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Abstract

In this paper, we explore the relationship betwidenhuman-encoded semantics of ontologies
and their application to natural language proces@iiP) tasks, such as word-sense disambig-
uation (WSD), for which such ontologies may notdna@een originally designed. We present a
method for assessing the semantic content of amagyt with respect to a target domain, by
spreading activation over a graph that represastances of ontology concepts and relation-
ships, in domain text. Our proposed method hasrakadvantages beyond existing ontology
metrics. By identifying bias or imbalance in thealagy, we can suggest target areas for im-
provement, and simultaneously facilitate the auteshaptimisation of the graph for use in the
chosen NLP task. On applying this method to thdiethiMedical Language System (UMLS)
ontology, we significantly outperformed existingagh-based methods for WSD in biomedical
NLP (0.82 accuracy). The subsequent introductioa fafll-back mechanism, using word-sense
probability, achieved state of the art for unsujsed biomedical WSD (0.89 accuracy).

1 Introduction

Although ontologies do encode human knowledge,dégree to which these artefacts represent the
entire scope of semantics in a target domain ficdif to quantify. Since few ontologies offer larg
enough scope to cater for an entire domain in ahlanguage, merging of multiple ontologies is ofte
necessary (Noy, 2004). This further compounds thblpm of assessing the semantic relevance of the
merged resource. The collective semantics in malspurce ontologies can often overlap inconsist-
ently, and negotiation of meaning so that the daset set of concepts and relationships in thelogyo
remains balanced, is critical. The merging progessually reserved for domain experts, who foaus o
ontology portions in which they specialise. It'sngeally a case of painstakingly mapping individual
concepts between component data sets, to ensuamseintegrity (Jiménez et al, 2012). Coordinating
collaborative ontology editing and merging is atetl and well-known problem (Jiménez et al, 2011).
Existing ontology metrics generally focus on stauat and logical semantics (Sicilia et al, 2012).
Assessing how closely ontologies match the senmaofioatural language text, or identifying specific
portions of an ontology which require further deyhent, are more difficult tasks. We have identifie
a robust method for this assessment. This methadvies static analysis of a graph representinglento
ogy instances and inter-concept relationshipsdtiiess apparent imbalances that hinder spreading ac
tivation in the graph. When accuracy and relevdacthe task improves, the modified graph or activa
tion strategy identifies portions of interest farther development. Many ontologies used in NLRyod
are not designed for this (Guarino et al, 2009), aflexible, automatic evaluation method is useful
We focused on the Unified Medical Language SystgdML(S) as a typical ontology (NLM, 2013),
displaying many of the problems associated withaismtologies in NLP, including merged terminol-
ogy, strongly overlapping semantic categories, ms@ient levels of structural depth, as well aginc
sistent coverage of associated instance data @isstral, 1998). We chose to assess this ontohdgy
respect to word sense disambiguation (WSD), whidommonly accepted to be one of the most diffi-
cult tasks in NLP (Navigli, 2009). We used the MBFED corpus for testing purposes, which com-
monly used in assessing methods for biomedical d8Deno Yepes and Aronson, 2012; Mcinnes et
al, 2011; Gad el Rab et al, 2013). Using node-tegtaph metrics, we identified portions of theant
ogy which were not conducive to WSD via spreadiativation. After appropriately modifying the
activation strategy, we achieved state of the enfiopmance in graph-based biomedical WSD (0.82).

This work is licenced under a Creative Commonsil&dtion 4.0 International License. Page numberspaod
ceedings footer are added by the organizers. Lécdatilshttp://creativecommons.org/licenses/by/4.0/

2237

Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 2237-2248, Dublin, Ireland, August 23-29 2014.



2 Background

2.1 Ontologies

An ontology, in computer science, is defined a&aplicit specification of a shared conceptualiaati
(Gruber, 1993), where a conceptualization may neessubset of real-world semantics, with respect to
the requirements for a given task. It can containcepts or classes of object, object propertied, an
inter-concept relationships, as well as instanéésese in the target domain. Such structured ressu
facilitate the sharing and re-use of domain knogéednd are invaluable for NLP applications. A pri-
mary example of such a resource is the UMLS, pexbidy the National Library of Medicine (NLM,
2013). The data set consists of a large lexicaiidting millions of instance surface forms, in aong-
tion with an ontology of concepts and inter-conaegstionships in the medical domain. It is commbse
of 139 different source ontologies or terminologieach of which have their own labels, descriptions
and semantic perspective (e.g. FMar the body, and RXNORRor drugs, as well as more general
ontologies like SNOMEE). An example ontology is shown in Figure 1 below.
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Figure 1. A simple (and incomplete) ontology ddsiog ambiguous senses of the word “cat”

2.2 Ontology Evaluation

Evaluating ontology semantics commonly focusesherstructural and logical nature of the resource.
Related efforts may use logical reasoning to ensaethe semantics are internally consistentser u
the structure and labels of another ontology assaline, assuming that textual labels for synonymou
concepts will be consistent between sources (Vidodad Sure, 2007; Ma, 2013). A metric which
goes beyond these and evaluates the semanticmetet@a given task is sorely needed (Vrandecic
and Sure, 2007). While metrics that examine theptet@ness of an ontology’s content are suggested
in the literature (Tartir et al, 2005), these netrieflect a high-level summary of the content. The
evaluation of this content, independent of the lagipitself, and at a sufficiently fine-grained &vo
suggest areas for improvement, would be of sigaifi@dditional benefit.

Vrandecic and Sure (2007) recognise the paucityeifics that take the ontology semantics into
account. In terms of semantic quality, they propeseraging a logical reasoner to evaluate that an
ontology is consistent within the context of itsroassertions. However, there is no objective arglys
of the semantic content with respect to real whdchan knowledge. Ma et al (2013) point out thatpri

2 FMA: http://sig.biostr.washington.edu/projects/fm/AbadutBtml
3 RXNORM: http://bioportal.bioontology.org/ontologies/RXNORM
4 SNOMED: http://bioportal.bioontology.org/ontologies/SNOMEDC
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ontology metrics neglect implicit semantic knowled@hey acknowledge the utility of a graph struetur
in representing the content of an ontology, anérasgisat this structure preserves well the semsuatic
the ontology. However, they do not proceed to eranthe ontology in the context of a real-world
semantic evaluation. By limiting the scope of congam to sets of related ontologies, they workhan t
assumption that similarly labelled concepts andcstires are roughly equivalent. Additionally, Seil
et al (2012) suggest that there is no obvious mairidentify when an ontology needs to be improved
We propose that graphs composed of instances ofoggt concepts and relationships, along with
associated unigue identifiers, are a less naiveoapp to semantic matching than textual labels. We
suggest an objective analysis of how annotatedriests of ontology concepts and relationships iotera
by a process such as spreading activation in atiassd graph, would be more reflective of the prox
imity of the evaluated ontology to the semantictheftarget domain text. We also suggest that aisaly
of particular characteristics of the graph, thapkiy or hinder this activation process, are helpfu
identifying specific portions of the associatedabogly that require further development. Interedting
the use of spreading activation as a method falogy assessment has already been carried out previ
ously (Fang and Evermann, 2010). In that case hery#ive spreading activation was in the context of
cognitive psychology, where test subjects manwiessed ontology content. An automated approach,
leveraging the same principles, without the requ@et for human reviewers, would be of great value.

2.3 Word Sense Disambiguation

WSD is one of the most critical tasks in NLP (Naiyig009), and is often described as Al complete.
Navigli (2009) identifies several main categoriéagproach to WSD, namely knowledge based, super-
vised and unsupervised methods. He proposes knge/lealsed methods as the most useful in the me-
dium to long term, for several reasons. He poiatthe availability of knowledge resources such as
WordNet, Yago, and DBPedia, resources which aieedgideveloped and enriched, as a starting point
of significant value. He also suggests that sugeds/approaches are better for categorisation likeks
part-of-speech (POS) tagging, rather than tasksdigq@ire more fine grained detail such as realldvor
word-sense disambiguation. As an example of tlissicler that the process of disambiguating the cor-
rect POS for a word may involve the selection af tiom a set of possible POS tags. One such tagset,
widely used for English, is the Penn Treebank tagmesisting of 36 separate tags. The UMLS data set
however, contains close to 3 millfodistinct senses.

Though WSD is still widely regarded as an unsolpeablem, supervised approaches to WSD gen-
erally perform well. Navigli (2009) suggests thaistis due to the lack of real-world considerations
development and testing of WSD methods. We canidenshe MSH-WSD corpus as an example
demonstrating typical limitations when comparedwtiite requirements for a real-world system. MSH-
WSD is a commonly used data set in biomedical W&Ihg sense IDs from UMLS, and consisting of
approximately 37,000 separate documents or abstratiere a single ambiguous sense is annotated
with the correct UMLS sense ID. A WSD system neelg aentify this single sense correctly (regard-
less of the other words in the document), in otdescore highly. Additionally, there are a totald@f3
distinct word-senses annotated in this test segtlyrreducing the scope of the task involved fegpn
proximately 3 million possible senses in the fUlUS. As a result, this data set is not a stronkpotibn
of what is required in real-world biomedical NLPpéipations, where a high percentage of the words in
a given document or context must be assigned tbeiect senses.

It is generally accepted that unsupervised metfardd/SD minimise the cost of developing a suita-
ble application, by relying on features that mayelx&racted directly from the target domain text, or
alternatively using existing knowledge in some foiiine latter are often referred to as knowledgeethas
(KB) methods. For supervised WSD a gold-standaredsired input, where manually curated data sets
facilitate the training of robust machine learnaigorithms. Supervised methods generally outperform
unsupervised (Agirre et al, 2010), but are limibgdthe cost of developing the required trainingadat
However, as mentioned previously, these systemsoigyerform so well in real world WSD scenarios.

In a biomedical context, there are several exampfié®mth supervised and unsupervised (including
knowledge-based) approaches. Most unsuperviseoagpes leverage the UMLS to some extent, and
build on that knowledge using methods like Autorda@®erpus Extraction (Jimeno Yepes and Aronson,
2012) and Information Content Similarity (Mclnnesag 2011). The commonly cited example of a

5 UMLS stats:http://www.nlm.nih.gov/research/umls/knowledge ses/metathesaurus/release/statistics.html
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supervised approach that consistently outperformmnvk unsupervised approaches is Naive Bayes
(Jimeno Yepes and Aronson, 2012; Mcinnes et allR@kchieving 0.94 accuracy on the common data
set, although as we’ve outlined previously, thedeapace for a correct tag in the chosen dat@vibt

a total number of 423 senses) is much smallerwand be the case in a real-world system.

Several recent approaches to biomedical WSD leeestagctured knowledge in the form of a graph.
Examples range from the use of co-occurrence data & domain-specific corpus (Agirre et al, 2006),
to variations of PageRank (Agirre and Soroa, 2@@fkre et al, 2010), to the representation of an on
tology, or portion of an ontology, as a graph (&kdRab et al, 2013). Ontologies are often used as a
source from which to build the required graph,hees/tare readily available in many domains, and pro-
vide a starting point of high-quality semantic kneslge. As identified previously, the lexical ontgjyo
Wordnet is a commonly used resource in open dol8b. Similarly, in the biomedical domain, the
UMLS is equally common. Hybrid approaches levergdioth general lexical semantics like WordNet
with domain-specific semantics like UMLS are notamimon however, but have been used with prom-
ising results in other related NLP tasks such aplara resolution (Liang and Lin, 2005).

Graph based methods have not performed as welhas onsupervised approaches, like Machine
Readable Dictionaries: 0.8070 (Jimeno Yepes andgao, 2012), semi-supervised Automated Corpus
Extraction methods: 0.8383 (Jimeno Yepes and Amra@l 2), and co-occurrence metrics: 0.78 (Mclin-
nes and Pedersen, 2013). A recent approach (EERab2013) achieved mixed results with respect to
particular terms in the MSH-WSD test corpus, adnigwan overall accuracy of 0.603. State of the art
accuracy for graph-based methods, in unsupervisgdedical WSD, was 0.72 (Mclnnes et al, 2011).
State of the art in overall unsupervised biomedi¢&D was 0.87 (Jimeno-Yepes and Aronson, 2012).

2.4 Spreading Activation

The theory of spreading activation was first praabby Quillian (1966), in a model of human se-
mantic memory. Quillian proposed an abstract motlelman memory, in order to artificially represent
the means by which a human'’s brain might procedsuaderstand the semantics of natural language.
This model was enhanced by Collins and Quilliar6@%or retrieval tasks, and further modified by
Collins and Loftus (1975). The latter provided imapon for research in many other related fiefdsm
cognitive psychology to neuroscience, to naturajjleage processing, among others (Pace-Sigge, 2013).

The basic premise of spreading activation is rdlatghat of connectionism in artificial intelliges,
which uses similar models for neural networks titect the fan-out effect of electrical signal ireth
human brain. In the case of neural networks, axert the graph could represent a single neurash, an
edges could represent synapses. In informatioievatr(Crestani, 1997) and word-sense disambigua-
tion (Tsatsaronis et al, 2007), generally vertiad represent word-senses and edges will represent
some form of relationship, either lexical or sen@ahnkage, between these senses.

An example implementation is ‘Galaxy’, developedoast of the Nepomuk Social Semantic Desk-
top®, which uses spreading activation to perform chirseon a graph. Instead of traditional methods of
hard clustering, which partition a graph into diéfiet groups, Galaxy performs soft clustering, which
involves identifying a sub-graph located aroun@tos$ input nodes, and then finding the focus & th
sub-graph. The same implementation provides agordble weighting model that allows modification
of starting weights associated with semantic typedges and individual nodes in the graph. This has
already been used in various scenarios, such & setwork analysis and dynamic semantic publica-
tion of web conterit and may also be applied to any set of graph-stred data (Troussov et al, 2008).

By discovering instances of ontology concepts imdim text, using the set of unigue identifiers for
instances, we can activate corresponding noddgigraph, from where a signal will traverse outward
across adjacent nodes, activating these in turnhésignal spreads farther from a source nodmgt#
weaker by an amount specified in an associatedhtieiggymodel for nodes and edges in the graph. If
the signal spreads from multiple nearby source sottee signal will combine, and points of overlap
will be activated to a greater degree. The nodeswaccumulate the most activation are deemed to b
the focus nodes for the context. The resultingvatdid portion of the graph will reflect the inhdren
meaning of the document, in so far as the ontoldgfined semantics will allow.

6 http://dev.nepomuk.semanticdesktop.org/wiki/Textitias#IBM
7 http://www.bbc.co.uk/blogs/bbcinternet/2010/07/blworld cup 2010 dynamic_sem.html
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To demonstrate this process in action, we will dexamples from the ontology previously defined
above. Figure 2 describes the resulting instanapigfor the ontology described in Figure 1, on Wwhic
we can perform spreading activation using instamcesxt. Firstly, consider the set of surface ferm
associated with concept instances in table 1. langotate the set of contexts below with this lexjc
we can then use the annotations to activate thghgidodes that are well connected may benefit from
the potential overlap of signal coming from othdjagent nodes. Instances #gdicised below.

» Thecatsresult for the patientlsrain tumour was assessed by the Doctor.

» Tigersandlions arecats that live in the wild. Theseats are not afraid oflogs.
e The patient survived tharain tumour, but died of an allergic reaction to their neighbecats.

In each example, the ambiguous term is the worts"cavhich can variously refer to: cat_scan,
wild_cat and domestic_cat. The surrounding coméxach instance contains other concept instances
that may help to disambiguate the correct sensead$”. In the first example, the nodes representin
wild_cat, domestic_cat, cat_scan and brain_candebevactivated. Since brain_cancer and cat_scan
are relatively well connected in the graph, andadse adjacent to one another, the spreading tictiva
will return these nodes as the most likely intetggien of the content.

In the second example, the correct instance is wétd However, this node is isolated in the graph,
since there were no associated relationships irotielogy linking this particular instance to other
nodes. Since the instance of the class Dog is obemhéo domestic_cat, these nodes may amplify each
other’s signal to a greater degree than is posailtlee isolated node wild_cat. It is thereforelykthat
unless the weighting model is reconfigured, weuanlékely to obtain the correct output. The relevanc
of isolated nodes may be boosted by increasingateeof signal decay on other nodes in the graph.
However, there is a risk in doing so, since theneatedness of instances in the ontology is likely a
better reflection of the semantic content. It wolddbetter to suggest that the ontology would benef
from further development, for example to introdtioe ideas of habitat or fear.

The final example demonstrates a more subtle biteeiontology’s semantics, and the corresponding
graph. The overlapping signal from cat_scan anthbcancer suggests that cat_scan will be returned
instead of domestic_cat. Resolving this ambiguitytiie graph may require modification of the
weighting model, or further development. An advgetm this case however, is the different semantic
categories involved: the classes of Cat and Soaswéighting the starting activation signal on thsib
of a semantic category is less risky than re-wéigththe entire set of nodes in the graph. Evefusther
development of the ontology, e.g. to introduceitiea of animal allergies, would be beneficial.
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Figure 2. Graph representation of the sample ogyolo

Instance ID Associated Surface Forms
wild_cat {lions, tigers, cat, cats, cub}
domestic_cat {cat, cats, kitten }
domestic_dog {dog, dogs, puppy}
brain_cancer {brain carcinoma, brain tumour}
cat_scan {cat, cats, cat scan}

Table 1. Example surface forms for instance data.
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3 Method

3.1 Ontology Instance Graph

We extracted data from the UMLS Metathesaurus (8 Semantic Network (SN) and built a triple
store in RDF/XML8 format, defining owl:Class and owl:ObjectPropédayeflect concepts and relation-
ships. Using the Galaxy API described in sectiah ®ie built a spreading activation network, i.e. a
directed graph between instance IDs (vertices)aamsdciated relationships (edges). In order to marro
the proximity between the semantics of domain aext the chosen ontology, we chose to build a graph
of instance data. The SN is a high level ontol@y] therefore to assume that all relationships detw
Classes are applicable to all instances would Ipawduced many incorrect assertions, such as “All
Drugs have the set of All Drugs as ingredients’erBfiore, only instances of relationships that expfi
linked individual concept IDs (Concept Unique IdBats, CUIs) were used. Across the entire SN, a
single CUI may have various types of semantic autons with other nodes, for example in the cantex
of Drugs and treated Diseases, or separately gircdhtext of Chemicals and associated Compounds.
The UMLS CUIs were used as instance IDs to linkasig forms in the text to nodes in the graph.

It is important to point out that the UMLS ontology no means uses the full expressivity of OWL.
However, the general use of spreading activatiar evgraph derived from ontology content, is not so
limited. In other domains, and for ontologies ths¢ the full range of OWL expression, as longhas
graph is built from a source that expresses ottrmastic qualities (e.g. cardinality), the spreadinti-
vation strategy will still apply. For example, imetcontext of our sample ontology, consider adtigat
“cat”, the signal spreading to an additional adjgicede for the concept of “four legs”, and thelneot
concepts with four legs, such as “dog”, becomirtiyated. The Galaxy API fully supports this.

3.2 Test Corpus and Metric Calculation

We chose to use the MSH-WSD test corpus as ourgialtlard. This is a common test set used
across the literature in biomedical WSD. The mstrie@ used were Precision, Recall, FMeasure and
Accuracy, whereas prior research mainly focuse8amuracy. In WSD, a true positive is a disambigu-
ated output that matches a gold-standard, anda falsitive is output that does not match. As ticathl
WSD algorithms are designed to generate outpugfery word in the text, recall and precision aee th
same value. However, our algorithm works on thegipie of semantic relevance, and there is no guar-
anteed output; senses with sufficient weight affgeading activation will be displayed. Therefave,
have chosen to take a closer look at precisiorrecall, which is discussed in more detail in sectdo

Prior literature in biomedical WSD uses older vensi of UMLS data, e.g. 2009AB (Mclnnes et al,
2011). We chose to focus on the 2013AA releaseMES), in order to assess the most recent version
of the ontology’s semantic content, and in ordefatilitate a useful modification of the currentala
which could be leveraged by contemporary NLP systélrhis affected the comparison of test results
using the MSH-WSD data set.

3.3 Lexical Annotation

In conjunction with the graph described above, a@structed a set of lexical dictionaries that lithke
UMLS CuUIs or instance IDs, to portions of text id@aument. These portions of text, otherwise known
as surface forms, consisted of potentially manfediit strings associated with each ID. An example
of a data entry for a single UMLS CUI is in tablbélow. Dictionaries were compiled for each sentanti
category in the UMLS SN, with overlapping assooiasi between ID and textual surface form.

CUI Semantic Type Surface Form (Text)
C0018787 BodyPartOrRegion heart

cardiac structure
heart structure
coronary

four chambered heart
the human heart
Table 2. Surface forms associated with the corftégart”, UMLS CUI: C0018787.

8 http://www.w3.0org/TR/rdf-syntax-grammar/
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In order to maximise the potential for spreadintivation across the graph, we performed several
modifications to the underlying lexical data in UBILMT, to increase the variations of surface form
associated with instances of concepts. Our reagduairthis is as follows: the more instances of-con
cepts that occur in the text, the more nodes thafgtivated in the graph, and consequently theemor
opportunities for the activation method to spreatiand activate the set of concepts most relewant t
the semantics of the document text. For a simpaengke of this process, please see section 2.4. Exam
ples of transformations carried out in the datapsesented in table 3, below.

Pre-existing Term | Transformation Type | New AlternateSurface Form
leg, right Alternating Comma right leg

brain cancer Noun Phrase cancer of the brain
CANCER Casing Variants Cancer

Anaemia Spelling Variants Anaemia

Immunoglobulin g | Acronym Ig

Immunoglobulin g | Term + Acronym Immunoglobulin g1

Table 3. Examples of UMLS data transformations iaplpl

The use of a lexical part-of-speech tagger wasqodattly effective in filtering out instances ofrco
cepts that were obviously introducing unhelpfulseoiSome exemplary cases were the Amino Acids
“on”, “at” and “in” (prepositions), and the GeneGr@me “was” (verb). UMLS concepts that directly
overlapped with words that did not display an appete part-of-speech for a true concept (such as
adjective or noun), were removed from the docummatadata, and thereby not considered as input for
spreading activation. For this POS Filter, we chtosgse the MaxEntropy model from OpenNLP

3.4 Spreading Activation Strategy

The initial activation strategy was to set startimgights for all semantic categories to a valué.of
Decay factor of the spreading signal at each nodbd graph was set to an initial value of 0.5, mvhe
the graph was built. The initial threshold of seti@relevance was set to 0.1, and instances ratami
semantic value higher than this would be considexledyant. The lexical annotations from the presiou
step were used as input to the activation proeesknodes in the graph from instances in the texew
assigned their starting weight, according to theimer of semantic categories, and their associated
weights. As the signal is spread from these startodes, the decay factor is applied, reducingitjreal
strength. For each successive node, the signamitady reduced until it falls below the specified
threshold, and the activation process is compldtad.important to note that the ambiguity in werd
senses may not be entirely removed once the spgeadtivation has finished. The consequences of
this will depend on the particular end-goal. In dase of WSD, we are only interested in obtaining a
single most appropriate CUI for a given surfacefoWe therefore kept only the highest weighted CUI
in our system output. In the context of other NBBks, such as for named-entity inference or questio
answering and hypothesis generation (Ferucci @0dl]), it can be useful to preserve multiple ambig
uous outputs for later processing.

It was clear from the outset that simply buildingraph of the ontology instance data and semantic
relationships was not sufficient to score highlyttie WSD task. EI-Rab et al (2013), who used the
UMLS SN structure for graph-based WSD, reported\arall accuracy of (0.603) on the MSH-WSD
test set, which roughly correlates with our basetigstem (0.62). Our added advantage is that modifi
cation of the weighting strategy allows us to it imbalance, or to reduce the influence of those
portions of the graph that do not appear to engeugaspreading signal. Bgcusing on signal amplifi-
cation and decay, rather than modifying graph séic&nve can change the relevance of particular
portions of the ontology without losing any of thidginal semantic detail. Such modifications ane-se
sitive to performance in the NLP task but, critigatio not require the assistance of domain experts

We initially pursued a cautious approach to modifyhe activation strategy, by only decreasing the
starting weight of semantic categories associatddthe affected nodes. This weight was decreaged b
a factor equivalent to the number of overlappinmpaetic types on the same node. Following this, we
measured the accuracy of the approach against 8t¢-WSD test corpus for WSD, testing blind, that
is by only considering the overall accuracy. Uptmse examination of the instance graph, for tyges o

9 http://opennlp.apache.org/
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structure or characteristics of nodes that mayibeaehning or over-amplifying the spreading sign&g(s
section 4.1), we further modified the activatiorattgy to negate the potential influence that aerta
obviously problematic nodes may have. Modifying spreading activation strategy in this way, after
static graph analysis alone, produced much monerateoutput (see table 5, experiment 3).

We then decided to split the test set in the rattié:1, in order to more closely inspect the accyra
of particular cases of WSD, and attempt to corti@istspecific imbalance in the graph, while stérp
forming some independent validation of the outpie random nature of the split was to choose every
fifth example in the data, from the subset for e@eh. After performing WSD using this 80%, or trai
set, we discovered that it was possible to disistggroups of high and low performing nodes in the
graph, with respect to the set of static graph icstdescribed in the following section.

3.5 Static Graph Analysis (SGA)

As shown in the simple example in 2.4, assessni@mtology semantics can be done up front, before
the graph is used. Certain node characteristicsbraagxamined in the graph using a set of graph theo
retical metrics, and portions of the graph thatraveconducive to spreading activation may be ident
fied. This analysis allows us to make educated fiwadions to the weighting strategy for spreading
activation, as described previously. The set oplgmnaetrics we used is presented in table 4 below.

Metric Evaluation

In Degree # of inward semantic links
Out Degree # of outward semantic links
Total Degree (indegree + outdegree)
Inward Edge Type Variation (ETV)# of inward edge types
Outward ETV # of outward edge types
Total ETV (Inward ETV + Outward ETV)

Table 4. Static Graph Metrics derived from Die$2€110).

Following the use of these metrics, and the gatlgesf associated statistics, we categorised péaticu
groups of node in order to apply a common weighsiingtegy that should maximise performance of the
spreading activation algorithm. There were seveoahmon patterns that we identified, and chose to
target for re-weight. Examples of those nodesight negatively affect spreading activation are:

» |solated Nodes, where Total Degree is 0

» Unbalanced Nodes, where inDegree and outDegresigaificantly different

* Nodes with few variations in link type, or low Tb&ETlvV

» ‘Black Hole’ nodes, where there is a high DegreET¥ ratio (see section 4.1)

For isolated nodes, we examined the set of assdcsmantic categories, and boosted their starting
weight. For unbalanced nodes, where the indegreesigaificantly higher or lower than the outdegree,
we increased or decreased the decay factor acgbydia reduce the imbalance of the spreading $igna
For nodes with low ETV but high Degree, we incredse decay factor, in order to reduce the potentia
influence of a single over-used semantic link. &eerly promiscuous (Norvig, 1986) or ‘Black Hole’
nodes, we reduced the starting weight applied byatsociated semantic categories, and increased the
rate of decay. In certain cases, the intended neatiiins were incompatible, and resulted in cotiflig
changes to the graph and weighting strategy. Weemtain nodes might require a boost from one cate-
gory, the starting weight for the same category mesd to be reduced, due to an overly-connectee nod
elsewhere. We decided to inhibit the negativelynemted nodes only, in light of the increase inesyst
accuracy from reducing noise compared to the gam fmprovement of individual nodes.

4 Results and Discussion

The baseline activation strategy was promising. ifbtr@duction of a POS filter to ignore invalid in-
stances (see section 3.3) had a strong effectoall,rdue to reduced noise in the activation ofgraph.
Recall significantly improved upon the modificatioh starting weights after analysis of static graph
metrics, although precision fell slightly. This ués(0.82) constitutes state of the art in grapbdua
WSD for biomedical text. The fall in precision wast unexpected, since the graph was no longer so
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biased toward specific word senses. We also presknther experiment that incorporates a fall-back
mechanism for test cases where the spreading teotivédid not produce a disambiguated output. This
result (0.89) constitutes state of the art in overssupervised biomedical WSD. This allows our inoet
to assign a single word-sense for every ambiguanrs ar surface-form. This fall-back alone achieves
accuracy of 59%, comparing favourably with a dafaehse approach (54.5%: Mclnnes et al, 2011).
Finally, by identifying bias in the graph towardesfic senses in the test corpus, using an 80%esubs
of the MSH-WSD data set for training, and then modg the rate of decay for problematic nodes, we
achieved a significant boost to recall, and conentiy to overall accuracy. We draw a distinction be
tween this and other results since the testing medadlind, but was using the gold-standard corpus
directly, to examine the portions of the graph thidtnot perform well in testing. We envisage ttinés
may still be of practical use in real-world apptioas, by firstly developing an appropriate goldrut-
ard, which in conjunction with analysis of the dofyy instance graph, will result in optimal output.
The current results reflect the scope of spreadutiyation being set to the whole document. Only
one sense of a word is recognised within that coy@md documents containing multiple interpretagio
of the same word will not be correctly disambigdatdowever, by configuring the scope to a sentence
or paragraph we may reduce the potential accurbttyecoutput by decreasing the available instances
for activation. Prior research into the “One sepsediscourse” hypothesis suggests that the egistin
approach should be appropriate in up to 98% ofxc@Sale et al, 1992).

Experiment Description Precision | Recall | FMeasure | Accuracy
1. Baseline system 0.935 0.659 0.6639 0.62
2. Baseline + POS Filter 0.901 0.72L  0.7872 0.74
3. As in 2, with SGA re-weight 0.841 0.822 0.8317| .80

4. As in 3, confidence fallback 0.912 0.88f¢ 0.8995 0.89

5. SGA+WSD (20% test set) 0.986 0.942 0.9635 0.93
Mclnnes et al, 2011 0.72
J-Yepes & Aronson, 2012 0.87

Table 5. Comparison of WSD Results.

4.1 Identifying and Resolving Graph Bias or Imbalance

In experiment 5, having already identified speadifises that remained unbalanced, we attempted to
rectify this by examining the graph in parallelwihe WSD metric data. If a graph displays characte
istics indicating imbalance or bias, for examplesvéha node is unreachable (isolated in the graph),
node degree and node edge-type variation areuwaiatow (see section 3.5), it is less likely thia¢
spreading activation will reflect the meaning of text. We made discoveries similar to the follagvin

* 80% of nodes with Total ETV >15 had WSD precisibower 90%
* 60% of nodes with Total ETV <5 had precision oklésan 10%

We also discovered cases in the graph where ahamtleery high Degree (> 100), and relatively low
ETV. In terms of spreading activation, these nodesld be especially problematic. We have coined
the term ‘Black Hole Node’ to describe this phenaore In psycholinguistic terms, this may be com-
parable to the notion of a Freudian slip, where@enin the graph which is not immediately relevant
the context of the document, has become over-stir@diby its connectivity, or as Norvig (1986) would
suggest, its “promiscuity”. The signal will graatié towards such an over-connected node during the
process of spreading activation, affecting thevaahee of other nodes in that context. An examelol
hole node is the UMLS CUI C0035298, representimgtima in a human eye, with 1636 edges and 19
edge types. The extra noise in activating suchde mwan skew the signal across the entire graphdWor
senses that compete for relevance with this oraglaodes will have poorer accuracy. We modified th
activation strategy to reflect this by increasihg tate of decay on such nodes from 0.5 to 0.99.

By ensuring that only the graph weighting stratisgyodified, we can keep all word-senses present
in the graph, resolving the issue identified by Wgpr(1986) where such graph content had to be re-
moved. Using the WSD metric output, we also modiftee activation strategy to cope with bias toward
particular senses in the test corpus. We reduceesténting weight for semantic categories for tigh-h
scoring sense, in order to potentially increasedlative semantic importance of the alternativesss.
Table 6 demonstrates some of the improvements\ashigith regard to specific ambiguous terms.
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Term F-Measure Before F-Measure After
Murine Sarcoma Virus 0 0.47
Gamma-Interferon 0.013 0.28

RA 0.021 0.59

CCD 0.033 1

AA 0.899 0.99

Table 6. Examples of term-specific improvement gsarweighting strategy.

4.2 MSH-WSD Data Set

In working with the MSH-WSD data set, we came agmsny issues that Navigli (2009) previously
identified. The number of ambiguous senses (423he context of the full UMLS set of almost 3
million, reduces the validity of this corpus for aseiring real-world viability and accuracy. Further
this, our results with lexical analysis optimisatidemonstrate that the test corpus ignored suringnd
context for potentially overlapping terms, such'lsat” and “fruit bat”. In such cases, it would have
been more accurate to use the CUI for “fruit bat'ttze specific type of “bat”, but the test corposd
not reflect this. Our algorithm is sensitive to xiual semantics, so ensuring that all lexicalames
of any length remain present, potentially redubesaccuracy of the algorithm’s output, as wellres t
real-world utility of the approach. In spite of tharious data transformation techniques applied, ou
recall maximised at 96.4%. Critically, when we natize our overall accuracy (0.89) to take this into
account, we reach accuracy of 0.92, a significahiewement in unsupervised WSD. We are currently
examining what may be required to achieve maximealt of 100%. While such a result is not guar-
anteed, without full coverage of the test set, weenot yet measured the full potential of thishodt

4.3 Identifying Focus Areas for Ontology Improvement

One of the primary outcomes of this research isthod for the identification of specific ontology
portions that require further development. As weehseen in section 4.1, there are several candidate
which stand out. Other issues pointing to requéingldancements in the ontology were around the notion
of isolated nodes in the graph. An example of ihi5ADA", the American Dental Association. It is
surprising to discover that although this term’'soasated CUI (C0002456) is listed in 7 source amntol
gies of the UMLS SN, there are no semantic relatiips in the source between this CUI and any others
Of the 203 ambiguous terms in the MSH-WSD datasset those terms had associated nodes that were
similarly isolated in the graph. Without any senanglationship to other concepts, it is reasonable
suggest that the ontology would benefit from focldevelopment of these nodes’ surrounding context.

In terms of the variation of connectivity, we quickliscovered using our simple graph metrics that
the “SIB” or sibling relationship was extremely comon. Consider the concept C0325089 representing
thefelidae family or the animatat, which has 8 connections, but for which SIB is timy available
link type. Hard-wiring siblings in this fashion, thino other link, is unhelpful since spreading\ation
can already identify siblings from common parerde®m We contend that such concepts are not as well
connected as they may first appear, and are therefoong candidates for further development. This
will not be apparent from the Degree metric aldné,by combining Degree and Edge Type Variation
with node-specific accuracy in an NLP task, it bmes a straightforward process. Following this dis-
covery, we also suggest that an empirical analysigk quality would be beneficial, although this
would not be a trivial task given the size of tla¢adset (~3 million senses and ~700 link types).

5 Summary and Future Research

We have presented a new method for evaluating myptaemantics which has several advantages
over existing approaches. We have shown how thicafipn of graph theoretical analysis to semantic
structures like ontologies is a valid means by Whicassess their semantic quality, while enalilieg
recommendation of specific focus areas for furth®relopment. We have additionally demonstrated
that a graph-metric based weighting strategy foeaging activation can overcome an ontology’s in-
herent semantic inconsistencies, facilitating thenaisation of the ontology for a given NLP task.

In the case of our UMLS prototype, we made sigaifidmprovements using this technique, achiev-
ing state of the art in unsupervised knowledge d&g8D (0.82), as well as achieving state of thénart
overall unsupervised WSD, with the use of a fattkbarobability score (0.89). An additional semi-
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supervised approach, leveraging gold-standardfdataa training portion of the MSH-WSD data set,
had very promising performance (0.93). The amo@mneéguired input data to this method is relatively
small when compared with fully supervised approaches a single gold-standard annotation in each
target context is sufficient to evaluate the grapimg our spreading activation algorithm.

In future we would like to apply this techniqueadihier ontologies, and associated test sets, fer oth
domains in NLP. Merging of domain-specific ontokgiwith more general semantic resources like
Yago or Wordnet may help to facilitate the actigatdf otherwise poorly connected or isolated nodes
in the graph. We would like to investigate the adtic learning of an optimal spreading activation
weighting strategy. An empirical study comparingaddom human ontology reviewers with this
spreading activation technique, would also be lklpf

We would like to expand the set of metrics usedadspting other existing graph theoretical metrics
to suit the requirements of NLP. Some promisingeplas are “Centrality” and “Betweenness” outlined
by Brandes and Erlebach (2005), which determinegdlaive importance of a node within a graph. In
the case of UMLS, we can perform a comprehensaicsinalysis of all ambiguous CUIs within the
data set, identifying competing senses which ddawé sufficient separation in the graph. Theseesen
could then be targeted in the configuration ofgpeeading activation strategy.

As interest grows in the use of graph theoreticathmds for the analysis of cognitive processes (Van
Dijk et al, 2010; Bullmore and Sporns, 2009; Spp2@©3), exploring the relationship between spread-
ing activation in a graph representing ontology @etics, as performed in this research, and in theura
activity during psycholinguistic experimentatiora(ig and Evermann, 2010), becomes an exciting pro-
spect that may lead to a better understandingméstc processing in the human brain.
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