 0.953 | 0.963
et 14510 || 0.866 | 0.821 (0.911) | 0.883(0.933) || 0.913 | 0.884 | 0.928 no 15696 || 0.926 | 0.887 (0.952) | 0.93(0.963) || 0.947 | 0.917 | 0.952
187814 || 0.923 | 0.895 (0.953) | 0.933 (0.961) || 0.951 | 0.932 | 0.959 244776 || 0.959 | 0.944 (0.97) | 0.964 (0.976) || 0.971 | 0.958 | 0.975
eu 5396 || 0.877 | 0.79 (0.895) | 0.874(0.93) 0.88 | 0.797 | 0.877 pl 6800 || 0.858 | 0.772(0.882) | 0.854 (0.916) || 0.87 | 0.778 | 0.866
72974 || 0.948 | 0.904 (0.964) | 0.944 (0.971) || 0.948 | 0.908 | 0.946 69499 || 0.955 | 0.915(0.976) | 0.961 (0.978) || 0.961 | 0.922 | 0.967
fi 12217 || 0.884 | 0.756 (0.942) | 0.889 (0.961) || 0.925 | 0.864 | 0.932 pt 8800 || 0.913 | 0.881(0.919) | 0.916 (0.938) || 0.927 | 0.906 | 0.93
162721 || 0.915 | 0.863 (0.96) | 0.928 (0.973) || 0.95 | 0.909 | 0.958 214812 || 0.96 | 0.947 (0.965) | 0.967 (0.977) || 0.967 | 0.958 | 0.972
ga 720 0.781 | 0.743(0.87) | 0.819(0.909) || 0.791 | 0.747 | 0.819 ro 4759 || 0.915 | 0.894 (0.917) | 0.927 (0.939) || 0.916 | 0.895 | 0.927
16701 || 0.896 | 0.873 (0.946) | 0.924 (0.961) || 0.9 | 0.882 | 0.924 108618 || 0.962 | 0.946 (0.967) | 0.962(0.973) || 0.961 | 0.947 | 0.962
gl 2276 || 0.971 | 0.968 (0.985) | 0.971 (0.984) || 0.971 | 0.968 | 0.971 ru 4029 || 0.869 | 0.791 (0.895) | 0.861 (0.925) || 0.872 | 0.791 | 0.861
79329 || 0.971 | 0.968 (0.985) | 0.971 (0.984) || 0.971 | 0.968 | 0.971 79772 || 0.957 | 0.925 (0.976) | 0.956 (0.979) || 0.956 | 0.925 | 0.956
got 4360 || 0.874 | 0.824 (0.873) | 0.877 (0.901) || 0.871 | 0.83 | 0.877 ru_ 46750 || 0.896 | 0.818 (0.919) | 0.89 (0.944) n/a n/a n/a
44722 || 0.955 | 0.927 (0.964) | 0.961 (0.972) || 0.953 | 0.924 | 0.961 syntagrus | 815485 || 0.965 | 0.935(0.977) | 0.968 (0.98) n/a n/a n/a
gre 13185 || 0.862 | 0.762 (0.867) | 0.844 (0.883) || 0.862 | 0.776 | 0.859 sl 6471 0.874 | 0.791 (0.876) | 0.884 (0.927) || 0.882 | 0.804 | 0.892
196083 || 0.926 | 0.853 (0.937) | 0.935(0.946) | 0.92 | 0.861 | 0.941 112334 || 0.954 | 0.923 (0.967) | 0.963 (0.976) || 0.958 | 0.927 | 0.967
gre_ | 13306 || 0.829 | 0.719 (0.89) | 0.774 (0.887) || 0.909 | 0.853 | 0.9 sl 2472 0.83 | 0.796 (0.86) | 0.857 (0.902) || 0.832 | 0.793 | 0.857
proiel | 166061 || 0.911 | 0.827 (0.972) | 0.893 (0.966) || 0.973 | 0.939 | 0.971 sst 23575 || 0.896 | 0.88(0.92) | 0.919(0.947) || 0.895 | 0.878 | 0.919
hi 13304 || 0.82 | 0.799 (0.823) | 0.867 (0.891) || 0.846 | 0.832 | 0.891 sV 4303 0.928 | 0.921 (0.951) | 0.946 (0.966) || 0.931 | 0.921 | 0.946
281057 || 0.944 | 0.934 (0.955) | 0.947 (0.964) || 0.953 | 0.948 | 0.963 66645 || 0.952 | 0.947 (0.965) | 0.966 (0.975) || 0.954 | 0.947 | 0.966
hr 3557 0.86 | 0.812(0.877) | 0.87 (0.913) 0.86 | 0.813 | 0.87 SV_ 3650 || 0.955 | 0.952(0.964) | 0.957 (0.966) || 0.955 | 0.952 | 0.957
78817 || 0.951 | 0.936 (0.974) | 0.954 (0.973) || 0.951 | 0.933 | 0.954 lines 63949 || 0.955 | 0.952 (0.964) | 0.957 (0.966) || 0.955 | 0.952 | 0.957
hu 1433 0.763 | 0.701 (0.831) | 0.751 (0.862) || 0.758 | 0.697 | 0.751 zh 3997 || 0.903 | 0.889 (0.918) | 0.913(0.932) || 0.903 | 0.889 | 0.913
33016 || 0.92 | 0.895(0.951) | 0.945(0.973) || 0.915 | 0.896 | 0.945 98608 || 0.914 | 0.903 (0.933) | 0.923 (0.943) || 0.914 | 0.903 | 0.923
id 4477 0.932 | 0.926 (0.934) | 0.937 (0.945) || 0.932 | 0.926 | 0.937
97531 || 0.932 | 0.926 (0.934) | 0.937 (0.945) || 0.932 | 0.926 | 0.937
Table 2: MA&D for unsegmented languages : F} scores of the languages in UD that do not require

morphological segmentation, the upper line indicates full MD, the lower line indicates segmentation

and POS only. MM columns are results for MarMoT. Results in parentheses are I scores for
non-OOV-only tokens.
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sents Gold Segmented 5k Train. Set (non-OOV accuracy) Gold Segmented Full Trainset Un-Segmented Full Trainset

words inf. +ET | noinf. +ET MM inf. +ET | noinf. | +ET | MM inf. +ET | noinf. | +ET
ar 6174 || 0.887 | 0.887 | 0.853 | 0.853(0.87) | 0.903(0.924) || 0.892 | 0.892 | 0.86 | 0.86 | 0.907 || 0.867 | 0.871 08 | 0.799
225853 || 0.956 | 0.956 | 0.948 | 0.948 (0.956) | 0.956 (0.972) || 0.959 | 0.959 | 0.951 | 0.951 | 0.959 || 0.929 | 0.933 | 0.882 | 0.882
ca 13123 || 0.953 | 0.953 | 0.919 | 0.919 (0.958) | 0.957 (0.965) || 0.963 | 0.963 | 0.939 | 0.939 | 0.968 | 0.961 | 0.961 | 0.938 | 0.937
429157 || 0.969 | 0.969 | 0.936 | 0.936 (0.972) | 0.973 (0.977) || 0.977 | 0.977 | 0.954 | 0.954 | 0.98 || 0.975 | 0.975 | 0.952 | 0.951
cs_ 23478 || 0.865 | 0.857 | 0.758 | 0.758 (0.862) | 0.86(0.921) | 0.901 | 0.901 | 0.831 | 0.831 | 0.904 || 0.897 | 0.899 | 0.827 | 0.827
cac | 472608 || 0.973 | 0.969 | 0.93 | 0.928 (0.984) | 0.975(0.988) || 0.983 | 0.983 | 0.961 | 0.961 | 0.987 || 0.983 | 0.983 | 0.961 | 0.961
cs_ 860 0.845 | 0.844 | 0.812 | 0.801 (0.871) | 0.887(0.922) || 0.848 | 0.847 | 0.816 | 0.812 | 0.887 || 0.832 | 0.822 | 0.804 | 0.8

cltt 26234 || 0.956 | 0.959 | 0.942 | 0.938 (0.988) | 0.98 (0.991) | 0.958 | 0.957 | 0.94 | 0.942 | 0.98 || 0.953 | 0.951 | 0.937 | 0.938
de 14118 || 0.928 | 0.928 | 0.921 | 0.921 (0.936) | 0.927 (0.941) || 0.929 | 0.929 | 0.921 | 0.921 | 0.927 || 0.93 | 0.928 | 0.921 | 0.92
269626 || 0.928 | 0.928 | 0.921 | 0.921(0.936) | 0.927 (0.941) || 0.929 | 0.929 | 0.921 | 0.921 | 0.927 || 0.93 | 0.928 | 0.921 | 0.92
es 14187 || 0.929 | 0.928 | 0.888 | 0.888 (0.943) | 0.927 (0.956) || 0.939 | 0.939 | 0.908 | 0.908 | 0.936 || 0.93 | 0.933 | 0.9 | 0.903
382436 || 0.947 | 0.947 | 0.931 | 0.931(0.959) | 0.945(0.967) || 0.955 | 0.955 | 0.943 | 0.943 | 0.953 || 0.948 | 0.951 | 0.935 | 0.938
fa 4798 0.953 | 0.961 | 0.958 | 0.958 (0.972) | 0.963 (0.978) || 0.954 | 0.953 | 0.956 | 0.957 | 0.963 || 0.957 | 0.956 | 0.947 | 0.949
121020 || 0.96 | 0.968 | 0.964 | 0.964 (0.974) | 0.969 (0.98) 0.96 | 0.959 | 0.962 | 0.963 | 0.969 || 0.962 | 0.962 | 0.954 | 0.955
fi 14981 || 0.876 | 0.88 | 0.794 | 0.793 (0.921) | 0.858 (0.944) || 0.856 | 0.847 | 0.811 | 0.809 | 0.915 || 0.916 | 0.929 | 0.814 | 0.856
ftb 127602 || 0.914 | 0.917 | 0.856 | 0.855(0.953) | 0.904 (0.957) || 0.883 | 0.869 | 0.843 | 0.844 | 0.943 || 0.939 | 0.95 | 0.849 | 0.899
fr 14554 || 0.931 | 093 | 0.921 | 0.918(0.935) | 0.939 (0.954) || 0.943 | 0.951 | 0.925 | 0.925 | 0.949 || 0.944 | 0.942 | 0.92 | 0.921
356216 || 0.949 | 0.947 | 0.941 | 0.939(0.952) | 0.955(0.967) || 0.959 | 0.965 | 0.942 | 0.942 | 0.964 || 0.958 | 0.957 | 0.937 | 0.938
he 5241 0.934 | 0.933 | 0.888 | 0.888 (0.907) | 0.921 (0.953) || 0.934 | 0.93 | 0.891 | 0.886 | 0.922 || 0.914 | 0.917 | 0.724 | 0.724
135496 || 0.968 | 0.968 | 0.937 | 0.938 (0.947) | 0.955(0.974) || 0.967 | 0.966 | 0.939 | 0.937 | 0.957 || 0.945 | 0.947 | 0.768 | 0.769
it 11699 || 0.945 | 0.946 | 0.91 | 0.911(0.953) | 0.943(0.962) || 0.96 | 0.958 | 0.945 | 0.945 | 0.97 || 0.953 | 0.957 | 0.935 | 0.937
249330 || 0.959 | 0.96 | 0.924 | 0.925(0.961) | 0.958 (0.972) || 0.97 | 0.967 | 0.956 | 0.955 | 0.978 || 0.961 | 0.965 | 0.946 | 0.947
ta 400 0.761 | 0.793 | 0.761 | 0.732(0.912) | 0.82(0.929) | 0.794 | 0.797 | 0.757 | 0.756 | 0.82 | 0.72 | 0.722 | 0.659 | 0.664
6329 || 0.835 | 0.859 | 0.825 | 0.813(0.927) | 0.877 (0.938) || 0.856 | 0.861 | 0.827 | 0.821 | 0.877 || 0.765 | 0.772 | 0.714 | 0.717
tr 3947 0.781 | 0.873 | 0.765 | 0.806 (0.935) | 0.855(0.933) || 0.794 | 0.787 | 0.768 | 0.805 | 0.855 || 0.84 | 0.781 | 0.742 | 0.78
40609 || 0.884 | 0.938 | 0.87 | 0.897 (0.968) | 0.934 (0.964) || 0.893 | 0.885 | 0.879 | 0.899 | 0.934 || 0.907 | 0.87 | 0.846 | 0.871

Lang.

Table 3: MA&D in segmented languages: F} scores of the languages in UD which require
morphological segmentation. The upper line indicate full MD, the lower line indicates segmentation
and POS only. The left hand side shows results for GOLD segmentation, the right hand side for input

lattices. MM columns are results for MarMoT. Results in parentheses are £ scores for non-OOV-only
tokens.

5 Conclusion

We present an MD transition-based system that can effectively cope with extreme morphological ambigu-
ities in MRLs. To the best of our knowledge, this is the first joint framework for MRL segmentation and
tagging in a transition-based setup. Moreover, we present the best MA&D results for Modern Hebrew to
date, and the first ever set of MA&D results for the most recent release of UD treebanks (UD1.3).* Our
system provides a first tier for dependency parsing in real-world scenarios, dispensing with the need of
external pre-processing. Furthermore, this transition-based model can be extended into a joint model for
complete morphological and syntactic analysis, as has been previously advanced in phrase-based parsing
(Tsarfaty, 2006; Goldberg and Tsarfaty, 2008; Cohen and Smith, 2007; Green and Manning, 2010).

“Upon publication we will make our source code, executables and trained models available at
https://github.com/habeanf/yap.
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