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Introduction

Language technology is biased toward English newswire. In POS tagging, we get 97–98 words right out
of a 100 in English newswire, but results drop to about 8 out of 10 when running the same technology
on Twitter data. In dependency parsing, we are able to identify the syntactic head of 9 out of 10 words
in English newswire, but only 6–7 out of 10 in tweets. Replace references to Twitter with references to a
low-resource language of your choice, and the above sentence is still likely to hold true.

The reason for this bias is obviously that mainstream language technology is data-driven, based on
supervised statistical learning techniques, and annotated data resources are widely available for English
newswire. The situation that arises when applying off-the-shelf language technology, induced from
annotated newswire corpora, to something like Twitter, is a bit like when trying to predict elections from
Xbox surveys (Wang et al., 2013). Our induced models suffer from a data selection bias.

This is actually not the only way our data is biased. The available resources for English newswire
are the result of human annotators following specific guidelines. Humans err, leading to label bias, but
more importantly, annotation guidelines typically make debatable linguistic choices. Linguistics is not
an exact science, and we call the influence of annotation guidelines bias in ground truth.

In the tutorial, we present various case studies for each kind of bias, and show several methods that
can be used to deal with bias. This results in improved performance of NLP systems.

Selection Bias

The situation that arises when applying off-the-shelf language technology, induced from annotated
newswire corpora, to something like Twitter, is, as mentioned, a bit like when trying to predict elec-
tions from Xbox surveys. In the case of elections, however, we can correct most of the selection bias by
post-stratification or instance weighting (Wang et al., 2013). In language technology, the bias correction
problem is harder.

In the case of elections, you have a single output variable and various demographic observed variables.
All values taken by discrete variables at test time can be assumed to have been observed, and all values
observed at training time can be assumed to be seen at test time. In language technology, we typically
have several features only seen in training data and several features only seen in test data.

The latter observation has led to interest in bridging unseen words to known ones (Blitzer et al.,
2006; Turian et al., 2010), while the former has led to the development of learning algorithms that
prevent feature swamping (Sutton et al., 2006), i.e., that very predictive features prevents weights associ-
ated with less predictive, correlated features from being updated. Note, however, that post-stratification
(Smith, 1988) may prevent feature swamping, and that predictive approaches to bias correction (Roy-
all, 1988) may solve both problems. Instance weighting (Shimodaira, 2000), which is a generalization
of post-stratificiation, has received some interest in language technology (Jiang and Zhai, 2007; Foster
et al., 2011), but most work on domain adaptation in language technology has focused on predictive
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approaches, i.e., semi-supervised learning (Reichart and Rappoport, 2007; Sagae and Tsujii, 2007; Mc-
Closky et al., 2010; Chen et al., 2011).

Selection bias introduces a bias in P (X). Note that, in theory, this should not hurt discriminative algo-
rithms trying to estimate P (Y |X), without estimating P (X), but in practice it still does. The inductive
bias of our algorithms and the size our samples make our models sensitive to selection bias (Zadrozny,
2004). Predictive approaches try to correct this bias by adding more (pseudo-labeled) data to the training
sample, while post-stratification and instance weighting reweigh the data to make P (X) similar to the
distribution observed in the population. As mentioned, this will never solve the problem with unseen
features, since you cannot up-weigh a null feature.

Semi-supervised learning can correct modest selection bias, but if the domain gap is too wide, our
initial predictions in the target domain will be poor, and semi-supervised learning is likely to increase
bias rather than decrease it. However, recent work has shown that semi-supervised learning can be
combined with distant supervision and correct bias in cases where semi-supervised learning algorithms
typically fail (Plank et al., 2014).

In the tutorial we illustrate these different approaches to selection bias correction, with discriminative
learning of POS taggers for English Twitter as our running example.

Label Bias

In most annotation projects, there is an initial stage, where the project managers compare annotators’
performance, compute agreement scores, select reliable annotators, adjudicate, and elaborate on anno-
tation guidelines, if necessary. Such procedures are considered necessary to correct for the individual
biases of the annotators (label bias). However, this is typically only for the first batches of data, and it
is well-known that even some of the most widely used annotated corpora (such as the Penn Treebank)
contain many errors (Dickinson and Meurers, 2003) in the form of inconsistent annotations of the same
n-grams.

Obviously, using non-expert annotators, e.g., through crowd-sourcing platforms, increase the label
bias considerably. One way to reduce this bias involves collecting several annotations for each datapoint
and averaging over them, which is often feasible because of the low cost of non-expert annotation. This
is called majority voting and is analogous to using ensembles of models to obtain more robust systems.

In the tutorial we discuss alternatives to averaging over annotators, incl., using EM to estimate anno-
tator confidence (Hovy et al., 2013), and joint learning of annotator competence and model parameters
(Raykar and Yu, 2012).

Bias in Ground Truth

In annotation projects, we use inter-annotator agreement measures and annotation guidelines to ensure
consistent annotations. However, annotation guidelines often make linguistically debatable and even
somewhat arbitrary decisions, and inter-annotator agreement is often less than perfect. Some annotators,
for example, may annotate socialin social media as a noun, others may annotate it as an adjective. In
this part of the tutorial, we discuss how to correct for the bias introduced by annotation guidelines. For
both label bias and bias in ground truth, we, again, use POS tagging for English Twitter as our running
example.

Evaluation

Once we accept our data is biased in different ways, we need to reconsider model evaluation. If our data
was selected in a biased way, say from a few editions of the Wall Street Journal, does significance over
data points make much sense? If our annotators have individual biases, can we no longer evaluate our
models on the data of one or two annotators? If the annotation guidelines introduce biases in ground truth,
can we somehow correct for that? In practice we typically do not have hundreds of datasets annotated by
different annotators using different annotation guidelines, but in the tutorial we present various ways of,
nevertheless, correcting for some of these biases.
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