
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations,
pages 29–33, Dublin, Ireland, August 23-29 2014.

UIMA Ruta Workbench: Rule-based Text Annotation

Peter Kluegl12 Martin Toepfer2

1Comprehensive Heart Failure Center
University of Würzburg, Straubmühlweg 2a

Würzburg, Germany
pkluegl@uni-wuerzburg.de

Philip-Daniel Beck2 Georg Fette2 Frank Puppe2

2Department of Computer Science VI
University of Würzburg, Am Hubland

Würzburg, Germany
first.last@uni-wuerzburg.de

Abstract

UIMA Ruta is a rule-based system designed for information extraction tasks, but it is also ap-
plicable for many natural language processing use cases. This demonstration gives an overview
of the UIMA Ruta Workbench, which provides a development environment and tooling for the
rule language. It was developed to ease every step in engineering rule-based applications. In ad-
dition to the full-featured rule editor, the user is supported by explanation of the rule execution,
introspection in results, automatic validation and rule induction. Furthermore, the demonstration
covers the usage and combination of arbitrary components for natural language processing.

1 Introduction

Components for natural language processing and information extraction nowadays often rely on statis-
tical methods and their models are trained using machine learning techniques. However, components
based on manually written rules still play an important role in real world applications and especially in
industry (Chiticariu et al., 2013). The reasons for this are manifold: The necessity for traceable results,
the absence or aggravated creation of labeled data, or unclear specifications favor rule-based approaches.
When the specification changes, for example, the complete training data potentially needs to be annotated
again. In rule-based components, adaptions in a small selection of rules typically suffice. Rule-based ap-
proaches are also used in combination with or when developing statistical components. While models are
often trained to solve one specific task in an application, the remaining parts need to be implemented as
well. Furthermore, rules can be applied for high-level feature extraction and for semi-automatic creation
of labeled data sets. It is often faster to define one rule for a specific pattern than to annotate repeating
mentions of a specific type.

Unstructured Information Management Architecture (UIMA) (Ferrucci and Lally, 2004) is a frame-
work for analyzing unstructured data and is extensively applied for building natural language processing
applications. Two popular systems built upon UIMA are the DeepQA system Watson (Ferrucci et al.,
2010) and the clinical Text Analysis and Knowledge Extraction System (cTAKES) (Savova et al., 2010).
UIMA allows the definition of scalable pipelines of interoperable components called analysis engines,
which incrementally add and modify meta information of documents mostly in form of annotations. The
semantics and features of annotations are given by their types, which are specified in type systems.

This demonstration gives an overview on the UIMA Ruta Workbench (Kluegl et al., 2014), a develop-
ment environment for the UIMA Ruta language. The rule language provides a compact representation of
patterns while still supporting high expressivity necessary for solving arbitrary tasks. The UIMA Ruta
Workbench includes additional tools that accelerate the efficient creation of components and complete
pipelines. The user is supported in all aspects of the development process like specification of rules and
type systems, debugging, introspection of the results, and quality assessment. UIMA Ruta is developed
by an active community1 and is released like UIMA under the industry-friendly Apache License 2.0.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1http://uima.apache.org/ruta.html

29



The rest of the paper is structured as follows: Section 2 compares UIMA Ruta to a selection of related
systems. The rule language and the tooling support are introduced in Section 3. Section 4 provides an
overview of the content of the demonstration and Section 5 concludes with a summary.

2 Related Systems

Rule-based systems for information extraction and natural language processing in general have a long
history and thus we can only give a short comparison to a selection of related systems especially based on
UIMA. The probably most noted rule-based system is JAPE (Cunningham et al., 2000). It is open source
and integrated into the GATE (Cunningham et al., 2011) framework. JAPE propagates a clear separation
of condition and action parts, and an aggregated execution of rules of one phase in a finite state transducer
whereas UIMA Ruta allows freer positioning of actions for a more compact representation and applies
the rules sequentially. Nevertheless, UIMA Ruta is able to compete well concerning performance and
provides a high expressiveness. AFST (Boguraev and Neff, 2010) is also based on finite state transduc-
tion over annotations and additionally allows vertical patterns, which are also supported in UIMA Ruta.
SystemT (Chiticariu et al., 2010) defines rules in declarative statements similar to SQL and applies them
using an optimized operator graph. Our system takes first steps in this direction with the concept of
variable matching directions, but still provides a compact language for more flexible operations. Other
rule-based systems for UIMA are the IBM LanguageWare Resource Workbench2, Zanzibar3 and UIMA
Regexp4.

Most of the freely available rule-based systems provide only minimal development support. Good
development environments and tooling are usually found in at least partially commercial systems. The
development environment of SystemT (Chiticariu et al., 2011), for example, provides an editor with
syntax highlighting and hyperlink navigation, an annotation provenance viewer, a contextual clue dis-
coverer, regular expression learner, and a rule refiner. One intention of UIMA Ruta consists in providing
strong tooling support that facilitates every step in the development process. The UIMA Ruta Workbench
includes most features of related systems, but still introduces a few new and useful tools.

3 UIMA Ruta

UIMA Ruta (Rule-based Text Annotation) consists of a rule-based language interpreted by a generic
analysis engine and of the UIMA Ruta Workbench, a development environment with additional tooling.
Rules are sequentially applied and are composed of regular expressions of rule elements. The rule ele-
ments typically define the annotation type to be matched and an optional list of conditions and actions.
The language provides a variety of diverse elements to elegantly solve arbitrary tasks. The rule matching
supports overlapping alternatives and a coverage-based visibility. The following example illustrates the
rule syntax:

(ANY{INLIST(MonthsList) -> Month} PERIOD? NUM{REGEXP(".{2,4}") -> Year}){-> Date};

This rule matches on any token present in an external dictionary MonthsList followed by an optional
period and a number that contains two to four characters. If this pattern was recognized, then the actions
create new annotations of the types Month, Year and Date for the corresponding matched segments.
Following this, the rule identifies and annotates dates in the form of ‘Dec. 2004”, “July 85” or “11.2008”.
Rule scripts can additionally include and apply external components, or specify additional types. A
detailed description of the UIMA Ruta language can be found in the documentation5.

The UIMA Ruta Workbench is an Eclipse-based6 development environment for the rule language.
A screenshot of the Workbench’s main perspective is depicted in Figure 1. Rule scripts are organized
in UIMA Ruta projects and take advantage of the well-known features of Eclipse like version control

2http://www.alphaworks.ibm.com/tech/lrw
3https://code.google.com/p/zanzibar/
4https://sites.google.com/site/uimaregex/
5http://uima.apache.org/d/ruta-current/tools.ruta.book.html
6http://www.eclipse.org/

30



Figure 1: A selection of views in the UIMA Ruta Workbench: (A) Script Explorer with UIMA Ruta
projects. Script files containing rules are indicated by the pencil icon. (B) Full-featured editor for
specifying rules. (C) CAS Editor provided by UIMA for visualizing the results and manual creation
of annotations. (D) Overview of annotations sorted by type. (E) Annotations overlapping the selected
position in the active CAS Editor.

or search. The full featured editor for writing rules provides most of the characteristics known by ed-
itors for programming languages like instant syntax checking, syntactic and semantic highlighting, or
context-sensitive auto-completion. An informative explanation of each step of the rule execution ex-
tended with profiling information helps to identify unintended behavior of the rules. The user is able to
automatically evaluate the quality of rules on labeled documents and also on unlabeled documents using
formalized background knowledge. Furthermore, the tools support pattern-based queries in collections
of documents, semi-automatic creation of gold standards and different algorithms for supervised rule
induction.

The rule language and the tooling are both extensible. The rule language can be enhanced with new
actions, conditions, functions and even constructs that adapt aspects of the rule execution. Further func-
tionality can be integrated by implementing supplementary analysis engines. The UIMA Ruta Work-
bench straightforwardly supports extensions due to its integration in Eclipse, e.g., new views can be
added for improving specific development processes. Additional evaluation measures and rule learning
algorithms are directly added by extension points. The Workbench also supports workspaces where the
user develops interdependent Java and UIMA Ruta analysis engines simultaneously, and it seamlessly
integrates components from Maven repositories.

The UIMA Ruta Workbench has been successfully utilized to develop diverse natural language ap-
plications. These include template-based information extraction in curricula vitae, segmentation of
scientific references, or extraction of characters in novels, but also segmentation, chunking and rela-
tion extraction in clinical notes. Furthermore, the system is applied for feature extraction, creation of
gold standards, and different pre- and post-processing tasks in combination with statistical models. The
effectiveness of the Workbench can hardly be measured, but it is highlighted by the fact that several
applications have been engineered in only a few hours of work.

31



4 Contents of Demonstration

The demonstration of the system concentrates on the general usage of the UIMA Ruta Workbench and
how to develop rule-based analysis engines with it. We address the following use cases and aspects:

• General rule engineering: Simple examples are given for common tasks in UIMA Ruta, e.g., how
to create new projects and script files, and how an initial set of rules is applied on a collection of
documents. Several examples highlight the expressivity and effectiveness of the rule language.

• Debugging erroneous rules: Manual specification of rules is prone to errors. We will demonstrate
the explanation component of the Workbench that facilitates the traceability of the rule matching
and allows the identification of unintended behavior.

• Definition of type systems and pipelines: The UIMA Ruta language can be applied for textual
definition of type systems and rule-based pipelines of arbitrary analysis engines, which enables
rapid prototyping without switching tools.

• Introspection of results: The usage of the rule language as query statements allows the user to
investigate different aspects of documents that have been annotated by arbitrary analysis engines,
e.g., also based on statistical methods.

• Quality assessment: The automatic assessment of the analysis engines’ quality is a central aspect
in their development process. We demonstrate test-driven development using gold standard docu-
ments, and constraint-driven evaluation for unlabeled documents based on formalized background
knowledge.

• Document preprocessing: The UIMA Ruta language can be applied for many tasks in the Work-
bench. These include different preprocessing steps like converting HTML files, anonymization,
cutting paragraphs or rule-based document sorting.

• Rule learning: The provided rule induction algorithms based on boundary matching, extraction
patterns and transformations are illustrated for simple examples.

• Extension of the language: Specific projects take advantage of specialized language elements.
Extensions of the language and their seamless integration in the Workbench are shown with several
examples.

• Combinations with Java projects: Some functionality can hardly be specified with rules, even
with an extended language specification. Thus, examples provide insights how to make use of
additional functionality implemented in Java.

• Integration of external analysis engines: Repositories like DKPro (Gurevych et al., 2007) or
ClearTK (Ogren et al., 2008) provide a rich selection of well-known components for natural lan-
guage processing. We demonstrate how these analysis engines and type systems can easily be
integrated and how the user is able to specify rules based on the their results, e.g., for improving a
part-of-speech tagger or for exploiting their annotations for relation extraction.

• Semi-automatic annotation: A semi-automatic process supported by rules can speed up the cre-
ation of gold documents. An exemplary use case will illustrate how the user can efficiently accept
or reject the annotations created by rules.

A detailed description of these use cases will be available as part of the documentation of the project.

5 Conclusions

This demonstration presents the UIMA Ruta Workbench, a useful general-purpose tool for the UIMA
community. The system helps to fill the gap of rule-based support in the UIMA ecosystem and is ap-
plicable for many different tasks and use cases. The user is optimally supported during the engineering
process and is able to create complex and well-maintained applications as well as rapid prototypes. The
UIMA Ruta Workbench is up-to-date unique concerning the combination of the provided features and
tools, availability as open source, and integration in UIMA.

32



An interesting option for future work consists in making the functionality of UIMA Ruta and its tooling
also available in web-based systems like the Argo UIMA platform (Rak et al., 2012).

Acknowledgements

This work was supported by the Competence Network Heart Failure, funded by the German Federal
Ministry of Education and Research (BMBF01 EO1004), and is used for information extraction from
medical reports and discharge letters.

References
Branimir Boguraev and Mary Neff. 2010. A Framework for Traversing dense Annotation Lattices. Language

Resources and Evaluation, 44(3):183–203.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick R. Reiss, and Shivakumar
Vaithyanathan. 2010. SystemT: An Algebraic Approach to Declarative Information Extraction. In Proceed-
ings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages 128–137,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Laura Chiticariu, Vivian Chu, Sajib Dasgupta, Thilo W. Goetz, Howard Ho, Rajasekar Krishnamurthy, Alexander
Lang, Yunyao Li, Bin Liu, Sriram Raghavan, Frederick R. Reiss, Shivakumar Vaithyanathan, and Huaiyu Zhu.
2011. The SystemT IDE: An Integrated Development Environment for Information Extraction Rules. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, pages
1291–1294, New York, NY, USA. ACM.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. 2013. Rule-based Information Extraction is Dead! Long Live
Rule-based Information Extraction Systems! In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 827–832, Seattle, Washington, USA, October. Association for Computa-
tional Linguistics.

Hamish Cunningham, Diana Maynard, and Valentin Tablan. 2000. JAPE: a Java Annotation Patterns Engine (Sec-
ond Edition). Research Memorandum CS–00–10, Department of Computer Science, University of Sheffield,
November.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Sag-
gion, Johann Petrak, Yaoyong Li, and Wim Peters. 2011. Text Processing with GATE (Version 6).

David Ferrucci and Adam Lally. 2004. UIMA: An Architectural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Language Engineering, 10(3/4):327–348.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya Kalyanpur, Adam
Lally, J. William Murdock, Eric Nyberg, John M. Prager, Nico Schlaefer, and Christopher A. Welty. 2010.
Building Watson: An Overview of the DeepQA Project. AI Magazine, 31(3):59–79.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen Steimle, Markus Weimer, and Torsten Zesch. 2007.
Darmstadt Knowledge Processing Repository Based on UIMA. In Proceedings of the UIMA Workshop at
GLDV, Tübingen, Germany, April.

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck, Georg Fette, and Frank Puppe. 2014. UIMA Ruta: Rapid
Development of Rule-based Information Extraction Applications. Natural Language Engineering. submitted.

Philip V. Ogren, Philipp G. Wetzler, and Steven Bethard. 2008. ClearTK: A UIMA Toolkit for statistical Natural
Language Processing. In UIMA for NLP Workshop at LREC.

Rafal Rak, Andrew Rowley, William Black, and Sophia Ananiadou. 2012. Argo: an Integrative, Interactive, Text
Mining-based Workbench Supporting Curation. Database, 2012:bas010.

Guergana K. Savova, James J. Masanz, Philip V. Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C. Kipper-Schuler,
and Christopher G. Chute. 2010. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):
architecture, component evaluation and applications. Journal of the American Medical Informatics Association,
17(5):507–513, September.

33


