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Abstract

Existing sentence regression methods for extractive summarization usually model sentence im-
portance and redundancy in two separate processes. They first evaluate the importance f(s) of
each sentence s and then select sentences to generate a summary based on both the importance
scores and redundancy among sentences. In this paper, we propose to model importance and
redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s
given a set of selected sentences S. Specifically, we present a new framework to conduct regres-
sion with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the
single sentence features, additional features derived from the sentence relations are incorporated.
Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show
that the proposed method outperforms state-of-the-art extractive summarization approaches.

1 Introduction

Sentence regression is one of the branches of extractive summarization methods that achieves state-of-
the-art performances (Cao et al., 2015b; Wan et al., 2015) and is commonly used in practical systems
(Hu and Wan, 2013; Wan and Zhang, 2014; Hong and Nenkova, 2014). Existing sentence regression
methods usually model sentence importance and sentence redundancy in two separate processes, namely
sentence ranking and sentence selection. Specifically, in the sentence ranking process, they evaluate the
importance f(s) of each sentence s with a ranking model (Osborne, 2002; Conroy et al., 2004; Galley,
2006; Li et al., 2007) through either directly measuring the salience of sentences (Li et al., 2007; Ouyang
et al., 2007) or firstly ranking words (or bi-grams) and then combining these scores to rank sentences
(Lin and Hovy, 2000; Yih et al., 2007; Gillick and Favre, 2009; Li et al., 2013). Then, in the sentence
selection process, they discard the redundant sentences that are similar to the already selected sentences.

In this paper, we propose a novel regression framework to directly model the relative importance
f(s|S) of a sentence s given the sentences S. Specifically, we evaluate the relative importance f(s|S)
with a regression model where additional features involving the sentence relations are incorporated.
Then we generate the summary by greedily selecting the next sentence which maximizes f(s|S) with
respect to the current selected sentences S. Our method improves the existing regression framework
from three aspects. First, our method is redundancy-aware by considering importance and redundancy
simultaneously instead of two separate processes. Second, we treat the scores computed using the official
evaluation tool as the groundtruth and find that our method has a higher upper bound. Third, there is no
manually tuned parameters, which is more convenient in practice. We carry out experiments on three
benchmark datasets from DUC 2001, 2002, and 2004 multi-document summarization tasks. Experimen-
tal results show that our method achieves the best performance in terms of ROUGE-2 recall metric and
outperforms state-of-the-art extractive summarization approaches on all three datasets.

∗ This work was done during the internship of the first author at Microsoft Research Asia.
† Corresponding author.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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2 Framework

2.1 Background

Formally, given a sentence set (from one or multiple documents) D ∈ C, extractive summarization tries
to select a sentence set S∗ as the summary that maximizes an utility function f(S) with respective to
the length limit l, Existing sentence regression methods usually model the importance of each sentence
independently (Osborne, 2002; Galley, 2006; Li et al., 2007). Then, they use a threshold parameter to
control the redundancy (Cao et al., 2015b; Galanis et al., 2012) when selecting sentences with the Greedy
algorithm or Integer Linear Programming (ILP) algorithm (Cao et al., 2015a). The framework for these
regression methods can be formulated as follows.

f(s|S) =

{
f(s) 1− SIM(s, S) ≥ t

0 1− SIM(s, S) < t
(1)

where S is the set of already selected sentences, f(s) models the importance of sentence s. SIM(s, S)
evaluates the similarity of sentence s with the current generated summary S. Usually, SIM(s, S) =
bi-gram-overlap(s,S)

Len(s) , which is the bi-gram overlap ratio. Len(s) is the length of s. t is a threshold param-
eter used to control the redundancy, which is usually set heuristically.

2.2 Our Framework

In this paper, we propose to directly model the relative importance f(s|S) instead of the independent
importance of each sentence f(s). Specially, we model the importance of s given the sentences S as
follows:

f(s|S) = min
s′∈S

f(s|s′) (2)

which considers the minimum relative importance of sentence s with respect to each sentence of S.
f(s|s′) models the relative importance of sentence s given sentence s′, which makes Equation 2 a
redundancy-aware framework.

When generating summaries, we select the first sentence by treating s′ = ∅ or using a f(s) model.
Then, we select the rest summary sentences with the following greedy algorithm:

s∗ = arg max
s⊂D\S

min
s′∈S

f(s|s′) (3)

The algorithm starts with the first selected sentence. In each step, a new sentence is added to the summary
that results in the maximum relative increase according to Equation 3. The algorithm terminates when
the summary length constraint is reached.

Next we conduct experiments to analyze the upper bounds of the new framework compared with the
existing framework (Equation 1). To this end, we compute f(s) and f(s|s′) as follows:

f(s) = ROUGE-2(s|Sref )
f(s|s′) = f({s, s′})− f(s′) = ROUGE-2({s, s′}|Sref )−ROUGE-2(s′|Sref )

(4)

where Sref is one or several summaries written by people. The ROUGE-2 recall metric gives a score
to a set of sentences with respective to the human written summaries. We compute f(s|s′) as the total
gain of s and s′ (f({s, s′})) subtracted by the individual gain of s′ (f(s′)). Equation 4 can be seen as the
groundtruth computation of f(s) and f(s|s′).

The experimental upper bounds of different frameworks are shown in Figure 1. Similar results of
ROUGE-1 and ROUGE-2 are achieved on all three benchmark datasets from DUC 2001, 2002 and 2004.
The advantages of the new framework (Equation 2) are three-fold compared with the framework of
Equation 1. First, there is no parameter to be tuned manually. By comparison, Equation 1 has a threshold
parameter t, which is very sensitive around the best performance, as shown in the red dashed line parts of
Figure 1. Second, the new framework has a higher upper bound, which means there is a bigger potential
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Figure 1: Experimental Upper bounds of our sentence regression framework and existing sentence re-
gression framework.

for improvement. Finally, besides single sentence features, additional features involving the relations of
two sentences can be extracted to improve the regression performance.

The new proposed framework also has some challenges. First, the groundtruth of f(s|s′) is usually
unavailable for many tasks. Fortunately, in the text summarization task, the groundtruth of f(s|s′) can be
computed according to Equation 4. Second, the number of training instances is O(|C||D|2) (O(|C||D|)
for Equation 1). We come up with two ways to speed up the training process in the next session.

3 Implementation

3.1 Objective Function
We implement f(s|s′) with MultiLayer Perceptron (MLP) (Ruck et al., 1990; Gardner and Dorling,
1998).

f(s|s′) = MLP
(
Φ(s|s′)|θ) (5)

where Φ(s|s′) is the set of features and θ is the parameters to be learned.
We use the standard Mean Square Error (MSE) as the loss function as follows:

L(θ) =
1

|C||D|(|D| − 1)

∑
D∈C

∑
s∈D

∑
s′∈D;
s′ ̸=s

Err(s|s′)

Err(s|s′) =
(
MLP

(
Φ(s|s′)|θ)− ROUGE(s|s′, Sref )

)2
ROUGE(s|s′, Sref ) = ROUGE-2({s, s′}|Sref ) − ROUGE-2(s′|Sref )

(6)

We use ROUGE-2 recall as the groundtruth score due to its high capability of evaluating automatic
summarization systems (Owczarzak et al., 2012).

The s′ in f(s|s′) should mainly refer to the sentences that have a big potential to be selected into the
summary. To this end, we do not have to treat each sentence in D as s′ during training. We can accelerate
the training process by generating a set of sentences S′ from D. We come up with two ways as shown
in Algorithm 1. The first way is using the greedy strategy (Line 4 of Algorithm 1). Specifically, for each
training episode of sentence s, we use the current model to generate the summary with greedy algorithm
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as a part of the S′. We refer to this part as S′
1. The advantage is that S′

1 is adaptively generated with
respective to the training status of the model. The second way is randomly sampling a small set of s′ with
respect to its groundtruth ROUGE score (Line 6 of Algorithm 1). Specifically, for each training episode
of sentence s, we sample a small set S′

2 according to the following rule:

{
NotSelected rnd(0, 1) > 0.05 ∗ ROUGE-2(s) + 0.05

Selected Otherwise
(7)

where rnd(0, 1) generates random number from a uniform distribution within the range [0, 1].
ROUGE-2(s) is normalized to [0, 1]. Each sentence is selected with at least 5% probability and sen-
tences with higher ROUGE scores have higher probabilities. Different probabilities will influence the
speed of the training process but will not make much difference in the final results according to our
experiments. We use the randomly sampled S′

2 to avoid the premature convergence caused by S′
1. Fi-

nally, S′ = S′
1

∪
S′

2. In this way, the number of training instances is O(|C||D||S′|) while originally it
is O(|C||D|2), where C is the set of all D in the training corpus. Note that |S′| is a very small number
compared to |D|.

Algorithm 1 The adaptive & randomized training.
Input:

Training corpus, C;
Max iterations, N ;

Output:
Model parameters, θ;

1: Randomly initialize the parameters θ;
2: for i = 1; i < N ; i++ do
3: for each D such that D ∈ C do
4: Generate S′

1 greedily according to Equation 3;
5: for each sentence s such that s ∈ D do
6: Generate S′

2 randomly according to Equation 7;
7: for each s′ such that s′ ∈ S′

1

∪
S′

2, s
′ ̸= s do

8: Make forward and backward propagation w.r.t the loss L(θ) (Equation 6);
9: Update the model parameters θ;

10: end for
11: end for
12: end for
13: if θ converges then
14: break;
15: end if
16: end for
17: return θ;

3.2 Feature

We employ two groups of features in terms of sentence importance and redundancy, namely Sentence
Importance Features and Sentence Relation Features. The former are widely studied by existing methods
(Gupta et al., 2007; Li et al., 2007; Aker et al., 2010; Ouyang et al., 2011; Galanis et al., 2012; Hong et
al., 2015). However, to our knowledge, the latter are firstly incorporated into a regression model in this
paper. Details of used features are listed in Table 1. We use Sentence Importance Features to model the
independent sentence importance of s. Len(s), Position(s), Stop(s), TF (s) and DF (s) are commonly
used features. Embedding feature Emb(s) is an effective feature that encodes the sentence content which
can be seen as summary prior nature of the sentence (Cao et al., 2015b). We use Sentence Relation
Features to evaluate the content overlap between s and s′. Match-P (s ∩ s′) and Match-R(s ∩ s′)
evaluate the ratio of the overlap words, while TF (s ∩ s′), DF (s ∩ s′) and Stop(s ∩ s′) evaluate the
importance of the overlap words. Cos(s, s′) evaluates the exact match similarity while Emb-Cos(s, s′)
evaluates the meaning match similarity. All features in Table 1 are basic features commonly used in
summarization.
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Features Formulations Descriptions

Sentence Importance Features

Len(s) Length of s
Position(s) Position of s in its document
Stop(s) = stop-count(s)

Len(s)
Stop words ratio of s

TF (s) =
∑

w∈s GTF (w)

Len(s)

Average Term Frequency
GTF (w) is the Global Term Frequency

DF (s) =
∑

w∈s DF (w)

Len(s)
Average Document Frequency

Emb(s)
∑

w∈s Emb(w)

Len(s)

Average Word Embedding
Emb(w) is the word embedding

Sentence Relation Features

Match-P (s, s′) = Match(s,s′)
Len(s)

Term match precision
Match-P (s, s′) = 0 if s ∩ s′ = ∅

Match-R(s, s′) = Match(s,s′)
Len(s′)

Term match recall
Match-R(s, s′) = 0 if s ∩ s′ = ∅

TF (s, s′) = Len(s∩s′)∑
w∈s∩s′ GTF (w)

Average Global Term Frequency of overlap s ∩ s′

TF (s, s′) = 0 if s ∩ s′ = ∅
DF (s, s′) = Len(s∩s′)∑

w∈s∩s′ DF (w)

Average Document Frequency of overlap s ∩ s′

DF (s, s′) = 0 if s ∩ s′ = ∅
Stop(s, s′) = 1 − Stop-Count(s∩s′)

Len(s∩s′)
Stop words ratio of overlap s ∩ s′

Stop(s, s′) = 0 if s ∩ s′ = ∅
Cos(s, s′)
= Cosine(GTF (s), GTF (s′)) Cosine of Global Term Frequency vector

Emb-Cos(s, s′)
= Cosine(Emb(s), Emb(s′)) Cosine of average embedding vector

Table 1: Summary of features

4 Experiment

4.1 Experimental Setup

Datasets. The benchmark evaluation corpora for summarization are the ones published by the Document
Understanding Conferences (DUC1). We focus on the generic multi-document summarization task, so
we carried out all our experiments on DUC 2001, 2002 and 2004 datasets. The documents are all from
the news domain and are grouped into various thematic clusters. For each document set, we concatenated
all the articles and split them into sentences using the tool provided with the DUC 2003 dataset. We train
the model on two years’ data and test it on the other year.
Evaluation Metric. ROUGE metrics are the official metrics of the DUC extractive summarization tasks
(Rankel et al., 2013). We use the official ROUGE tool2 to evaluate the performance of the baselines as
well as our approach (Lin, 2004). The parameter of length constraint is “-l 100” for DUC 2001/2002, and
“-b 665” for DUC 2004. We take ROUGE-2 recall as the main metric for comparison because Owczarzak
et al. prove its high capability of evaluating automatic summarization systems (Owczarzak et al., 2012).
Comparison Methods. The comparison methods used in the experiments are listed as follows.

• LexRank: State-of-the-art summarization model (Erkan and Radev, 2004).

• ClusterHITS: State-of-the-art results on DUC 2001 (Wan and Yang, 2008).

• ClusterCMRW: State-of-the-art results on DUC 2002 (Wan and Yang, 2008).

• REGSUM3: State-of-the-art results on DUC 2004 (Hong and Nenkova, 2014).

• R2N2 GA/R2N2 ILP: State-of-the-art results on DUC 2001/2002/2004 (Cao et al., 2015a) with a
neural network regression model.

• PriorSum: To our knowledge, the best results on DUC 2001, 2002 and 2004 using regression ap-
proaches (Cao et al., 2015b).

• SR (Sentence Regression): Evaluate sentence importance with MLP and the Sentence Importance
Features in Table 1 and select the top ranks as the summary (without handling redundancy).

1http://duc.nist.gov/
2ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
3REGSUM truncates a summary to 100 words.
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DUC 2001 DUC 2002 DUC 2004
ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2

BestSentence 37.32 10.44 39.75 11.60 40.36 11.68
Strategy 1 36.31 8.49 37.80 9.61 39.60 10.57
Strategy 2 36.32 8.52 37.82 9.26 38.75 10.19

Table 2: First sentence selection strategies

• t-SR (threshold t based Sentence Regression): Evaluate sentence importance with MLP and the
Sentence Importance Features in Table 1 and generate the summary with greedy by directly dis-
carding the redundant sentence according to Equation 1.

• RASR (Redundancy-Aware Sentence Regression): The proposed method in this paper.

Note that for the methods with the parameter t, we tried all values of ranging from 0 to 1 with a step
size of 0.05. The final value of t on each dataset is decided by 3-fold cross validation on the training
datasets.
Model Configuration. The word embedding used in this paper is trained on the English Wikipedia
Corpus4 with Google’s Word2Vec tool5. The dimension is 300. We use 4 hidden layers MLP with tanh
activation function and the sizes of the layers are [300, 200, 100, 1]. To update the weights of MLP, we
apply the diagonal variant of AdaGrad with mini-batches. We set the mini-batch size to 20.

4.2 Results and Analysis

First Sentence Selection. Remember that when generating a summary, our method first selects the
first sentence then greedily selects the rest sentences with respective to f(s|S). We tried two strategies to
select the first sentence with RASR. Strategy 1: treating RASR as an united model by setting the Sentence
Relation Features to zero when fitting f(s) during training period or selecting the first sentence during
test period. Strategy 2: treating RASR as two models that fit f(s) and f(s|S) respectively. The former is
used to select the first sentence and the latter is used to select the rest sentences. We also use the sentence
that gets the highest ROUGE-2 score as the first sentence as a comparison, namely BestSentence. The
results are shown in Table 2. As expected, BestSentence is much better than Strategy 1 and Strategy 2,
which means selecting a better first sentence will greatly improve the performance of RASR. It does not
make too much difference whether using Strategy 1 or Strategy 2. We report the results of Strategy 1 to
compare with the baseline methods in Table 3.
Performance Analysis. As shown in Table 3, the bold face indicates the best performance. Generally,
our method RASR achieves the best performance in terms of ROUGE-2 metric on all three datasets. The
improvement of ROUGE-2 on DUC 2001 is significant with p-value < 0.05 compared with LexRank,
SR and t-SR. Although ClusterHITS and ClusterCMRW get higher ROUGE-1 scores, their ROUGE-2
scores are much lower. In contrast, our method works quite stably.

The improvements of our method come from two aspects. First, it is effective to model sentence im-
portance and redundancy simultaneously with multiple nonlinear function transformations. This can be
reflected by the following comparison experiments. SR does not handle redundancy at all, so it achieves
bad performance especially on the DUC 2004 corpus. The other methods in Table 3 model sentence
importance and redundancy in two separate processes by first ranking the sentences and then discarding
the redundant ones whose bi-gram overlap ratio is larger than a threshold parameter. Although we tune
the threshold parameter carefully, RASR still outperforms them. Second, effective features involving the
sentence relations (i.e., Sentence Relation Features) are considered which cannot be incorporated by the
baseline methods.

4https://en.wikipedia.org/wiki/Wikipedia:Database download
5https://code.google.com/archive/p/word2vec/
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System ROUGE-1 ROUGE-2

DUC 2001

Peer T 33.03 7.86
ClusterHITS∗ 37.42 6.81
LexRank 33.43 6.09
R2N2 GA∗ 35.88 7.64
R2N2 ILP∗ 36.91 7.87
PriorSum∗ 35.98 7.89
SR 35.34 7.67
t-SR 35.41 7.76
RASR 36.31 8.49

DUC 2002

Peer 26 35.15 7.64
ClusterCMRW∗ 38.55 8.65
LexRank 35.29 7.54
R2N2 GA∗ 36.84 8.52
R2N2 ILP∗ 37.96 8.88
PriorSum∗ 36.63 8.97
SR 36.70 8.59
t-SR 37.49 8.95
RASR 37.80 9.61

DUC 2004

Peer 65 37.88 9.18
REGSUM∗ 38.57 9.75
LexRank 37.87 8.88
R2N2 GA∗ 38.16 9.52
R2N2 ILP∗ 38.78 9.86
PriorSum∗ 38.91 10.07
SR 35.76 8.73
t-SR 38.36 9.98
RASR 39.60 10.57

Peer T/Peer 26/Peer 65 are the original results on DUC 2001/2002/2004 respectively. We cite the scores
of some systems from their papers, indicated with the sign “*”.

Table 3: Comparison results (%) on DUC datasets

Parameter Sensitiveness. We present the ROUGE-2 performance of t-SR with the threshold parameter
t ranging from 0 to 0.9 with a step size of 0.05 shown in Figure 1 and 2a. The best achieved perfor-
mances of the groundtruth implementation are around 0.75, 0.65, 0.6 (Figure 1) while the best achieved
performances in practice are around 0.7, 0.7, 0.65 (Figure 2a). t is still very sensitive around the best
performance, as shown in the red dashed line in both Figure 1 and 2a.
Training Convergence. In order to speed up the training process of RASR, we randomly sample some
pairwise training instances with Equation 7 for training of RASR. We want to know whether this will
influence the convergence of RASR, so we present the decrease of loss with respect to training iterations
in Figure 2b. We find that the random sampling has little influence on the convergence of RASR with
t-SR as a comparison.

5 Related Work

Existing work on extractive summarization can be divided into two categories: unsupervised and super-
vised.

Two most famous unsupervised frameworks are Centroid based and Maximum Marginal Relevance
based. Centroid-based methods evaluate the sentence centrality as its importance (Mihalcea, 2004).
Radev et al. first propose to model cluster centroids in their summarization system, MEAD (Radev et
al., 2000; Radev et al., 2004). Then LexRank (or TextRank) is proposed to compute sentence importance
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based on the concept of eigenvector centrality in a graph of sentence similarities (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004). Due to its expansibility and flexibility, centroid-based methods have a lot of
extensions. Wan et al. propose several centroid-based approaches for different summarization tasks, e.g.,
cross-language summarization, etc (Wan, 2008; Wan and Xiao, 2009; Wan, 2011). Maximum Marginal
Relevance (MMR) based methods consider the linear trade-off between relevance and redundancy (Car-
bonell and Goldstein, 1998). Goldstein et al. first extend MMR to support extractive summarization by
incorporating additional information (Goldstein et al., 2000). McDonald achieves good results by refor-
mulating this as a knapsack packing problem and solving it using ILP (McDonald, 2007). Later Lin and
Bilmes propose a variant of MMR framework which maximizes an objective function that considers the
linear trade-off between coverage and redundancy terms (Lin and Bilmes, 2010; Lin and Bilmes, 2011).

Supervised methods model the extractive summarization task from various perspectives. Kupiec et
al. train a naive-Bayes classifier to decide whether to include a particular sentence in the summary or
not. (Kupiec et al., 1995). Li et al. evaluate the sentence importance with support vector regression,
then a simple rule-based method is applied for removing redundant phrases (Li et al., 2007). Gillick
and Favre evaluate bi-grams importance and then use these scores to evaluate sentence importance and
redundancy with a linear combination (Gillick and Favre, 2009). Sipos et al. propose a structural SVM
learning approach to learn the weights of feature combination using the MMR-like submodularity func-
tion proposed by Lin and Bilmes (Lin and Bilmes, 2010). Cao et al. evaluate the sentence importance
with a neural regression model, then they remove the redundant sentence larger than a threshold param-
eter during greedy algorithm (Cao et al., 2015b). In another paper, they remove the redundant sentence
by adding a redundancy constraint to the ILP objective which restricts the bi-gram redundancy of the
selected sentences smaller than a threshold (Cao et al., 2015a).

In all above extractive summarization methods, redundancy is mainly considered in two ways. The first
way is measuring the importance of each sentence then explicitly removing the redundant sentence larger
than a threshold parameter during the sentence selection process. Another way is linearly substracting
the sentence redundancy score or scoring the redundant parts with low weights. To the best of our
knowledge, none of them studies the summarization task and models redundancy from the perspective
of this paper.

6 Conclusion and Future Work

This paper presents a novel sentence regression framework to conduct regression with respect to the rel-
ative importance f(s|S) of sentence s given a set of sentences S. Additional features involving the sen-
tence relations are incorporated. We conduct experiments on three DUC benchmark datasets. Generally,
our approach achieves the best performance in terms of ROUGE metrics compared with state-of-the-art
approaches.

We believe our work can be advanced and extended from many different perspectives. First, more
features can be designed especially those involving the relations of two sentences. Second, the results
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can be further improved by exploring better strategies to select the first sentence. Third, the framework
can be extended to other tasks, e.g., query-focused summarization, which can be achieved by introducing
query-related features.
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