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Abstract

This paper extends existing word segmentation models to take non-linguistic context into ac-
count. It improves the token F-score of a top performing segmentation models by 2.5% on a 27k
utterances dataset. We posit that word segmentation is easier in-context because the learner is
not trying to access irrelevant lexical items. We use topics from a Latent Dirichlet Allocation
model as a proxy for “activities” contexts, to label the Providence corpus. We present Adaptor
Grammar models that use these context labels, and we study their performance with and without
context annotations at test time.

1 Introduction and Previous Works

Segmentation of the speech stream into lexical units plays a central role in early language acquisition.
Because words are generally not uttered in isolation, one of the first task for infants learning a language is
to extract the words that make up the utterances they hear. Experimental research has shown that infants
are able to segment fluent speech into word-like units within the first year of life (Jusczyk and Aslin,
1995). How does this ability emerge? There is evidence that infants use a broad array of linguistic cues
to perform word segmentation (e.g., phonotactics (Jusczyk et al., 1993a), prosodic information (Jusczyk
et al., 1993b), statistical regularities (Saffran et al., 1996)). Past experimental and modeling research on
speech segmentation has mainly focused on linguistic cues, treating them as independent from other non-
linguistic cues naturally occurring in the child learning environment. Yet, language appears in context
and is constrained by the events occurring in the daily life of the child. For example, during an eating
event one is most likely to speak about food, while during a zoo-visit event, people are more likely
to talk about the animals they see. Activity contexts may provide a natural structure to speech that
would be readily be accessible to children. A recent study using dense recordings of a single child’s
language development (Roy et al., 2006) showed that words appearing in specific activity contexts are
learned faster (Roy et al., 2012). Relatedly, Johnson et al. (2010) showed that Adaptor Grammars (AGs)
performed better on a segmentation task when the model has access to a hand-annotated set of objects
present in the environment, that it can use to learn simultaneously word-object associations (see also
(Frank et al., 2009)). This supports the view that integrating multiple sources of information, linguistic
and non-linguistic, can improve learning.

Following this idea, we posit that information from the broader context in which a word has been
uttered may simplify the learning problem faced by the child. In particular, our hypothesis postulates
that speech segmentation is easier when using vocabularies that are related to a specific activity (eating,
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Table 1: Most probable words in the 7 final topics

egg book ball truck | name color block
apple shape cat car school bear battery
banana | square hat fire time crayon minute
milk circle tree piece | today hair phone
butter | triangle fish train day head puzzle

| ~food | ~shapes | ~playing | ~toys “garbage”

~time | ~drawing

playing...), or place (kitchen, bedroom...). To evaluate this hypothesis, we applied topic modeling (Blei
et al., 2003) to automatically derive activity contexts on a corpus of child directed speech, the Provi-
dence corpus (Demuth et al., 2006), and tested the influence of such topics on a word segmentation task
extending the AG models used in (Borschinger et al., 2012). We found that a model augmented with
the assumption that words are dependent upon the topic of the discourse (as a proxy for activity context)
performs better than the same model without access to the discourse topic. This suggests that the broader
context in which sentences are uttered may help in the word segmentation process, and could presumably
be used at various stages of language development.

The paper is structured as follows. Section 2 presents a novel approach to augment a corpus with
contextual annotations derived from topic models. Section 3 quickly explains Adaptor Grammars, the
framework that we used to express all our models. Section 4 presents all the models that were used in
the results. Section 5 describes the Providence corpus and the experimental setup. Section 6 shows our
quantitative and qualitative results. Finally, we discuss the implications for models of language learning.

2 Topics as Proxies for Contexts

Roy et al. (2012) found high correlations between human-annotated activity contexts and topics from a
latent Dirichlet allocation model (LDA) (Blei et al., 2003), thus showing that using topics as proxies for
contexts is a sound approach. Topic modeling infers a topic distribution for each “document” (a bag of
words) in the corpus. Since “documents” were not annotated in our corpus, we developed the following
3-step approach to automatically segment it into documents.

Firstly, for all the children of the Providence corpus, we used recording sessions as hard document
boundaries. We considered as a “possible document” every contiguous sequence of sentences separated
by at least 10 seconds of silence, according to the orthographic transcript. We also identified “possible
documents” using cues such as “bye/hi”, indicating a change of participants. This segmentation resulted
in an over-segmented corpus (compared to context switches), yielding a total of 16, 742 documents.

Secondly, we used the gensim software (lvlehﬁfek and Sojka, 2010) to train a topic model (LDA)!,
and get the topic distributions for each of these documents. We used the symmetric KL-divergence to
measure the distance between two topic distributions before and after a “possible document” boundary.
If the distance was above a threshold, we considered this boundary as a document boundary. Otherwise
we merged both “possible documents” through this silence. The threshold was set empirically to dis-
criminate between two topic distributions that correspond to different activity contexts. After this step,
we assume that each of the resulting 8, 634 documents maps to an activity context.

Thirdly, we applied LDA again on this new segmentation to get the topic distribution, hence the activity
context, of each document. The number of topics is qualitatively chosen to correspond to the number of
main activity contexts (eating / playing / drawing / etc.) that occur in the Providence dataset (we used 7
topics), the resulting most topic specific words are shown in Table 1. Finally, for each document, we got
a distribution on topics, and we annotated the document with the most probable topic. By doing that, we
throw away graded information about the distribution on topics for each document. We could make use
of the full distribution, but here we are only interested in the most probable topic as a proxy for activity
context. We do not posit that the infants learn the topic models on linguistic cues while bootstrapping
speech and segmentation, but rather that they get activity context from non-linguistic cues.

"We did LDA only on nouns (as they contain most of the semantics), weighted by TF-IDF.
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3 Adaptor Grammars

Adaptor Grammars (Johnson et al., 2007) are an extension of probabilistic context-free gram-
mars (PCFGs) that learn probability of entire subtrees as well as probabilities of rules. A PCFG
(N, W, R, S,0) consists of a start symbol S, N and W disjoints sets of nonterminals and terminal sym-
bols respectively. R is a set of rules producing elements of /N or W. Finally, 6 is a set of distributions
over the rules Rx,VX € N (Rx are the rules that expand X). An AG (N, W, R, S,0, A,C) extends
the above PCFG with a subset (A C N) of adapted nonterminals, each of them (X € A) having an
associated adaptor (C'x € C). An AG defines a distribution over trees Gx,VX € NUW. If X ¢ A,
then G'x is defined exactly as for a PCFG:

Gx= Y  0x_y.v,TDx(Gy,...Gy,)

X—Y]...Yn
€Ry

With TDx (G . .. G,,) the distribution over trees with root node X and each subtree t; ~ G i.i.d. If
X € A, then there is an additional indirection (composition) with the distribution H x:

Gx = Z Ox—v,..v,TDx(Hy, ... Hy,)

X—Y]...Yn
€Rx

Hx ~ Cx(Gx)

We used C'x adaptors following the Pitman-Yor process (PYP) (Perman et al., 1992; Teh, 2006) with
parameters a and b. The PYP generates (Zipfian) type frequencies that are similar to those that occur
in natural language (Goldwater et al., 2011). Metaphorically, if there are n customers and m tables, the
n + 1th customer is assigned to table z, 1 according to (Jy is the Kronecker delta function):

| ma—i—bd +§:nk—a6
z Z1...2n ~
n+1]<1 n n+b m-+41 r n+b k

For an AG, this means that adapted non-terminals (X € A) either expand to a previously generated
subtree (T'(X);) with probability proportional to how often it was visited (ny), or to a new subtree
(T'(X)m+1) generated through the PCFG with probability proportional to ma + b.

4 Word segmentation models

4.1 Unigram model

This most basic model just generates words as sequences of phonemes. As Word is underlined, it means
it is adapted, and thus we learn a “word unit -like” vocabulary. Phon is a nonterminal that expands to
all the phonemes of the language under consideration.

Sentence — Word"
Word — Phon™

where :
Word* - { Words — Word

Words — Word Words

4.2 Collocations and Syllabification

The baseline that we are using is commonly called the “colloc-syll” model (Johnson, 2008; Borschinger
et al., 2012) and is reported at 78% token F-score on the standard Brent version of the Bernstein-Ratner
corpus corpus (Johnson, 2008). It posits that sentences are collocations of words, and words are com-
posed of syllables. (Goldwater et al., 2009) showed how an assumption of independence between words
(a unigram model) led to under-segmentation. So, above the Word level, we take the collocations (co-
occurring sequences) of words into account.
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Furthermore, there is evidence that 8-month-old infants track syllable frequencies (Saffran et al.,
1996), and the “colloc-syll” model can take that into account. Word splits into general syllables and
initial- or final- specific syllables. Syllables consist of onsets or codas (producing consonants), and nu-
clei (vowels). Onsets, nuclei and codas are adapted, thus allowing this model to memorize sequences or
consonants or sequences of vowels, dependent on their position in the word. Consonants and vowels are
the pre-terminals, their derivation is specified in the grammar into phonemes of the language.

Sentence — Colloc™
Colloc — Word"
Word — StructSyll
For notations purposes, all this syllabification is appended after Word by Word — StructSyll.
All details about the collocations and syllabification grammars can be found in (Johnson, 2008). Here

is an example of a (good) parse of “yuwanttusiD6bUk” with this model, skipping the StructSyll
derivations:

Sentence
Colloc Colloc Colloc

U VAN

Word Word Word Word Word Word

yu want tu si D6  bUk

4.3 Including topics (contexts)

To allow for the model to make use of the topics (used as proxies for contexts), we modify the grammar
by prefixing utterances with topic number (similarly to (Johnson et al., 2010)), VK € #topics:

Sentence — _tK Colloch
Collocig — Worde

For each Word,x, we can derive it into a common adapted Word by Word,x — Word. Consider this
lower level adaptor (Word): it learns a shared vocabulary independently of the topic (all contexts that
will derive b U k will increment the Word (b U k) pseudo-count). This Word-hierarchical model is
called share vocab.

Alternatively, we can learn a separate vocabulary for each topic, by having directly: Word;x —
StructSyll (note that all words then share the same syllabic structure). Words are split across different
topics and need to be adapted for each topic in which they appear. This flat structure vocabulary model
is called split vocab.

4.4 Allowing for non context-specific words

Sentences are not composed only of context-specific words, thus we need a third type of extension that
allows for topic-independent and topic-specific words to mix. For this, we add topic-independent types
of C'olloc and W ord that can be used across all topics, but we force each sentence to have at least one
topical collocation:

Sentence — _tK (CollocT|Colloc/y) Collocs,
(Colloc™|Colloc,)

Collocixy — Worde
Colloc — Word"

Wordyg — StructSyll
Word — StructSyll
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Parentheses denote that these terms are optionals, and ““|” denotes “or”. Both Word;x and Word are
adapted, but this time on the same level of hierarchy. This model allows the use of both topic-specific and
common words in sentences, and it learns #topics + 1 vocabularies. We call this model with common.
An example of a correct parse with this model is given by:

Sentence
13 Colloc Colloc_t3

N

Word Word Word Word t3 Word_t3 Word_t3

yu want tu si D6 bUk

5 Experimental setup

The Providence corpus (Demuth et al., 2006) consists of audio and video, weekly or bi-weekly, record-
ings of 6 monolingual English-speaking children home interactions. Each recording is approximatively
1 hour long. This corpus spans approximatively from their first to third year. We used the whole corpus
to extract the topics to get more stable and general activity contexts. For all the following results, we
used only the Naima portion between 11 months and 24 months, consisting in 26,425 utterances (sen-
tences) and 135,389 tokens (words). The input consist in DARPABET-encoded sequences of phonemes
with about 4200 word-types in the Naima subset. We followed the same preparation procedure as in
(Borschinger et al., 2012), where more details about the corpus can be found.

We used the last version of Mark Johnson’s Adaptor Grammars software®. All the additional code
(preparation, topics, grammars, learning) to reproduce these experiments and results is freely available
online?®, along with the datasets annotations derived from topic modeling*. For the adaptors, we used a
Beta(1,1) (uniform) prior on the PYP a parameter, and a sparse Gamma(100,0.01) prior on the PYP
b parameter. We ran 500 iterations (finishing at &~ 0.05% of log posterior variation between the lasts
iterations) with several runs for each subset of the Naima dataset.

6 Results

6.1 Unsupervised words segmentation

Table 2: Mean (token and boundary) F-scores (f), precisions (p), and recalls (r) for different models
depending on the size of dataset (age range).

months baseline share vocab split vocab with common
token f p r f P r f P r f P r
11-12 80 79 81| .77 76 78 .77 75 A8 | 7775 78
11-15 81 81 82 |.76 78 75| .81 79 .82 | .82 81 .83
11-19 82 82 83| .77 78 76| .81 81 .82 | .83 82 .84
11-22 81 8 81 |.77 79 75| .82 81 .83 | .83 182 .84
boundary | f p r f p r f P r f P T
11-12 90 88 91| 8 87 89| .87 .8 90| .88 8 .90
11-15 91 91 928 91 B6 |91 8 92|91 90 .93
11-19 92 92 93|90 92 88 |.92 91 93|.92 91 94
11-22 92 93 91|90 93 87|92 91 93|93 91 .94

The key metric of interest is the token F-score (harmonic mean of precision and recall of words).
Table 2 gives all the scores for an increasingly large dataset (as in (Borschinger et al., 2012)). Figure 1
shows the month-by-month evolution of the token F-score of the different models. We can see that

2http: //web.science.mg.edu.au/~mjohnson/

Shttps://github.com/SnippyHolloW/contextual word_segmentation

*nttps://github.com/SnippyHolloW/contextual_word_segmentation/tree/master/
ProvidenceFinal/Final
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Figure 1: Token F-scores (and standard deviations) evolution with an increasingly bigger and richer
dataset (11 months to “X-axis value” months), computed on 8 runs of 500 iterations per data point.
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context-based models need more data to get good performances (several vocabularies to learn), but they
seem more resilient to over-segmentation.

Preliminary results confirm the trend of baseline scores getting slowly worse at 25 and 26 months
while with common and split vocab stabilize (not plotted here). We also tried models for which we
can have the “common vocabulary” derived only at the level of the collocations (making topic-specific
collocations topic-pure as in split vocab for instance), or only at the level of the words (allowing for
topic-specific collocations deriving in only common words if needed). Both models are worse than split
vocab and with common.

Using a shared global vocabulary while being able to learn (through adaptation) different topic-specific
vocabularies does not seem to be a solution: share vocab performs worse than the baseline. Token recall
and boundary recall are worse off (see Table 2), suggesting that fewer words are correctly adapted.
Maybe that is because this is the only model with two levels of adapted word hierarchies (W ord,x and
Word). Sharing a lower-level vocabulary (W ord) still does not allow for context vocabularies (W ord, )
to mix, thus is simply harder to train. Having only one vocabulary per context (split vocab) is a slight
improvement over the baseline, even though it is not significant (95% confidence interval) before 22
months. Models allowing for both topic-specific vocabularies and a common vocabulary to be learned
are the best: with common is significantly (95% confidence interval) better than the baseline, starting
from 20 months (Figure 1). The improvement seems to be due to better token (and boundary) recall
(Table 2), suggesting that more words are learned. By looking at their lexicons at 24 months, topic-
dependent models have slightly larger lexicon recalls and worse lexicon precisions than the baseline.
This means that the additional true word-types that they learn are more frequently correctly used than the
false word-types (otherwise the token F-scores would be reversed, e.g. between split vocab and baseline).
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Figure 2: Mean token F-scores (and standard deviations) on 20% held-out test data for 6 different random
splits of Naima from 11 to 22 months, 500 iterations each. Grey for baseline on test, green and blue for
context-dependent models on test and no prefix conditions respectively.

with common no prefix
with common test
split vocab no prefix
split vocab test

baseline test

070 0.72 0.74 0.76 0.78 0.80 0.82 0.84
token f-score

Table 3: Most probable words (x P(word|topic = k)) in the 7 recovered topics at test time without topic
annotations (no prefix condition) for the with common model (we omitted phonemes clusters yielding
non-words).

bread elephant lego Michael | skinny stick bubble
delicious owl doctor shorts | massage | remember pasta
avocado | wearing | brush towel ostrich track spirals
porridge turkey change shirts nurse forget squirrels
raisin haircut | squeeze | pirates | hammer oink thumb
biscuit turtle music tangled ruby towed pentagon
| food | animals | play | clothes | (messy) | verbs | ~shapes |

6.2 Recovery of the topics on held-out data

To check whether these models generalize to unseen utterances, and possibly unseen vocabulary, we
looked at the scores of held-out data (80/20% train/test split of the Naima 11 to 22 months dataset).
Token F-scores for this test condition are shown in green and grey in Figure 2. This separates low-
frequency collocations to be used at test time and those seen at training time, both for context aware
models and the basic baseline model. The F-scores show the same pattern as in the previous experiment,
with context-aware models (with common and split vocab here) performing better than the baseline.

The topics are learned on the orthographic transcription of the whole Providence corpus (6 children),
while we test only on the Naima dataset. Still, to check that these results are not simply due to additional
information (leaked somehow in the form of the _tK prefix), we produced another held-out condition,
without topic (_tK) prefixes. Models can use topic-specific vocabularies learned during training, but
they are given no context information at test time. Token F-scores for this no prefix condition are shown
in blue (and grey for the baseline) in Figure 2. The fact that no prefix performance is on par with the
test condition means that contextual cues are not only important at test time, but particularly so while
learning the vocabulary. In other words, the model acquires its vocabularies making use of the additional
context. In the fest setting, it is evaluated on novel utterances for which additional context information
is available. In the no prefix condition it is evaluated on novel utterances for which no additional context
information is available. This means that topic-specific vocabulary learned during training is successfully
used in a consistent way at test time. To confirm this qualitatively, we looked at the most probable words
(after unsupervised segmentation from the phonemic input) in recovered topics at test time in the no
prefix condition. They are shown in Table 3, and they exhibit some of the topics that were found on the
orthographic transcript (as they are not limited to nouns, a topic for “verbs” appears).
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7 Conclusion

We have shown that contextual information helps segmenting speech into word-like units. We used
topic modeling as a proxy for richer contextual annotations, as (Roy et al., 2012) have shown high cor-
relation between contexts and automatically derived topics. We modified existing Adaptor Grammar
segmentation models (Johnson, 2008; Johnson and Goldwater, 2009), to be able to learn topic-specific
vocabularies. We applied this approach to a large child directed speech corpus that was previously used
for segmentation (Borschinger et al., 2012). Our model with the capacity to use both a topic-specific
vocabulary and a common vocabulary (with common) produces better segmentation scores, ending up
with at least 2.5% better absolute F-scores than its context-oblivious counterpart (baseline). More gen-
erally, both models that learn specialized vocabularies do not get worse F-scores with increasing data
(Figure 1). Particularly, they seem to fix a well-known problem of previous models like “colloc-syll”
(our baseline), that “overlearn” by over-segmenting frequent morphemes as single words (Borschinger
et al., 2012). We have controlled for the additional information of giving the topic (_tK), and we have
found out that contextual information helps at training time.

It would be interesting to look into the link between semantics and syntax in recovered topics. Fur-
ther work should integrate syntax (e.g. function words), stress cues and prosody from the audio signal
(Borschinger and Johnson, 2014), use even less supervision for contexts, and be applied to other lan-
guages. We believe that language acquisition is not a simple sequential process and that segmentation,
syntax, and word meaning bootstrap each others. This is only a first step towards integrating multiple
sources of information and different modalities at all steps of language acquisition.

Acknowledgments

This project is funded in part by the European Research Council (ERC-2011-AdG-295810 BOOT-
PHON), the Agence Nationale pour la Recherche (ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02
PSL*), the Fondation de France, the Ecole de Neurosciences de Paris, and the Region Ile de France (DIM
cerveau et pense).

References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res.,
3:993-1022, March.

Benjamin Borschinger and Mark Johnson. 2014. Exploring the role of stress in Bayesian word segmentation using
Adaptor Grammars. Transactions of the Association of Computational Linguistics, 2:93—104, February.

Benjamin Borschinger, Katherine Demuth, and Mark Johnson. 2012. Studying the effect of input size for bayesian
word segmentation on the providence corpus. In COLING, pages 325-340.

Katherine Demuth, Jennifer Culbertson, and Jennifer Alter. 2006. Word-minimality, epenthesis and coda licensing
in the early acquisition of english. Language and Speech, 49(2):137-173.

Michael C Frank, Noah D Goodman, and Joshua B Tenenbaum. 2009. Using speakers’ referential intentions to
model early cross-situational word learning. Psychological Science, 20(5):578-585.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. 2009. A bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112(1):21-54.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. 2011. Producing power-law distributions and damping
word frequencies with two-stage language models. Journal of Machine Learning Research, 12(Jul):2335-2382.

Mark Johnson and Sharon Goldwater. 2009. Improving nonparameteric bayesian inference: experiments on
unsupervised word segmentation with adaptor grammars. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics,
pages 317-325. Association for Computational Linguistics.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwater. 2007. Adaptor grammars: A framework for specifying
compositional nonparametric bayesian models. Advances in neural information processing systems, 19:641.

2333



Mark Johnson, Katherine Demuth, Michael Frank, and Bevan Jones. 2010. Synergies in learning words and their
referents. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 1018-1026.

Mark Johnson. 2008. Using adaptor grammars to identify synergies in the unsupervised acquisition of linguistic
structure. In ACL, pages 398-406.

Peter W. Jusczyk and Richard N. Aslin. 1995. Infants detection of the sound patterns of words in fluent speech.
Cognitive psychology, 29(1):123.

Peter W. Jusczyk, Anne Cutler, and Nancy J. Redanz. 1993a. Infants’ preference for the predominant stress
patterns of english words. Child development, 64(3):675687.

Peter W. Jusczyk, Angela D. Friederici, Jeanine MI Wessels, Vigdis Y. Svenkerud, and Ann Marie Jusczyk.
1993b. Infants sensitivity to the sound patterns of native language words. Journal of Memory and Language,
32(3):402420.

Mihael Perman, Jim Pitman, and Marc Yor. 1992. Size-biased sampling of poisson point processes and excursions.
Probability Theory and Related Fields, 92(1):21-39.

Radim Rehiifek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45-50, Valletta, Malta, May.
ELRA. http://is.muni.cz/publication/884893/en.

Deb Roy, Rupal Patel, Philip DeCamp, Rony Kubat, Michael Fleischman, Brandon Roy, Nikolaos Mavridis, Ste-
fanie Tellex, Alexia Salata, Jethran Guinness, et al. 2006. The human speechome project. In Symbol Grounding
and Beyond, pages 192—-196. Springer.

Brandon C Roy, Michael C Frank, and Deb Roy. 2012. Relating activity contexts to early word learning in dense
longitudinal data. In Proceedings of the 34th Annual Cognitive Science Conference.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. Newport. 1996. Statistical learning by 8-month old infants.
Science, 274(5294):1926-1928.

Yee Whye Teh. 2006. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings

of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 985-992.

2334



