An Empirical Exploration of Skip Connections for Sequential Tagging

Huijia Wu!?, Jiajun Zhang'?, and Chengqing Zong"*?
'National Laboratory of Pattern Recognition, Institute of Automation, CAS
2CAS Center for Excellence in Brain Science and Intelligence Technology

3University of Chinese Academy of Sciences

{huijia.wu, jjzhang, cgzong}@nlpr.ia.ac.cn

Abstract

In this paper, we empirically explore the effects of various kinds of skip connections in stacked
bidirectional LSTMs for sequential tagging. We investigate three kinds of skip connections con-
necting to LSTM cells: (a) skip connections to the gates, (b) skip connections to the internal
states and (c) skip connections to the cell outputs. We present comprehensive experiments show-
ing that skip connections to cell outputs outperform the remaining two. Furthermore, we observe
that using gated identity functions as skip mappings works pretty well. Based on this novel skip
connections, we successfully train deep stacked bidirectional LSTM models and obtain state-of-
the-art results on CCG supertagging and comparable results on POS tagging.

1 Introduction

In natural language processing, sequential tagging mainly refers to the tasks of assigning discrete labels
to each token in a sequence. Typical examples include part-of-speech (POS) tagging and combinatory
category grammar (CCG) supertagging. A regular feature of sequential tagging is that the input tokens
in a sequence cannot be assumed to be independent since the same token in different contexts can be
assigned to different tags. Therefore, the classifier should have memories to remember the contexts to
make a correct prediction.

Bidirectional LSTMs (Graves and Schmidhuber, 2005) become dominant in sequential tagging prob-
lems due to the superior performance (Wang et al., 2015; Vaswani et al., 2016; Lample et al., 2016).
The horizontal hierarchy of LSTMs with bidirectional processing can remember the long-range depen-
dencies without affecting the short-term storage. Although the models have a deep horizontal hierarchy
(the depth is the same as the sequence length), the vertical hierarchy is often shallow, which may not be
efficient at representing each token. Stacked LSTMs are deep in both directions, but become harder to
train due to the feed-forward structure of stacked layers.

Skip connections (or shortcut connections) enable unimpeded information flow by adding direct con-
nections across different layers (Raiko et al., 2012; Graves, 2013; Hermans and Schrauwen, 2013). How-
ever, there is a lack of exploration and analyzing various kinds of skip connections in stacked LSTMs.
There are two issues to handle skip connections in stacked LSTMs: One is where to add the skip con-
nections, the other is what kind of skip connections should be used to pass the information. To answer
the first question, we empirically analyze three positions of LSTM blocks to receive the previous layer’s
output. For the second one, we present an identity mapping to receive the previous layer’s outputs. Fur-
thermore, following the gate design of LSTM (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)
and highway networks (Srivastava et al., 2015a; Srivastava et al., 2015b), we observe that adding a
multiplicative gate to the identity function will help to improve performance.

In this paper, we present a neural architecture for sequential tagging. The input of the network are
token representations. We concatenate word embeddings to character embeddings to represent the word
and morphemes. A deep stacked bidirectional LSTM with well-designed skip connections is then used

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

203

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 203-212, Osaka, Japan, December 11-17 2016.

to extract the features needed for classification from the inputs. The output layer uses softmax function
to output the tag distribution for each token.

Our main contribution is that we empirically evaluated the effects of various kinds of skip connections
within stacked LSTMs. We present comprehensive experiments on the supertagging task showing that
skip connections to the cell outputs using identity function multiplied with an exclusive gate can help to
improve the network performance. Our model is evaluated on two sequential tagging tasks, obtaining
state-of-the-art results on CCG supertagging and comparable results on POS tagging.

2 Related Work

Skip connections have been widely used for training deep neural networks. For recurrent neural net-
works, Schmidhuber (1992); El Hihi and Bengio (1995) introduced deep RNNs by stacking hidden
layers on top of each other. Raiko et al. (2012); Graves (2013); Hermans and Schrauwen (2013) pro-
posed the use of skip connections in stacked RNNs. However, the researchers have paid less attention to
the analyzing of various kinds of skip connections, which is our focus in this paper.

The works closely related to ours are Srivastava et al. (2015b), He et al. (2015), Kalchbrenner et al.
(2015), Yao et al. (2015), Zhang et al. (2016), and Zilly et al. (2016). These works are all based on
the design of extra connections between different layers. Srivastava et al. (2015b) and He et al. (2015)
mainly focus on feed-forward neural network, using well-designed skip connections across different
layers to make the information pass more easily. The Grid LSTM proposed by Kalchbrenner et al.
(2015) extends the one dimensional LSTMs to many dimensional LSTMs, which provides a more general
framework to construct deep LSTM:s.

Yao et al. (2015) and Zhang et al. (2016) propose highway LSTMs by introducing gated direct
connections between internal states in adjacent layers and do not use skip connections, while we propose
gated skip connections across cell outputs. Zilly et al. (2016) introduce recurrent highway networks
(RHN) which use a single recurrent layer to make RNN deep in a vertical direction, in contrast to our
stacked models.

3 Recurrent Neural Networks for Sequential Tagging

Consider a recurrent neural network applied to sequential tagging: Given a sequence x = (x1,...,Z7),
the RNN computes the hidden state h = (hq, ..., hy) and the output y = (y1, ..., yr) by iterating the
following equations:

ht = f(zt, hi—1;0n) ()
Yyt = g(ht; 6o) 2
where t € {1,...,T} represents the time. x; represents the input at time ¢, h;—1 and h; are the previous

and the current hidden state, respectively. f and g are the transition function and the output function,
respectively. 05, and 6, are network parameters.
We use a negative log-likelihood cost to evaluate the performance, which can be written as:

1 N
C= N;Iogytn 3)

where t" € N is the true target for sample n, and y;» is the ¢-th output in the softmax layer given the
inputs z".
The core idea of Long Short-Term Memory networks is to replace (1) with the following equation:

et = flae, hi—1) + -1 “4)

where c; is the internal state of the memory cell, which is designed to store the information for much
longer time. Besides this, LSTM uses gates to avoid weight update conflicts.

204

Standard LSTMs process sequences in temporal order, which will ignore future context. Bidirectional
LSTMs solve this problem by combining both the forward and the backward processing of the input
sequences using two separate recurrent hidden layers:

hi = LSTM(T, hu—1, &-1) 5)

hy = LSTM(7, he_1, &1) 6)
—

yr = g(he, hy) 7

where LSTM(-) is the LSTM computation. 7; and Z; are the forward and the backward input sequence,
respectively. The output of the two hidden layers Ez and <h_t in a birectional LSTM are connected to the
output layer.

Stacked RNN is one type of deep RNNs, which refers to the hidden layers are stacked on top of each
other, each feeding up to the layer above:

he = f'(hy ™" i) ®)
where 1! is the t-th hidden state of the I-th layer.

4 Various kinds of Skip Connections

Skip connections in simple RNNs are trivial since there is only one position to connect to the hidden
units. But for stacked LSTMs, the skip connections need to be carefully treated to train the network
successfully. In this section, we analyze and compare various types of skip connections. At first, we
give a detailed definition of stacked LSTMs, which can help us to describe skip connections. Then we
start our construction of skip connections in stacked LSTMs. At last, we formulate various kinds of skip
connections.

Stacked LSTMs without skip connections can be defined as:

(1 sigm

L | sigm W(¢1> G=fody+ii0s) ©)
0% iigl;l R, hl = ol ® tanh(c})
s} an

During forward pass, LSTM needs to calculate ¢} and A, which is the cell’s internal state and the cell
outputs state, respectively. To get cl, sé needs to be computed to store the current input. Then this result
is multiplied by the input gate i!, which decides when to keep or override information in memory cell c}.
The cell is designed to store the previous information ci_l, which can be reset by a forget gate f/. The
new cell state is then obtained by adding the result to the current input. The cell outputs /! are computed
by multiplying the activated cell state by the output gate o}, which learns when to access memory cell
and when to block it. “sigm” and “tanh” are the sigmoid and tanh activation function, respectively.
W' € R4*2n is the weight matrix needs to be learned.

The hidden units in stacked LSTMs have two forms. One is the hidden units in the same layer
{n},t € 1,...,T}, which are connected through an LSTM. The other is the hidden units at the same
time step {h,lf,l € 1,..., L}, which are connected through a feed-forward network. LSTM can keep
the short-term memory for a long time, thus the error signals can be easily passed through {1,...,7'}.
However, when the number of stacked layers is large, the feed-forward network will suffer the gradient
vanishing/exploding problems, which make the gradients hard to pass through {1, ..., L}.

The core idea of LSTM is to use an identity function to make the constant error carrosel. He et al.
(2015) also use an identity mapping to train a very deep convolution neural network with improved
performance. All these inspired us to use an identity function for the skip connections. Rather, the gates
of LSTM are essential parts to avoid weight update conflicts, which are also invoked by skip connections.
Following highway gating, we use a gate multiplied with identity mapping to avoid the conflicts.

Skip connections are cross-layer connections, which means that the output of layer /-2 is not only
connected to the layer [—1, but also connected to layer [. For stacked LSTMs, hi_z can be connected to
the gates, the internal states, and the cell outputs in layer ’s LSTM blocks. We formalize these below:

205

Skip connections to the gates. We can connect hi_Q to the gates through an identity mapping:

i sigm

hl—l
4 | = | sam =
sk tanh I/f/

where I' € R4"*" is the identity mapping.

Skip connections to the internal states. Another kind of skip connections is to connect hfo to the
cell’s internal state ci:
d=flod +ilosi4+n>2 (11)
hl = ol ® tanh(c!) (12)
Skip connections to the cell outputs. We can also connect hi_z to cell outputs:
I opl o~ 1l
Ct—ft ®Ct—1+lt®5t (13)
hl = ol ® tanh(cl) 4+ hl 2 (14)
Skip connections using gates. Consider the case of skip connections to the cell outputs. The cell
outputs grow linearly during the presentation of network depth, which makes the hl’s derivative vanish

and hard to convergence. Inspired by the introduction of LSTM gates, we add a gate to control the skip
connections through retrieving or blocking them:

iy sigm
l .
sigm _ I gl o 1 1
. igm W ! a=lOq 1+ Os (15)
% S18 nl I I I 12
gl sigm t—1 hy = o, ® tanh(c}) + g; © hy
sl tanh

where gé is the gate which can be used to access the skipped output hi_Q or block it. When g,lt equals
0, no skipped output can be passed through skip connections, which is equivalent to traditional stacked
LSTMs. Otherwise, it behaves like a feed-forward LSTM using gated identity connections. Here we
omit the case of adding gates to skip connections to the internal state, which is similar to the above case.

Skip connections in bidirectional LSTM. Using skip connections in bidirectional LSTM is similar
to the one used in LSTM, with a bidirectional processing:

Y P A TG LT
Ct:f®ct71+i®st Ct:f®0t71+i®8t
il - . 2 - a9
ht =0 otanh(cl) + 7 © b2 hi =0 ®tanh(c) + g @ bl 2
5 Neural Architecture for Sequential Tagging
Sequential tagging can be formulated as P(t|w;), where w = [wy, ..., wr] indicates the 7" words in a
sentence, and t = [t1, ..., tp| indicates the corresponding 7" tags. In this section we introduce an neural

architecture for P(-), which includes an input layer, a stacked hidden layers and an output layer. Since
the stacked hidden layers have already been introduced, we only introduce the input and the output layer
here.

5.1 Network Inputs

Network inputs are the representation of each token in a sequence. There are many kinds of token repre-
sentations, such as using a single word embedding, using a local window approach, or a combination of
word and character-level representation. Here our inputs contain the concatenation of word representa-
tions, character representations, and capitalization representations.

206

Word representations. All words in the vocabulary share a common look-up table, which is ini-
tialized with random initializations or pre-trained embeddings. Each word in a sentence can be mapped
to an embedding vector w;. The whole sentence is then represented by a matrix with columns vector
[w1,wa, ..., wr]. We use a context window of size d surrounding with a word w; to get its context
information. Following Wu et al. (2016), we add logistic gates to each token in the context window.
The word representation is computed as w; = [thLd /2| Wi—|d/2]5 - -+ T4 |d/2) Wit |d/2 J], where r; =
[rt_Ld/QJ, e Tt+Ld/2J] € R%is a logistic gate to filter the unnecessary contexts, Wi |d/2]s - -+ Wit |d/2]
is the word embeddings in the local window.

Character representations. Prefix and suffix information about words are important features in
sequential tagging. Inspired by Fonseca et al. (2015) et al, which uses a character prefix and suffix with
length from 1 to 5 for part-of-speech tagging, we concatenate character embeddings in a word to get
the character-level representation. Concretely, given a word w consisting of a sequence of characters
[c1,c¢2,...,q,], where [, is the length of the word and L(-) is the look-up table for characters. We
concatenate the leftmost most 5 character embeddings L(c1), ..., L(cs) with its rightmost 5 character
embeddings L(c;,—4),-..,L(c;,,). When a word is less than five characters, we pad the remaining
characters with the same special symbol.

Capitalization representations. We lowercase the words to decrease the size of word vocabulary
to reduce sparsity, but we need an extra capitalization embeddings to store the capitalization features,
which represent whether or not a word is capitalized.

5.2 Network Outputs

For sequential tagging, we use a softmax activation function g(-) in the output layer:

ye = g(W™[hy; he)) (17)

where v, is a probability distribution over all possible tags. y(t) = % is the k-th dimension of

y¢, which corresponds to the k-th tags in the tag set. W is the hidden-to-output weight.

6 Experiments

6.1 Combinatory Category Grammar Supertagging

Combinatory Category Grammar (CCG) supertagging is a sequential tagging problem in natural lan-
guage processing. The task is to assign supertags to each word in a sentence. In CCG the supertags
stand for the lexical categories, which are composed of the basic categories such as N, N P and PP, and
complex categories, which are the combination of the basic categories based on a set of rules. Detailed
explanations of CCG refers to (Steedman, 2000; Steedman and Baldridge, 2011).

The training set of this task only contains 39604 sentences, which is too small to train a deep model,
and may cause over-parametrization. But we choose it since it has been already proved that a bidirec-
tional recurrent net fits the task by many authors (Lewis et al., 2016; Vaswani et al., 2016).

6.1.1 Dataset and Pre-processing

Our experiments are performed on CCGBank (Hockenmaier and Steedman, 2007), which is a translation
from Penn Treebank (Marcus et al., 1993) to CCG with a coverage 99.4%. We follow the standard
splits, using sections 02-21 for training, section 00 for development and section 23 for the test. We use
a full category set containing 1285 tags. All digits are mapped into the same digit ‘9’, and all words are
lowercased.

6.1.2 Network Configuration

Initialization. There are two types of weights in our experiments: recurrent and non-recurrent
weights. For non-recurrent weights, we initialize word embeddings with the pre-trained 200-dimensional
GolVe vectors (Pennington et al., 2014). Other weights are initialized with the Gaussian distribution

207

Model | Dev | Test

Clark and Curran (2007) 91.5 | 92.0
Lewis et al. (2014) 91.3 |91.6
Lewis et al. (2016) 94.1 | 94.3
Xu et al. (2015) 93.1]93.0
Xu et al. (2016) 93.49 | 93.52
Vaswani et al. (2016) 94.24 | 94.5
7-layers + skip output + gating 94.51 | 94.67
7-layers + skip output + gating (no char) 94.33 | 94.45
7-layers + skip output + gating (no dropout) | 94.06 | 94.0
9-layers + skip output + gating 94.55 | 94.69

Table 1: 1-best supertagging accuracy on CCGbank. “skip output” refers to the skip connections to the
cell output, “gating” refers to adding a gate to the identity function, “no char” refers to the models that
do not use the character-level information, “no dropout” refers to models that do not use dropout.

N (0, \/ﬁ) scaled by a factor of 0.1, where fan-in is the number of units in the input layer. For recur-
rent weight matrices, following Saxe et al. (2013) we initialize with random orthogonal matrices through
SVD to avoid unstable gradients. Orthogonal initialization for recurrent weights is important in our ex-
periments, which takes about 2% relative performance enhancement than other methods such as Xavier

initialization (Glorot and Bengio, 2010).

Hyperparameters. For the word representations, we use a small window size of 3 for the convolu-
tional layer. The dimension of the word representation after the convolutional operation is 600. The size
of character embedding and capitalization embeddings are set to 5. The number of cells of the stacked
bidirectional LSTM is set to 512. We also tried 400 cells or 600 cells and found this number did not
impact performance so much. All stacked hidden layers have the same number of cells. The output layer
has 1286 neurons, which equals to the number of tags in the training set with a RARE symbol.

Training. We train the networks using the back-propagation algorithm, using stochastic gradient
descent (SGD) algorithm with an equal learning rate 0.02 for all layers. We also tried other optimization
methods, such as momentum (Plaut and others, 1986), Adadelta (Zeiler, 2012), or Adam (Kingma and
Ba, 2014), but none of them perform as well as SGD. Gradient clipping is not used. We use on-line
learning in our experiments, which means the parameters will be updated on every training sequences,
one at a time. We trained the 7-layer network for roughly 2 to 3 days on one NVIDIA TITAN X GPU
using Theano ' (Team et al., 2016).

Regularization. Dropout (Srivastava et al., 2014) is the only regularizer in our model to avoid over-
fitting. Other regularization methods such as weight decay and batch normalization do not work in our
experiments. We add a binary dropout mask to the local context windows on the embedding layer, with
a drop rate p of 0.25. We also apply dropout to the output of the first hidden layer and the last hidden
layer, with a 0.5 drop rate. At test time, weights are scaled with a factor 1 — p.

6.1.3 Results

Table 1 shows the comparisons with other models for supertagging. The comparisons do not include any
externally labeled data and POS labels. We use stacked bidirectional LSTMs with gated skip connections
for the comparisons, and report the highest 1-best supertagging accuracy on the development set for final
testing. Our model presents state-of-the-art results compared to the existing systems. The character-level
information (+ 3% relative accuracy) and dropout (+ 8% relative accuracy) are necessary to improve the
performance.

"http://deeplearning.net/software/theano/

208

6.1.4 Experiments on Skip Connections

We experiment with a 7-layer model on CCGbank to compare different kinds of skip connections intro-
duced in Section 4. Our analysis mainly focuses on the identity function and the gating mechanism. The
comparisons (Table 2) are summarized as follows:

No skip connections. When the number of stacked layers is large, the performance will degrade
without skip connections. The accuracy in a 7-layer stacked model without skip connections is 93.94%
(Table 2), which is lower than the one using skip connections.

Various kinds of skip connections. We experiment with the gated identity connections between
internal states introduced in Zhang et al.(2016), but the network performs not good (Table 2, 93.14%). We
also implement the method proposed in Zilly et al. (2016), which we use a single bidirectional RNH layer
with a recurrent depth of 3 with a slightly modification®. Skip connections to the cell outputs with identity
function and multiplicative gating achieves the highest accuracy (Table 2, 94.51%) on the development
set. We also observe that skip to the internal states without gate get a slightly better performance (Table
2, 94.33%) than the one with gate (94.24%) on the development set. Here we recommend to set the
forget bias to O to get a better development accuracy.

Identity mapping. We use the sigmoid function to the previous outputs to break the identity link,
in which we replace g; ® hi™! in Eq. (15) with g; ® o(h\™1), where o(z) = H% The result of
the sigmoid function is 94.02% (Table 2), which is poor than the identity function. We can infer that
the identity function is more suitable than other scaled functions such as sigmoid or tanh to transmit
information.

Exclusive gating. Following the gating mechanism adopted in highway networks, we consider
adding a gate g; to make a flexible control to the skip connections. Our gating function is g/ =
a(nghfg_l +U, ;hi_Q). Gated identity connections are essential to achieving state-of-the-art result on
CCGbank.

Case \ Variant \ Dev \ Test
H-LSTM, Zhang et al.(2016) | - 93.14 | 93.52
RHN, Zilly et al. (2016) L = 3, with output gates 94.28 | 94.24
no skip connections - 93.94 | 94.26
to the gates, Eq. (10) - 939 |94.22
. no gate, Eq. (11) 94.33 | 94.63
to the internals with gate 94.24 | 94.52
no gate, Eq. (14) 93.89 | 93.98
with gate, by = 5, Eq. (15) 94.23 | 94.81
to the outputs with gate, by = 0, Eq. (15) 94.51 | 94.67

sigmoid mapping: g; © o(h!™1) | 94.02 | 94.18

Table 2: Accuracy on CCGbank using 7-layer stacked bidirectional LSTMs, with different types of skip
connections. by is the bias of the forget gate.

6.1.5 Experiments on Number of Layers

Table 3 compares the effect of the depth in the stacked models. We can observe that the performance
is getting better with the increased number of layers. But when the number of layers exceeds 9, the
performance will be hurt. In the experiments, we found that the number of stacked layers between 7 and
9 are the best choice using skip connections. Notice that we do not use layer-wise pretraining (Bengio et
al., 2007; Simonyan and Zisserman, 2014), which is an important technique in training deep networks.

2QOur original implementation of Zilly et a. (2016) with a recurrent depth of 3 fails to converge. The reason might be due to
the explosion of s% under addition. To avoid this, we replace s}, with o; * tanh(s%) in the last recurrent step.

209

Further improvements might be obtained with this method to build a deeper network with improved
performance.

#Layers \ Dev \ Test

3 94.21 | 94.35
5 94.51 | 94.57
7 94.51 | 94.67
9 94.55 | 94.7

11 94.43 | 94.65

Table 3: Accuracy on CCGbank using gated identity connections to cell outputs, with different number
of stacked layers.

6.2 Part-of-speech Tagging

Part-of-speech tagging is another sequential tagging task, which is to assign POS tags to each word in a
sentence. It is very similar to the supertagging task. Therefore, these two tasks can be solved in a unified
architecture. For POS tagging, we use the same network configurations as supertagging, except the word
vocabulary size and the tag set size. We conduct experiments on the Wall Street Journal of the Penn
Treebank dataset, adopting the standard splits (sections 0-18 for the train, sections 19-21 for validation
and sections 22-24 for testing).

Model Test
S@gaard (2011) 97.5
Ling et al. (2015) 97.36
Wang et al. (2015) 97.78
Vaswani et al. (2016) 97.4
7-layers + skip output + gating | 97.45
9-layers + skip output + gating | 97.45

Table 4: Accuracy for POS tagging on WSJ.

Although the POS tagging result presented in Table 4 is slightly below the state-of-the-art, we neither
do any parameter tunings nor change the network architectures, just use the one getting the best devel-
opment accuracy on the supertagging task. This proves the generalization of the model and avoids heavy
work of model re-designing.

7 Conclusions

This paper investigates various kinds of skip connections in stacked bidirectional LSTM models. We
present a deep stacked network (7 or 9 layers) that can be easily trained and get improved accuracy on
CCQG supertagging and POS tagging. Our experiments show that skip connections to the cell outputs
with the gated identity function performs the best. Our explorations could easily be applied to other
sequential processing problems, which can be modelled with RNN architectures.

Acknowledgements

The research work has been funded by the Natural Science Foundation of China under Grant No.
61333018 and supported by the Strategic Priority Research Program of the CAS under Grant No.
XDB02070007. We thank the anonymous reviewers for their useful comments that greatly improved
the manuscript.

210

References

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. 2007. Greedy layer-wise training of deep
networks. Advances in neural information processing systems, 19:153.

Stephen Clark and James R Curran. 2007. Wide-coverage efficient statistical parsing with ccg and log-linear
models. Computational Linguistics, 33(4):493-552.

Salah El Hihi and Yoshua Bengio. 1995. Hierarchical recurrent neural networks for long-term dependencies. In
NIPS, volume 400, page 409. Citeseer.

Erick R Fonseca, Jodo Luis G Rosa, and Sandra Maria Aluisio. 2015. Evaluating word embeddings and a revised
corpus for part-of-speech tagging in portuguese. Journal of the Brazilian Computer Society, 21(1):1-14.

Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with Istm.
Neural computation, 12(10):2451-2471.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural net-
works. In Aistats, volume 9, pages 249-256.

Alex Graves and Jiirgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional Istm and other
neural network architectures. Neural Networks, 18(5):602—-610.

Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385.

Michiel Hermans and Benjamin Schrauwen. 2013. Training and analysing deep recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 190—198.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Lstm can solve hard long time lag problems. Advances in neural
information processing systems, pages 473-479.

Julia Hockenmaier and Mark Steedman. 2007. Ccgbank: a corpus of CCG derivations and dependency structures
extracted from the penn treebank. Computational Linguistics, 33(3):355-396.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. 2015. Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

Mike Lewis and Mark Steedman. 2014. Improved CCG parsing with semi-supervised supertagging. Transactions
of the Association for Computational Linguistics, 2:327-338.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016. Lstm ccg parsing. In Proceedings of the 15th Annual
Conference of the North American Chapter of the Association for Computational Linguistics.

Wang Ling, Tiago Luis, Luis Marujo, Ramén Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W Black, and
Isabel Trancoso. 2015. Finding function in form: Compositional character models for open vocabulary word
representation. arXiv preprint arXiv:1508.02096.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313-330.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In EMNLP, volume 14, pages 1532-43.

David C Plaut et al. 1986. Experiments on learning by back propagation.

Tapani Raiko, Harri Valpola, and Yann LeCun. 2012. Deep learning made easier by linear transformations in
perceptrons. In AISTATS, volume 22, pages 924-932.

Andrew M Saxe, James L McClelland, and Surya Ganguli. 2013. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

211

Jiirgen Schmidhuber. 1992. Learning complex, extended sequences using the principle of history compression.
Neural Computation, 4(2):234-242.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556.

Anders Sggaard. 2011. Semisupervised condensed nearest neighbor for part-of-speech tagging. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, pages 48-52. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,
15(1):1929-1958.

Rupesh K Srivastava, Klaus Greff, and Jiirgen Schmidhuber. 2015a. Training very deep networks. In Advances in
neural information processing systems, pages 2377-2385.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. 2015b. Highway networks. arXiv preprint
arXiv:1505.00387.

Mark Steedman and Jason Baldridge. 2011. Combinatory categorial grammar. Non-Transformational Syntax:
Formal and Explicit Models of Grammar. Wiley-Blackwell.

Mark Steedman. 2000. The syntactic process, volume 24. MIT Press.

Theano Development Team, Rami Alrfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry
Bahdanau, Nicolas Ballas, Frdric Bastien, Justin Bayer, and Anatoly Belikov. 2016. Theano: A python frame-
work for fast computation of mathematical expressions.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan Musa. 2016. Supertagging with Istms. In Proceedings of
the Human Language Technology Conference of the NAACL.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. 2015. Part-of-speech tagging with bidirectional
long short-term memory recurrent neural network. arXiv preprint arXiv:1510.06168.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. 2016. A dynamic window neural network for ccg supertagging.
arXiv preprint arXiv:1610.02749.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015. CCG supertagging with a recurrent neural network. Volume
2: Short Papers, page 250.

Wenduan Xu, Michael Auli, and Stephen Clark. 2016. Expected f-measure training for shift-reduce parsing with
recurrent neural networks. In Proceedings of NAACL-HLT, pages 210-220.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer. 2015. Depth-gated Istm. In
Presented at Jelinek Summer Workshop on August, volume 14, page 1.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco, Sanjeev Khudanpur, and James Glass. 2016. Highway long
short-term memory rnns for distant speech recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5755-5759. IEEE.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik, and Jiirgen Schmidhuber. 2016. Recurrent highway
networks. arXiv preprint arXiv:1607.03474.

212

