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Abstract

Summarization aims to represent source documents by a shortened passage. Existing methods
focus on the extraction of key information, but often neglect coherence. Hence the generated
summaries suffer from a lack of readability. To address this problem, we have developed a
graph-based method by exploring the links between text to produce coherent summaries. Our
approach involves finding a sequence of sentences that best represent the key information in a
coherent way. In contrast to the previous methods that focus only on salience, the proposed
method addresses both coherence and informativeness based on textual linkages. We conduct
experiments on the DUC2004 summarization task data set. A performance comparison reveals
that the summaries generated by the proposed system achieve comparable results in terms of the
ROUGE metric, and show improvements in readability by human evaluation.

1 Introduction

Automatic summarization is extremely useful in this age of information overload. It provides readers
with easier access to information without the labour of reading the source text. According to the number
of documents dealt with, summarization falls into two categories: single document summarization and
multi-document summarization. While they both aim to represent the source text using a shorten passage,
the latter deals with a set of documents sharing the same topic. Based on the method adopted, existing
approaches to summarization can be divided into two kinds: abstraction based or extraction based. The
difference lies in the sentences they use to generate summaries: the former selects sentences (clauses,
or other text units, hereafter we refer to all of them as sentences.) from source documents and the latter
generates new sentences. Most existing summarization systems are extraction-based because abstraction-
based methods require the use of natural language generation technology, which is still a growing field.
This paper, without exception, also employs extraction-based methods and we focus on multi-documents
summarization.

Currently the extraction-based methods face some major challenges. One is informativeness, which
means we need to maintain the important information of source documents in summaries. This is the
focus of almost all research on summarization. Another challenge is presentation, namely that the ex-
tracted text should be well presented, i.e., it should contain little redundancy and be coherent so as to be
readily understandable. Previous work has addressed the problem of redundancy, and some successful
solutions like Maximum Marginal Relevance (MMR) (Carbonell and Goldstein, 1998) have been pro-
posed and widely adopted (e.g., (Li and Li, 2013)), but very few try to deal with coherence. Therefore
the generated summaries generally suffer as regards readability and are very difficult to use for practical
applications. In the report of the TAC 2011 summarization task (Owczarzak and Dang, 2011), it is stated
that “in general, automatic summaries are better than baselines1, except Readability.” Such a statement
suggests, as for summarization, coherence should be treated with the same as salience and redundancy.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/

1The baseline they used is the lead paragraph method and summaries are evaluated by human and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation (Lin, 2004)).
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Existing work addresses coherence in summarization from different aspects. One kind of method em-
ploys reordering after selecting sentences, and the drawback is evident: coherence is considered after
sentence selection. Another kind of widely adopted method takes discourse relations into consideration
when selecting sentences, as discourse relations are believed to be essential for maintaining textual co-
herence. Hirao et al. (2013) formulated single document summarization as to extract a sub tree from
the complete discourse tree and thus preserve the relations between extracted document units to form
a readable text. Wang et al. (2015) extended it to multi-document summarization by regarding a docu-
ment set as one document and developed a model which combined discourse parsing and summarization
together. Christensen et al. (2013) proposed a graph-based model to bypass the tree constraints. They
employed rich textual features to build a discourse relation graph for source documents with the aim of
representing the relations between sentences (both inter and intra-document relations). Christensen et al.
(2013) reported ROUGE scores lower than some baselines. This is because that, they claim, ROUGE is
salience-focused and fails to notice the improvement in coherence. In a further human evaluation, they
reported improvements in readability.

These discourse-based methods without exception have discourse analysis as a prerequisite. As we all
know, discourse analysis is still under development thus preventing the expected improvement. Further-
more, languages other than English do not enjoy plenty of ready-to-use discourse analysis tools. This
also limits the usage of these discourse-based methods.

Is it possible to consider coherence in summarization without discourse analysis? Before answering
this question, we need to find out what is the key to coherence in text. According to the centering theory
(Grosz et al., 1995; Walker et al., 1998), the coherence of text is to a large extent maintained by entities
and the relations between them. This indicates that discourse analysis is not a must to preserve coherence;
we can directly take advantages of entities and their relations to generate coherence text.

Based on this point, we design a novel graph-based model for multi-document summarization that
eliminates the effort of conducting discourse relation analysis (inter or intra document) and generates
informative and readable summaries. We formulate the document set as a graph whose nodes corresponds
to sentences. These nodes are connected with each other according to the entities they contains and the
relations between their containing entities. Each path in the graph represents a piece of text and is
evaluated using a novel scoring function that considers informativeness and coherence. To extract a
summary is to find a path in the graph with the highest score. This is a weighted longest path problem.
We further present a variant of the proposed model based on local coherence and explore decoding
algorithms for both of them.

Experiments are conducted on the Document Understanding Conference (DUC) 2004 multi-document
summarization task data set. As ROUGE cannot fully capture our improvement in coherence which is one
of the key contributions of this work, we also conduct a human evaluation. Results show that we obtain
summaries comparative with state-of-the-art systems in terms of ROUGE metrics and get improvements
in readability in human evaluations.

This work provides a method of generating high quality summaries without the effort of discourse
analysis. The proposed method can be easily extended to other languages without much efforts. It also
provides inspiration as regards other tasks that require computers to generate coherent text. The rest of
the papers is organized as follows: Section 2 presents the centering theory and a coherence model based
on entities. Section 3 presents our model. Section 4 describes the experiments and results. Section 5
presents some previous work and Section 6 concludes this paper.

2 Centering Theory and Coherence Modelling

The centering theory (Grosz et al., 1995) as a popular theory on discourse analysis, serves as the basis
of some coherence evaluation methods (Barzilay and Lapata, 2008; Burstein et al., 2010; Li and Hovy,
2014; Li and Jurafsky, 2016) and enables us to measure the coherence score of any given text with-
out discourse parsing solely based on the reappearance of entities. Entities here refer to noun/pronoun
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word/phrases 2.
According to the centering theory, we have the following assumptions:

1. Text that contains successive mentions of the same entities would be more coherent.

2. The main entities that are focused on tend to play an important grammatical role, such as the subject
or object of the sentences.

Therefore the key to the coherence of a text lies in what entities it contains and how their roles change.
The coherence of a generated text can be evaluated accordingly.

Barzilay and Lapata (2008) presented such a model. The key is to represent text as an entity grid.
Assume text T contains n sentences {S1, S2..., Sn} and m entities. rk

i represents the grammatical role of
Entity ek in Sentence Si. Four kinds of roles are used, i.e., “subj”, “obj”, “others” and “absent”. “Others”
indicates that the entity is present, but is neither the subject nor the object. Then the grammatical roles of
ek in text T can be expressed as a sequence: {rk

1 , rk
2 , ..., rk

n}. For each entity in T , such a chain showing
how the entity’s grammatical roles change in T is extracted. Thus text T can be represented as an n ∗m
matrix M(T ) where n is the number of sentences and m is the number of entities in T , and M(T )ij

corresponds to the grammatical roles of Entity j in Sentence i. M(T ) is referred to as the Entity Grid of
T (Barzilay and Lapata, 2008).

To calculate the coherence score of T , Barzilay and Lapata (2008) used M(T ) as a feature vector.
They calculated the transition probability for |{s(subj), o(bj), x(others),−(absent)}2| = 16 transition
patterns from M(T ) without distinguishing between entities, to form a vector f(T ) for T , and a weight
vector w was then learnt from training data so that w ∗ f(T ) can be used as the coherence score for T .

This kind of method has been adopted in many studies (Filippova and Strube, 2007; Barzilay and
Lapata, 2008; Burstein et al., 2010). In particular, Filatova and Hatzivassiloglou (2004) extends entity
grids to model semantical relations between entities, which provides a possible further improvement for
our models.

3 Modeling Summarization

The above model can only be used to measure coherence but summarization is much complex as it
involves not only coherence bust also informativeness and redundancy. We design a much more sophis-
ticated models leveraging entities.

Two models are presented below. Both of them are based on entities and consider coherence as well
as informativeness. The first one is based on global coherence and the second one local coherence.
The global coherence consider the full sequence when evaluating coherence and the local coherence is
calculated based on relations between adjacent sentences. Intuitively, global coherence is better than
local coherence, but considering the full sequence increases the time complexity. The model based on
local coherence, on the other hand, reduces the time complexity and enables us to obtain an exact solution
efficiently.

3.1 Problem Set-up
Assume we have K documents with n sentences in total. Note that we are dealing with multi-document
summarization, and we do not distinguish between inter-document and intra-document relations. We
construct a graph with n nodes, each of which corresponds to one sentence. Weighted directed edges are
used to connect these nodes together. To each node, we assign a cost score, which is the number of words
the corresponding sentence contains. To each path in the directed graph, we assign a gain score. The gain
score is a comprehensive evaluation of the informativeness and coherence of the sequence of sentences
represented by the path. The problem of extracting a good summary becomes the problem of extracting
the best path. Note that it is an asymmetric graph. Gain scores for A → B → C and C → B → A are
different. The direction determines the positions of corresponding sentences in the generated text.

2In some previous work on summarization (Takamura and Okumura, 2009; Hirao et al., 2013), concepts are used to measure
informativeness. Concepts can be used to refer any non functional words, including adjectives, adverbs. All the entities can be
regarded as concepts, but some concept words (non-nominal words) are not entities. Entity is a subset of Concept.
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One more thing to consider is the redundancy. Instead of formulating redundancy explicitly, we re-
move edges connecting similar sentences to turn the complete graph into an incomplete graph. This
ensures that similar sentences do not occupy adjacent positions in the generated summaries and thus
reduce redundancy. The similarities of sentence pairs are based on word overlaps and we keep d% of all
the edges.

Note that for temporal text removing edges can also help us maintain the temporal relations between
sentences, though we do not explore this point here.

3.2 Summarization Considering Global 3 Coherence

To extract a summary is to find such a sequence of sentences Seq that maximizes Score(Seq).

Score(Seq) =
m∑

k=1

akFk

Fk =
∏

i

pek
(rk

i rk
i+1), Si, Si+1 ∈ Seq

s.t.
∑

Si∈Seq

length(Si) ≤ threshold

(1)

ak is the weight of Entity ek. rk
i is the state of Entity ek in Sentence Si. Here we use four states: “s”,

“o”, “x”, “-”, which represent “subj”, “obj”, “present” and “absent” respectively. It is also possible to
use more or fewer states.

pek
(∗∗) is the transition probability between two states for ek. For each document set, the transition

probabilities for each entity is estimated using pek
(ab) = #ek(a)ek(b)

n−K . #ek(a)ek(b) marks the times
that Entity ek presents as grammatical role a in the preceding sentence and as grammatical role b in
the following one. n − K denotes the total number of adjacent sentence pairs in a document set with
K documents and n sentences. Fk is the coherence score contributed by ek in the extracted sequence
Seq. Fk is based on the transitions of ek between adjacent sentences in Seq. We use Score(Seq) which
considers salience, coherence and redundancy as an index as to how suitable the extracted sentence
sequence Seq is as a summary. This model is a weighted longest path problem with a fixed length.

This is an NP-hard problem. Due to the time cost, we adopt the simple randomized algorithm as shown
in Algorithm 1 to obtain an approximated solution. Other decoding algorithms like greedy algorithms

Algorithm 1 A randomized algorithm for the weighted longest path problem
Initialization:
Set U ←− all the sentences in the current doc set
Set S ←− EmptySet
Queue Q←− EmptySet
repeat

randomly select sentence s ∈ U&s /∈ Q;
if length(s) +

∑
i length(si) <= threshold, si ∈ Q then

push s to the rear of Q
else

push Q into S, Queue Q←− EmptySet
end if

until 10K times
return argmaxQF (T ), Q ∈ S

can also be employed. But none of them are capable of obtaining an exact solution. Below we present
another model considering local coherence.

3“Global” means the model considers coherence according to the whole text.
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Figure 1: A Complete Graph with Dummy Start and End Nodes

3.3 Summarization Considering Local Coherence
The above model considers global coherence which is calculated according to the whole text. The model
presented below is directly based on local coherence and enables us to obtain an exact solution. We want
to maximize Score(Seq):

Score(Seq) =
∑

Si∈Seq

(α
∑

ek∈Si

ak + (1− α)gaini,(i+1))

s.t.
∑

Si∈Seq

length(Si) ≤ threshold
(2)

This formulation contains two parts.
∑

ek∈Si
ak implies the weight of Sentence Si, which is the sum

of its containing entities’ weights. gaini,(i+1) is the gain score for Edge(Si, Si+1). α manipulates the
impacts of the two parts.

gain(Si, Si+1) =
∑

ek∈Si
∪

Si+1

pek
(rk

i rk
i+1) (3)

As is stated, rk
i is the state of Entity ek in Sentence Si.

For the convenience of decoding, we turn the above model to an integer linear programming (ILP)
problem. We add two dummy nodes, called Start and End Node. All paths start from Start and end
with End. The costs of both Start and End are 0. The gains of edges connected with Start or End are
0. Note that although here we present a full connected graph for simplicity, in reality we deleted several
edges to reduce redundancy. Following such a setting, an arbitrary path in the old graph (the one without
dummy Start and End nodes) can be represented as a path from Start to End. We write the Start node
as Node 0 and the End node as Node t. Then we formulate the problem of the weighted longest path as
follows:

maximizeα
∑

i

(
∑

ek∈Si

ak)xi + (1− α)
∑
i,j

gaini,jyij

subject to

1)
∑

i costixi ≤ threshold
2)

∑
i y0i = 1

3)
∑

i yit = 1
4)

∑
i yij + y0j − (

∑
i yji + yjt) = 0,∀j

5)
∑

i yij + y0j − xj = 0,∀j
6)xi ∈ {0, 1},∀i
7)yij ∈ {0, 1}, ∀i, j

(4)

Equations 2 and 3 are used to ensure we have only one start and one end node. Equation 4 ensures
that the in degree equals the out degree for all nodes. Equation 5 ensures that the in degree is either 0 or
1 and equals xa for all nodes. xi = 1 indicates that Si is selected for the summary. xi = 0 means Si is
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not contained in the summary. yij = 1 means Si and Sj are selected and placed as adjacent sentences in
the summary. costi is the number of words in Si (length of Si).

We resolve this ILP problem using the dual simplex method provided by IBM CPLEX optimizer 4

which is a powerful optimization software package. CPLEX provides both a primal simplex method and
a dual simplex method for ILP problems. Here we adopt the latter.

4 Experiments & Analysis

4.1 Experiment

Experiments are conducted on the data set of the DUC2004 Summarization Task, which is a multi-
document summarization task. 50 document clusters, each of which consists of 10 documents, are given.
One summary is to be generated for each cluster. The target length is up to 100 words. Weights of entities
are learnt by logistic regression as is adopted by Takamura and Okumura (2009) 5. For entities that are
not contained in DUC2003, we assign tf-based weights to them as Barzilay and Lapata (2008) did.

For the evaluation we firstly use the generally acknowledged metric for summarization: ROUGE met-
ric. It essentially calculates n-gram overlaps between automatically generated summaries and human
written (the gold standard) summaries. A high level of overlap indicates a high level of shared informa-
tion between the two summaries. Among others, we focus on ROUGE-1 in the discussion of the result,
because ROUGE-1 has proved to have a strong correlation with human annotation (Lin, 2004).

Some necessary preprocessing includes stemming, removing stop-words and simple simplification. In
previous work, there is usually no co-reference resolution and different words are regarded as different
entities. Here we use Stanford CoreNLP toolkit (Manning et al., 2014) to deal with the co-reference
problem. The Stanford CoreNLP toolkit contains a ready-to-use entity identification tool and a co-
reference resolution tool. The co-reference resolution is not a must, though preferred if reliable tools are
available.

After the co-reference resolution, different forms of the same entities are replaced by their unified
forms. For each document set, we need to estimate the transition probabilities for each entity according
to the documents contained in the cluster as stated above.

Parameters are tuned using the DUC2003 dataset. d is the threshold of redundancy. We keep d
percent of all edges and d varies from 10 to 100 with an interval of 10. We tune the parameter using the
randomized algorithm and evaluate the results using ROUGE-1 Recall. In the following experiments, we
set d = 80, which means we keep 80% of the sentences.

As for the model presented in Section 3.3, we need to tune α. Using the same data, we try α from 0 to
1 with an interval of 0.1 and eventually choose α = 0.4.

4.2 Evaluation & Discussion

We compare our models with state-of-the-art multi-document summarization systems using ROUGE and
human evaluation. The former aims to evaluate informativeness and the latter targets readability.

ROUGE Evaluation MCKP is the maximum coverage methods proposed by Takamura and Okumura
(2009). Lin is a model that uses a class of submodular functions (Lin and Bilmes, 2011). Christ is
a graph based model proposed by Christensen et al. (2013). DPP is the determinantal point processes
model Borodin (2009) and ICSI is another model based on maximum coverage Gillick et al. (2008).
The results of DPP and ICSI comes from the repository presented in Hong et al. (2014). M1 is our
model described in Section 3.1. M2 is the model described in Section 3.3, which is resolved using an
ILP method. MEAD Radev et al. (2004a) is a baseline that employs ranking algorithms to generate
multi-document summaries.

The results are shown in Table 1. As we can see, our system (M1 and M2) produces comparable results
to the state-of-the-art systems. With the MCKP method, all content words are used as concepts. But in

4http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
5This method was first proposed by Yih et al. (2007) and then improved by Takamura and Okumura (2009). Here we follow

the same steps with Takamura and Okumura (2009).
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our systems, only nouns and pronouns are regarded as entities. There are fewer nouns and pronouns than
content words. This has a negative impact on the evaluation of information coverage. But according
to the experiment results, our approach still obtain satisfying results based on these entities. It proves
that even with much simpler feature settings of just nouns and pronouns, the proposed model generates
summaries with good coverage of the important information in source documents. We have addressed
that ROUGE is merely an index of informativeness and cannot evaluate our improvements in readability
as has been proved by Christ, another coherence-focused model (Christensen et al., 2013). So we also
conduct a human evaluation.

Human Evaluation As some of the systems mentioned in Table 1 are not accessible, in this work
we compare summaries produced by some typical systems: M2 (the best proposed system evaluated by
ROUGE), MCKP (one of the state-of-the-art salience-focused methods) and humans (the gold standard).

We asked four professional annotators (who are not the authors of this paper and have rich experience
in annotating various NLP tasks and are fluent in English) to assign a score to each summary regarding
its readability. We randomly selected 48 summaries (16+16+16) from the three systems, and asked them
to assign a readability score to each document without reading the source documents (summarization is
useful because we do not need to read source documents). The score is an integer between 1 (very poor)
and 5 (very good).

The average scores for the 3 systems are Human = 4.3; M2 = 3.5; MCKP = 3.1. Significance
testing (significance level α = 0.05) shows that the summaries generated by the proposed method show
improvements in readability compared with previous salience-focused work.

Type SysName ROUGE-1(R)
Simple Ranking MEAD .339

Maximum Coverage
MCKP .385
ICSI .384

Point Process DPP .398
Sub Modular Lin .394

Discourse-based
Christ .373
M1 .383
M2 .390

Table 1: ROUGE Results on DUC2004

In our model, we assume the states of entities can be formulated as Markov chains. Although sophis-
ticated models can be employed, such assumptions help simplify the model and they are proved to be
of use. Also we can use more or fewer grammatical roles for entities. We tried using just two kinds of
roles: presence and absence, and the performance we obtained was unsatisfying.

5 Related Work

A summary is much shorter than the original documents but still needs to provide readers with sufficient
information. Hence the summarization systems need to identify important information and keep as much
of it as possible. Most existing research follows such a guideline and takes salience as its sole focus.

Salience-focused systems cannot guarantee the readability of the generated text as they fail to take
coherence into consideration. Sentence reordering, as a post processing task has began to develop. Ap-
parently, it cannot make up for the flaws of salience-focused systems because it is simply a reorganization
of sentences. Besides, it also faces problems when dealing with temporal text (Yan et al., 2011; Ge et al.,
2015). A better solution is to consider coherence when selecting sentences. Such comprehensive models
have been proposed. Most of them are discourse driven and sacrifice informativeness for coherence. In
this sense, our model is novel in dealing with coherence without discourse analysis.
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5.1 Salience-Focused Method

As stated, the summarization systems need to identify the important information and keep as much of it
in the generated summaries as possible. One straightforward method is Maximum Marginal Relevance
(Carbonell and Goldstein, 1998) (MMR). It is a greedy method, and is proposed to select sentences that
are most relevant but not too similar to the already selected ones. It tries to keep a balance between
relevance and redundancy. MMR is also widely employed to avoid redundancy in summarization sys-
tems. Among existing research, one popular kind is the ranking method (e.g., Textrank (Mihalcea and
Tarau, 2004), Lexrank (Erkan and Radev, 2004) and its variants (Wan et al., 2007; Wang et al., 2012)),
which construct a graph between text units and use ranking algorithms to select top sentences to build
summaries. Another kind is the optimization method. Our work is one of this kind. It formulates
summarization as finding a subset that optimizes certain objective functions without violating certain
constraints. To find such an optimal subset is a combinatorial optimization problem, which is an NP hard
problem and hence cannot be solved in linear time (McDonald, 2007).

Recently, maximum coverage methods have been proposed and yield good results (Gillick et al., 2009;
Gillick and Favre, 2009; Takamura and Okumura, 2009). Maximum coverage methods formulate sum-
marization as a maximum knapsack problem (MKMC). In MKMC methods, the meanings of sentences
are believed to be made up by concepts, which usually refer to content words. And summarization
involves extracting a subset of sentences that covers as many important concepts as possible without
violating the length constraint. It is usually formulated as an integer linear problem. And some algo-
rithms are proposed for obtaining approximated solutions (Takamura and Okumura, 2009; Gillick et al.,
2009). Lin and Bilmes (2011) design a class of submodular functions for document summarization.
The functions they use combine two parts, encouraging the summary to be representative of the cor-
pus, and rewarding diversity separately. Other methods that have been applied to summarization include
centroid-based methods (Radev et al., 2004b; Saggion and Gaizauskas, 2004), and minimum dominating
set methods (Shen and Li, 2010). All these methods suffer in coherence.

5.2 Coherence-Focused Method

Sentence reordering methods are developed to correct the salience-focused models. Sentence reordering
tries to generate a more coherent text by reordering its contents. Rich semantic and syntactic features
are used to find a better permutation for input sentences (Barzilay et al., 2001; Bollegala et al., 2010;
Okazaki et al., 2004).

The drawback to sentence reordering is obvious. The preceding sentence selection focuses solely on
informativeness and totally neglects coherence. Thus it prevents the improvements expected from per-
mutation. This is confirmed by the fact that the above methods all reports limited improvement. A con-
sideration of coherence during sentence selection leads to new methods, and these are mainly discourse
driven models. Some of the summarization methods encode discourse analysis results in feature presen-
tations together with other frequency based features for sentence selection/compression. The problem is
that these discourse based features usually play secondary roles, because the models all try to improve
information coverage, which are evaluated by ROUGE. And ROUGE, as is commonly known, is not
sensitive to coherence.

Some others work directly on discourse analysis results, and they usually try to derive a passage
from a given parse tree. The problem of summarization is regarded as finding a text T so that T =
arg max F (T |Tr) for a given tree Tr. Here F is the objective function. Early representative work of this
kind includes that of Marcu (1998) and that of Daumé III and Marcu (2002). Recently, Hirao et al. (2013)
has viewed summarization as a knapsack problem on trees, and uses an integer linear problem (ILP) to
formulate it. A sub tree that maximizes some objective function and obeys some given constraints is
extracted from the original parse tree as the summary.

Discourse tree based methods cannot be extended to multi-document summarization. Christensen et
al. (2013) propose a graph model that bypasses the tree constraints. They build a graph to represent
discourse relations between sentences and then extract summaries accordingly.

Recently the neural network based discourse analysis (Li et al., 2014; Ji and Eisenstein, 2014) provides
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us with an alternative way of conducting discourse analysis without traditional feature engineering. It
can be used in our future work of modelling coherence using semantic relations.

6 Conclusion

Previous summarization methods have usually focused on salience and neglected coherence. This work
proposed a novel summarization system that combines coherence with salience. By taking entities and
links between them into consideration, our weighted longest path model successfully improves the qual-
ity of summaries. The proposed model does not require discourse analysis and hence can be applied to
languages which do not enjoy plenty of ready-to-use discourse analysis tools.

In this paper only syntactic linkages are used for modelling coherence. In the future, we can take
advantage of the semantic relations between entities to evaluate coherence and to further improve our
system.
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