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Abstract

Princeton WordNet is one of the most important resources for natural language processing, but
is only available for English. While it has been translated using the expand approach to many
other languages, this is an expensive manual process. Therefore it would be beneficial to have a
high-quality automatic translation approach that would support NLP techniques, which rely on
WordNet in new languages. The translation of wordnets is fundamentally complex because of the
need to translate all senses of a word including low frequency senses, which is very challenging
for current machine translation approaches. For this reason we leverage existing translations
of WordNet in other languages to identify contextual information for wordnet senses from a
large set of generic parallel corpora. We evaluate our approach using 10 translated wordnets for
European languages. Our experiment shows a significant improvement over translation without
any contextual information. Furthermore, we evaluate how the choice of pivot languages affects
performance of multilingual word sense disambiguation.

1 Introduction

Princeton WordNet (Fellbaum, 1998) is a manually created resource that has been used in many differ-
ent tasks and applications across linguistics and natural language processing. WordNet’s hierarchical
structure makes it a useful tool for many semantic applications and it also plays a vital role in modern
deep learning based NLP systems (Rychalska et al., 2016). However, Princeton WordNet is only avail-
able for English and huge efforts have been made to extend WordNet with multilingual information in
projects, such as EuroWordNet (Vossen, 1998), BalkaNet (Tufiş et al., 2004) and MultiWordNet (Pianta
et al., 2002). However, most of the wordnet resources resulting from these efforts have fewer synsets
than the Princeton WordNet and there are still many languages for which a wordnet does not exist or is
not available to all potential users due to licensing restrictions, impacting applications in information re-
trieval, word sense disambiguation, sentiment analysis or knowledge management that rely on Princeton
WordNet.

Most wordnets in languages other than English have followed an extend approach (Vossen, 2005),
where the structure of Princeton WordNet is preserved and only the words in each synset are translated
and new synsets are added for concepts, which are not lexicalized in English. Since manual multilingual
translation and evaluation of wordnets using this approach is a very time consuming and expensive pro-
cess, we apply statistical machine translation (SMT) to automatically translate WordNet entries. While
an SMT system can only return the most frequent translation when given a term by itself, it has been
observed that SMT provides strong word sense disambiguation when the word is given in the context of
a sentence. As a motivating example, we consider the word vessel, which is a member of three synsets in
Princeton WordNet, whereby the most frequent translation, e.g., as given by Google Translate, is Schiff
in German and nave in Italian, corresponding to i608331 ‘a craft designed for water transportation’.
For the second sense, i65336 ‘a tube in which a body fluid circulates’, we assume that we know the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1We use the CILI identifiers for synsets (Bond et al., 2016)
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German translation for this sense is Gefäß. In our approach we look for sentences in a parallel corpus,
where the words vessel and Gefäß both occur and obtain a context such as ‘blood vessel’ that allows the
SMT system to translate this sense correctly. This alone is not sufficient as Gefäß is also a translation of
i60834 ‘an object used as a container’, however in Italian these two senses are distinct (vaso and re-
cipiente respectively), thus by using as many languages as possible we maximize our chances of finding
a well disambiguated context.

In this work, we propose an approach to select the most relevant sentences from a parallel corpus based
on the overlap with existing translations of WordNet in as many pivot languages as possible. The goal
is to identify sentences that share the same semantic information in respect to the synset of the WordNet
entry that we want to translate. This approach will allow us to provide a large multilingual WordNet in
more than 20 different European languages, which we call Polylingual WordNet.2 We present multiple
evaluations of our approach and show that in general at least 4 languages should be used to assist in
the selection of contexts and that languages closely related to the target language should be used in
preference to more distant languages. We evaluated our approach on translating WordNet entries into
Italian, Slovene, Spanish and Italian, showing improvements between 5 and more than 10 BLEU points
compared to a generic translation approach. This approach has been used to expand wordnets for many
European languages as well as generate the first wordnet for Maltese.

2 Related Work

Princeton WordNet inspired many researchers to create similarly structured wordnets for other languages.
The EuroWordNet project (Vossen, 1998) linked wordnets in different languages through a socalled Inter-
Lingual-Index (ILI) into a single multilingual lexical resource. Via this index, the languages are aligned
between each other, which allows to go from a concept in one language to a concept with a similar
meaning in any of the other languages. Further multilingual extensions were generated by the BalkaNet
project (Tufiş et al., 2004), focusing on the Balkan languages and MultiWordNet (Pianta et al., 2002),
aligning Italian concepts to English equivalents.

Due to the large interest in the multilingual extensions of the Princeton WordNet, several initiatives
started with the aim to unifying and making these wordnets easily accessible. The KYOTO project
(Fellbaum and Vossen, 2012) focused on the development of a language-independent module to which
all existing wordnets can be connected, which would allow a better cross-lingual machine processing of
lexical information. Recently this has been realized by a new Global WordNet Grid (Vossen et al., 2016)
that takes advantage of the Collaborative Inter-Lingual Index (CILI) (Bond et al., 2016). Since most
of the current non-English wordnets use the Princeton WordNet as a pivot resource, concepts, which
are not in this English lexical resource cannot not be realized or aligned to it. Therefore the authors
support the idea of a central platform of concepts, where new concepts may be added even if they are
not represented (yet) in the Princeton WordNet or even lexicalized in English (e.g., many languages have
distinct gendered role words, such as ‘male teacher’ and ‘female teacher’, but these meanings are not
distinguished in English).

Previous studies of generating non-English wordnets combined Wiktionary knowledge with existing
wordnets to extend them or to create new ones (de Melo and Weikum, 2009). Bond and Paik (2012) de-
scribe in their work the creation of the Open Multilingual Wordnet and its extension with other resources
(Bond and Foster, 2013). A different approach to expand English WordNet synsets with lexicalizations
in other languages was proposed in de Melo and Weikum (2012). The authors do not directly match
concepts in the two different language resources, but demonstrate an approach that learns how to deter-
mine the best translation for English synsets by taking bilingual dictionaries, structural information of the
English WordNet and corpus frequency information into account. With the growing amount of parallel
data, Kazakov and Shahid (2009) show an approach to acquire a set of synsets from parallel corpora. The
synsets are obtained by comparing aligned words in parallel corpora in several languages. Similarly, the
sloWNet for Slovene (Fišer, 2007) and Wolf for French (Sagot and Fišer, 2008) are constructed using a
multilingual corpus and word alignment techniques in combination with other existing lexical resources.

2The Polylingual WordNet is available at http://polylingwn.linguistic-lod.org/
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Since all these approaches use word alignment information, they are not able to generate any translation
equivalents for multi-word expressions (MWE). In contrast, our approach use an SMT system trained on
a large amount of parallel sentences, which allows us to align possible MWEs, such as commercial loan
or take a breath, between source and target language. Furthermore, we engage the idea of identifying
relevant contextual information to support an SMT system translating short expressions, which showed
better performance compared to approaches without a context. Arcan et al. (2015) built small domain-
specific translation models for ontology translation from relevant sentence pairs that were identified in
a parallel corpus based on the ontology labels to be translated. With this approach they improve the
translation quality over the usage of large generic translation models. Since the generation of transla-
tion models can be computational expensive, Arcan et al. (2016) use large generic translation models to
translate ontology labels, which were placed into a disambiguated context. With this approach the au-
thors demonstrate translation quality improvement over commercial systems, like Microsoft Translator.
Different from this approach, which uses the hierarchical structure of the ontology for disambiguation,
we engage a large number of different languages to identify the relevant context.

Oliver and Climent (2012) present a method for WordNet construction and enlargement with the help
of sense tagged parallel corpora. Since parallel sense tagged data are not always available, they use
Google Translate to translate a manually sense tagged corpus. In addition they apply automatic sense
tagging of a manually translated parallel corpus, whereby they report worse performance compared to
the previous approach. We try to overcome this issue by engaging up to ten languages to improve the
performance of the automatic sense tagging. Similarly, BabelNet (Navigli and Ponzetto, 2012) aligns
the lexicographic knowledge from WordNet to the encyclopaedic knowledge of Wikipedia. This is done
by assigning WordNet synsets to Wikipedia entries, and making these relations multilingual through the
interlingual links. For languages, which do not have the corresponding Wikipedia entry, the authors
use Google Translate to translate English sentences containing the synset in the sense annotated corpus.
After that, the most frequent translation is included as a variant for the synset for the given language.

The use of parallel corpora has been previously exploited for word sense disambiguation, for example
to construct sense-tagged corpora in another language (Ng et al., 2003) or by using translations as a
method to discriminate senses (Ide et al., 2002). It has been shown that the combination of these tech-
niques can improve supervised word sense disambiguation (Chan et al., 2007). A similar approach to
the one proposed in this paper is that of Tufiş et al. (2004), where they show that using the interlingual
index of WordNet with the help of parallel text can improve word sense disambiguation of a monolingual
approach and we generalize this result to generate wordnets for new languages.

3 Methodology

Our approach takes the advantage of the increasing amount of parallel corpora in combination with
wordnets in languages other than English for sense disambiguation, which will help us to improve au-
tomatic translations of English WordNet entries. We assume that we have a multilingual parallel corpus
consisting of sentences, xl

i in a language l, grouped into parallel translations:

X = {(xl0
i , . . . , xlT

i )}

We also assume that we have a collection of wordnets consisting of a set of senses, wl
ij , grouped into

synsets, for each language:
S = {({wl0

ij}, . . . , {wlT
ij })}

We say that a context xl0
i , in language l0 (in our case this is always English), is disambiguated in n

languages for a word wl0
jk if:

∃wl1
jk1

, . . . , wln
jkn

: wl1
jk1
∈ xl1

i ∧ . . . ∧ wln
jkn
∈ xln

i

That is, a context is disambiguated in n languages for a word, if for each of its translations we have a
context in the parallel corpus that contains one of the known synset translations. Furthermore, we assume
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we have an SMT system that can translate any context in l0 into our target language, lT , and produces a
phrase alignment such that we know which word in the output corresponds to the input word. We used
the following methods to choose contexts for the SMT system:

None The SMT system is given only the word wl0
jk as a single sentence as input, thus the most frequent

translation is returned.

Random context A random xi ∈ X , such that wl0
jk ∈ xl0

i , is chosen.

Disambiguated context The contexts are ordered by the number of languages that they are disam-
biguated in, and the context that is disambiguated in the maximal number of languages is chosen. If
there are multiple such languages, one context is chosen at random.

m Disambiguated contexts The contexts are ordered, as above, and the m top scoring contexts are
used, with ties broken at random. Each of these contexts is given to the SMT system and the most
frequent translation across these m contexts is used. The previous mode is the same as this when
m = 1.

t-best Translations The SMT system is configured to return the t highest scoring translations, according
to its model, and we select the translation as the most frequent translation of the context among this
t-best list. In our experiments, we combined this with m disambiguations to give tm candidate
translations from which the candidate is chosen.

Target Side Lookup (TSL) We can also utilize the translation of our context into the target language xlT
i

from the parallel corpus, however this cannot be applied directly as we do not know which word(s)
in xlT

i correspond to the input and previous work (Arcan et al., 2014) has shown that automatic
inference of this alignment (e.g., with GIZA++) can seriously affect performance. Instead we filter
contexts to those that generate a translation candidate, wlT

k , such that wlT
k ∈ xlT

i , i.e., the machine
translation agrees with the gold-standard translation for this context.

4 Experimental Setting

This section gives an overview on the multilingual resources and the translation toolkit used in our
experiment. Furthermore, we give insights into SMT evaluation techniques, considering the translation
direction of the English WordNet entries into Italian, Slovene, Spanish and Croatian.

4.1 Wordnets for Sense Disambiguation in Parallel Corpora

Princeton WordNet is a large, publicly available lexical semantic database of English nouns, verbs, ad-
jectives and adverbs, grouped into synsets (≈ 117,000). We engage further wordnets in a variety of
languages, provided by the Open Multilingual Wordnet web page.3 The individual wordnets have been
made by many projects and we use ten wordnets in different languages for our experiments, i.e, Croat-
ian (Oliver et al., 2015), Dutch (Postma et al., 2016), Finnish (Lindén and Carlson., 2010), French (Sagot
and Fišer, 2008), Italian (Toral et al., 2010), Polish (Maziarz et al., 2012), Portuguese (de Paiva and
Rademaker, 2012), Romanian (Tufiş et al., 2008), Slovene (Fišer et al., 2012) and Spanish (Gonzalez-
Agirre et al., 2012) WordNet. Table 1 illustrates the size of the wordnets and their coverage compared to
the Princeton WordNet (last row).4

4.2 Statistical Machine Translation

Our approach is based on phrase-based SMT (Koehn et al., 2003), where we wish to find the best trans-
lation of a string, given by a log-linear model combining a set of features. The translation that max-
imizes the score of the log-linear model is obtained by searching all possible translations candidates.

3http://compling.hss.ntu.edu.sg/omw/
4Core refers to the percentage of synsets covered from the semi-automatically compiled list of 5000 "core" word senses in

Princeton WordNet.
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Language Synsets Words Senses Core Language Synsets Words Senses Core

Croatian 23,120 29,008 47,900 100% Polish 33,826 45,387 52,378 54%
Dutch 30,177 43,077 60,259 67% Portuguese 43,895 54,071 74,012 84%
Finnish 116,763 129,839 189,227 100% Romanian 56,026 49,987 84,638 94%
French 59,091 55,373 102,671 92% Slovene 42,583 40,233 70,947 86%
Italian 35,001 41,855 63,133 83% Spanish 38,512 36,681 57,764 76%

Table 1: Statistics on used wordnets for sense disambiguation on parallel corpora.

Parallel Corpus Source Target Parallel Parallel Corpus Source Target Parallel
(language pair) Words Words Sentences (language pair) Words Words Sentences

English–Croatian1,2 165M 133M 16M English-Polish2 361M 296M 34M
English–Dutch2 426M 372M 37M English–Portuguese2 391M 377M 33M
English–Finnish2 248M 165M 25M English–Slovene1,2 166M 130M 13M
English–French2 730M 784M 52M English–Spanish1,2 391M 378M 37M
English–Italian1,2 273M 270M 22M English–Romanian2 317M 302M 43M

Table 2: Statistics on parallel data for translation model training and word-sense disambiguation. (paral-
lel resources used for training the translation models1 and/or word-sense disambiguation2)

The decoder, which is a search procedure, provides the most probable translation based on a statistical
translation model learned from the training data.

For our translation task, we use the statistical translation toolkit Moses (Koehn et al., 2007), where
word alignments, necessary for generating translation models, were built with the GIZA++ toolkit (Och
and Ney, 2003). The Kenlm toolkit (Heafield, 2011) was used to build a 5-gram language model.

4.3 Parallel Resources for SMT training and Word-Sense-Disambiguation

To ensure a broad lexical and domain coverage of our SMT system we merged the existing parallel cor-
pora for each language pair from the OPUS web page5 into one parallel data set, i.e., Europarl (Koehn,
2005), DGT - translation memories generated by the Directorate-General for Translation (Steinberger
et al., 2014), MultiUN corpus (Eisele and Chen, 2010), EMEA, KDE4, OpenOffice (Tiedemann, 2009),
OpenSubtitles2012 (Tiedemann, 2012). Similarly, we concatenate parallel corpora for identifying rele-
vant sentences containing WordNet entries, which are then translated into the targeted languages. Table 2
shows the number of parallel sentences used for the ten language pairs.

4.4 Translation Evaluation Metrics

The automatic translation evaluation is based on the correspondence between the SMT output and refer-
ence translation (gold standard). For the automatic evaluation we used the BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and chrF (Popović, 2015) metrics. BLEU (Bilingual Evalua-
tion Understudy) is calculated for individual translated segments (n-grams) by comparing them with a
data set of reference translations.6 The calculated scores, between 0 and 100 (perfect translation), are
averaged over the whole evaluation data set to reach an estimate of the translation’s overall quality. Con-
sidering the short length of the terms in WordNet, while we report scores based on the unigram overlap
(BLEU-1), this is in most cases only precision, so in addition we also report other metrics. METEOR
(Metric for Evaluation of Translation with Explicit ORdering) is based on the harmonic mean of pre-
cision and recall, whereby recall is weighted higher than precision. Along with exact word (or phrase)
matching it has additional features, i.e. stemming, paraphrasing and synonymy matching. In contrast to

5http://opus.lingfil.uu.se/index.php
6Due to the possibility of including multiple references for evaluation within the BLUE metric, we use the set of target

words within a synset as our gold standard.
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types tokens
Num. Perc. Num. Perc.

English-Italian 507 6.3 521 4.2
English-Spanish 396 4.9 406 3.3
English-Slovene 633 7.9 656 5.3
English-Croatian 600 7.5 621 5.0

Table 3: Number of Out-Of-Vocabulary words and
their percentage between translation models and Word-
Net senses.

Number Percentage

English-Italian 4239 40.35
English-Spanish 4436 42.22
English-Slovene 4523 43.04
English-Croatian 3986 37.94

Table 4: Statistics (actual number and per-
centage) of identified context for the evalu-
ated WordNet Senses.

BLEU, the metric produces good correlation with human judgement at the sentence or segment level.
chrF3 is a character n-gram metric, which has shown very good correlations with human judgements
on the WMT2015 shared metric task (Stanojević et al., 2015), especially when translating from English
into morphologically rich(er) languages. As there are multiple translations available for each sense in
the target wordnet we use all translations as multiple references for BLEU, for the other two metrics we
compare only to the most frequent member of the synset.

The approximate randomization approach in MultEval (Clark et al., 2011) is used to test whether
differences among system performances are statistically significant with a p-value < 0.05.

5 Evaluation

In this section we present the evaluation of the translated English WordNet words into Italian, Slovene,
Spanish and Croatian. We evaluate the quality of translations of the WordNet entries based on the pro-
vided contextual information as well as the impact on the number of languages and their effect on word-
sense disambiguation.

5.1 Translation Quality Evaluation Based on Contextual Information

Our main evaluation focuses on the importance of identifying relevant contexts for translation into Span-
ish, Italian, Slovene and Croatian. For a comparable evaluation we translated only senses within synsets,
which exist in all four targeted languages. Due to the large parallel corpora used to build the translation
models, only a small percentage of the used senses (10,507) could not be translated (Table 3). For this
evaluation, we required contexts to be disambiguated by at least five out of nine7 other languages. For
around 40% of these senses we could identify relevant context, which was used to guide the SMT to
translate the WordNet senses in the right domain (Table 4).

Table 5 illustrates the contribution of the provided contextual information, which supports the SMT
system in translating the WordNet entries into the correct sense. We observed that translating a WordNet
entry without any contextual information, which we consider as our baseline, provides better translations
than translating them within a random context, as the most frequent translation is more likely to be
correct than a random disambiguation. Once we identify one unambiguous sentence with a WordNet
entry to be translated, the translation quality significantly improves in terms of the BLEU metric for all
four targeted languages. Due to the large amount of parallel resources (between ≈15 and ≈50 Million
sentences) we provide further a set of ten disambiguated sentences to the SMT system and select the
most frequent translation of the targeted English WordNet entry. We observed, that the usage of most
frequent translation helps us to improve the translation quality for 1.1 (for Slovene) and 0.7 (for Croatian)
BLEU score points. In our last setting we provide the most frequent translation out of the set of t-best
possible translations provided by the SMT system, however this does not seem to increase the quality of
translation. Finally, in all settings we applied the target side lookup (TSL) procedure and found that it
improves the quality of translation in nearly all settings.

7The target language is not used to help for sense disambiguation.
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English→Spanish English→Slovene

Context TSL BLEU-1 METEOR chrF BLEU-1 METEOR chrF

None (baseline) / 65.8 33.0 64.0 49.4 21.2 56.3
Random no 54.4 27.2 61.3 36.9 15.7 52.8
Random yes 53.0 26.6 59.3 36.4 15.9 52.4

Disambiguated no 66.2 32.4 65.7 52.9 22.8 57.5
Disambiguated yes 67.8 33.5 64.6 56.0 24.7 58.1

10 disambiguated no 65.9 32.2 65.5 54.0 23.5 57.9
10 disambiguated yes 70.8 35.0 66.6 57.9 25.4 59.0

5-best 10 disambiguated no 66.8 32.7 65.9 55.0 23.5 57.1
5-best 10 disambiguated yes 68.8 33.8 64.7 57.1 28.4 59.6

English→Italian English→Croatian

Context TSL BLEU-1 METEOR chrF BLEU-1 METEOR chrF

None (baseline) / 62.5 28.4 59.6 51.1 23.8 60.7
Random no 46.4 20.6 56.1 40.3 18.4 56.9
Random yes 49.4 21.3 56.4 39.5 17.9 54.9

Disambiguated no 61.5 26.6 61.7 55.1 24.7 60.0
Disambiguated yes 66.1 27.8 61.6 57.8 26.5 60.8

10 disambiguated no 61.0 26.2 61.3 55.8 25.6 61.1
10 disambiguated yes 68.0 28.6 62.7 61.4 28.3 63.2

5-best 10 disambiguated no 63.1 27.2 61.8 56.7 25.2 60.7
5-best 10 disambiguated yes 67.1 28.2 61.6 58.7 27.1 61.5

Table 5: Evaluation of WordNet translations into Spanish, Slovene, Italian and Croatian with context-
aware techniques (TSL = Target Sentence Lookup; number of languages used for disambiguation = 5)

Error Analysis In order to investigate to what extent the automatically generated translations differ
from the existing entries in the target wordnets we manually inspected the WordNet translations. We
compare results where contextual information was used with the approach where WordNet entries were
translated in isolation, hence without context. For Slovene, the contextual information provided a correct
translation of the WordNet entry space (outer space/location outside the Earth’s atmosphere, i81724)
as vesolje, where the context-less translation approach produced the word prostor, in the meaning of
place, room or property. Similarly, translating medicine (medical science, i38643) without contextual
information provided a wrong translation as zdravilo (medication, drug, i56119), instead of the Slovene
equivalent medicina. For Italian, an evident mistake was observed when translating the word tip (gratuity,
i106560), where the translation of the word in isolation wrongly produced punta, meaning "the top
or extreme point of something" (i82274). A correct translation in Italian supported by the contextual
information was provided as mancia. Further, union, in the meaning of trade union or brotherhood
(i80384), sindacato in Italian, was wrongly translated into the most dominant meaning unione, with its
meaning of combination or cohesion. In Croatian, the word weed (i105476) as "any plant that crowds
out cultivated plants", was wrongly translated into trava (drug street name, i57595), if translated in
isolation. The correct translation as korov was generated with the disambiguated contextual information.
For Spanish, town (i82504) was mistranslated into ciudad (city or large town), whereby the preferred
sense of the translation pueblo (small town) was generated by using the contextual information.

5.2 Impact of the Number of Languages for Sense Disambiguation

Even with a very large parallel corpus, as we increase the number of languages, in which we disambiguate
the sense, we find that for many senses we cannot find a context that is disambiguated in all languages.
Thus, we evaluate the impact of changing the number of languages used to disambiguate an English
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Figure 1: Impact of languages used for disambiguation and translation quality in terms of BLEU.

sentence. For this experiment we report the BLEU scores obtained by the best approach identified in
Section 5.1, i.e. 10 disambiguated contexts. For this evaluation we steadily increase the number of
languages that we require a sense to be disambiguated in. We compare these results to the baseline
setting, where WordNet entries are translated without any context. As the total number of senses that can
be translated decreases, the BLEU score for the baseline does not stay constant and in fact increases, as
the senses that our method can disambiguate in many languages are those that are more frequent and less
ambiguous. Nevertheless, the disambiguation outperforms the baseline if the context is disambiguated
in more than three languages (Figure 1).

For the Romance languages (Italian and Spanish), we outperform the baseline between 3 and 6 BLEU
points. The improvement is more evident for the Slavic languages (Slovene and Croatian), where the
differences can reach more than 10 BLEU points, if five or more languages are used. For all targeted
languages, the observed improvements are statistically significant (p<0.005).

5.3 Impact of Language Family for Sense Disambiguation

In addition to the evaluation based on disambiguated contextual information and number of different
languages, we were interested in how the similarity of languages affects the disambiguation. Firstly,
we focus on the translations of English, a Germanic language, into Slovene, which is a member of the
Slavic language family. We considered the cases, where the context is disambiguated in four languages,
but looked at two different sets of four languages. Firstly, a group where four languages are of the
same family, but different to the source and target language, using four Romance languages: French,
Spanish, Romanian and Portuguese. Secondly, we evaluate the sense disambiguation approach using two
Romance languages, French and Spanish, and two Slavic languages, Croatian and Polish. As illustrated
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Figure 2: Evaluation on impact of closely-related languages on sense disambiguation for translation
quality.

in Figure 2 (left part) the contextual disambiguation approach work significantly better if languages,
closely related to the target language – in our case Slovene – are used. In our scenario including the
Slavic languages to disambiguate the context yields to better translation quality compared to the usage
of only Romance languages.

Secondly, we evaluated our approach if a very distant language is used in the disambiguation, namely
Finnish, which is not part of the Indo-European family, the super-family of Romance, Germanic and
Slavic languages. We perform disambiguation using Polish and Finnish and compare the results when
Finnish is replaced with the Croatian language. The results in Figure 2 (right part) show that Finnish
has less disambiguation power than Croatian even though Croatian is similar to Polish. This is because
Croatian, even though it is not close to Spanish or Italian is still much closer than Finnish is.

This experiment showed that closely related languages contribute in the disambiguation approach,
which yields in our scenario to better translation quality. They also show that using a diverse selection
of highly distinct languages does not seem to be advantageous in disambiguating senses.

6 Conclusion and Future Work

We showed an automatic approach to increase the coverage of WordNet into different languages with
high-quality translations. By identifying disambiguated context, we demonstrate statistical significant
translation improvement for Spanish, Italian, Slovene and Croatian. We demonstrate the importance on
closely related languages used for the sense disambiguation approach, which will help us in our ongoing
work on generating translations of wordnets beyond the four targeted languages used in this work. This
method allows us to release high quality extensions of Princeton WordNet, expanding the coverage for
many languages, as well as creating wordnets for languages, where no wordnet has been created or the
wordnet is not available to all potential users due to licensing issues.
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