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Abstract

Certain common lexical attributes such as polarity and formality are continuous, creating chal-
lenges for accurate lexicon creation. Here we present a general method for automatically placing
words on these spectra, using co-occurrence profiles, counts of co-occurring words within a large
corpus, as a feature vector to a supervised ranking algorithm. With regards to both polarity and
formality, we show this method consistently outperforms commonly-used alternatives, both with
respect to the intrinsic quality of the lexicon and also when these newly-built lexicons are used
in downstream tasks.

1 Introduction

Lexicon acquisition represents one key way that the information in large corpora and other resources can
be leveraged in various NLP tasks, particularly when the range of lexical items involved in a particular
phenomenon is much more diverse than can typically be captured in manually-built resources. Another
property of the lexicon which might limit a manual approach is the fact that certain attributes are not
discrete, instead falling on a continuous spectrum; although there are manually-built dictionaries which
contain fine-grained judgments of spectra—an example is the MRC psychological database (Coltheart,
1980)—these tend to be very low in coverage, reflecting the difficulty in collecting this information.

Within computational linguistics, the continuous lexical attribute that has received the most attention is
undoubtedly the positive-negative spectrum, otherwise known as semantic orientation (SO) or polarity.
Much of the work focused on acquisition of this attribute at the lexical level has involved simplification
to a binary (positive-negative) or ternary (positive-neutral-negative) distinction (Hatzivassiloglou and
McKeown, 1997; Takamura et al., 2005; Kaji and Kitsuregawa, 2007; Rao and Ravichandra, 2009;
Mohammad et al., 2009; Volkova et al., 2013) but other work explicitly offers a continuous quantification
(Turney, 2002; Turney and Littman, 2003; Baccianella et al., 2010). Another spectrum with a prominent
role in the lexicon is formality (Brooke et al., 2010; Lahiri et al., 2011), which includes colloquial words
at one end, socially-distancing words at the other, and common vocabulary in the middle. In this paper,
we will focus on these two spectra; the method presented, however, is intended to be general, and as such
could be easily applied to other spectra such as those in the MRC database, e.g. abstractness (Turney et
al., 2011), and other kinds of variation captured in, for instance, Osgood’s semantic differential (Osgood
et al., 1957).

The typical approach to this problem involves semi-supervised methods using vector space and/or
graph representations and a set of seed terms. Our method is novel in that it uses fully supervised
SVM ranking of co-occurrence profiles, i.e. normalized counts of instances of binary text co-occurrence
between the target word and a large set of profiling words, selected on the basis of their frequency,
in a publicly-available blog corpus. The seed terms from earlier methods are now viewed as training
examples for building a supervised model that can connect the distributions of co-occurring words in this
wider vocabulary to relative locations on a continuous spectrum. This approach depends somewhat upon
improved manual lexical resources available for these tasks, such as the SO-CAL dictionary (Taboada
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et al., 2011) in the case of polarity, but we limit our (word) training set size in order to show it will
work in resource-scarce situations, such as languages other than English. Our method is straightforward,
practical, and offers essentially full coverage, including words and lexicogrammtical patterns that are
simply not accessible by the many popular methods that are primarily based on WordNet.

To evaluate, we compare our method with popular alternatives in both polarity and formality, with
particular emphasis on other methods based on corpus co-occurrence that have also been shown to be
generalizable across various spectra, i.e. LSA and PMI. For both spectra of interest here, we evaluate both
intrinsically using pairwise comparisons from manually-built lexical resources, and also extrinsically in
downstream tasks such as text-level polarity classification and sentence-level formality judgments. We
show our method is consistently superior across our various evaluations. We also show that not only are
co-occurrence profiles a good source of information for supervised ranking, but that a focus on ranking
rather than regression in this space appears to be fundamental to the success of a supervised approach to
lexical spectra.

2 Related Work

Viewed primarily as a categorical task, the creation or expansion of lexical resources for sentiment anal-
ysis is a commonly-addressed problem. In addition to SentiWordNet (Baccianella et al., 2010), which
we will compare to directly to here, there are numerous mostly semi-supervised approaches based on
exploiting the glosses and/or the graph structure of WordNet to determine whether a word is positive
or negative (Kamps et al., 2004; Hu and Liu, 2004; Kim and Hovy, 2004; Takamura et al., 2005; An-
dreevskaia and Bergler, 2006; Rao and Ravichandra, 2009; Hassan and Radev, 2010), or taking advan-
tage of some other lexicographic resources (Mohammad et al., 2009; Klebanov et al., 2013). The earliest
corpus-based approach was that of Hatzivassiloglou and McKeown (1997) who used local syntactic in-
formation, i.e. conjunctions, to make connections between adjectives; other work that makes use of local
patterns in a corpus includes that of Kaji and Kitsuregawa (2007) and Kanayama and Nasukawa (2006).
Turney (2002) built a continuous polarity lexicon using PMI based on Internet hit counts as a useful
measure of relatedness between seeds, and Turney and Littman (2003) compared this approach with
LSA, which uses general patterns of co-occurrence based on dimensionality reduction. Velikovich et al.
(2010) combined web-scale corpora with a graph-based approach, assigning polarity scores to n-grams
on the basis of the maximum weighed path from an n-gram to the seed terms, using a small (6-word)
context around the word. Like us, Volkova et al. (2013) use social media, iteratively labeling tweets
and words for subjectivity and polarity. Fully-supervised approaches to polarity lexicon acquisition are
rare, but one example is the work of Chetviorkin and Loukachevitch (2012), who classify words as being
sentiment-relevant in Russian using a small set of statistical features, including ratios across disparate
corpora.

Our interest in the continuous aspect of polarity overlaps with work on deriving the semantic intensity
of lexical items from corpora (Sheinman and Tokunaga, 2009); in this task, small sets of synonyms are
ranked according to their intensity, including (but not limited to) polarity. De Melo and Bansal (2013)
use a Mixed Integer Linear Programing algorithm to combine information from multiple pairs into a
single coherent ranking. As with some of the work in polarity, the focus is on adjectives and local
patterns which explicitly distinguish degrees of intensity e.g. not only x but also y, which limits its range
of application; it would not, for instance, be useful for formality or other more pragmatic variations.

Beyond the our work in LSA-based formality lexicon creation (Brooke et al., 2010) and the sentence-
level formality annotation of Lahiri et al. (2011), which we discuss later in more detail, there is a rela-
tively small amount of computational research that directly addresses formality. At lexical level, Li and
Yarowsky (2008) identify formal and informal synonyms in Chinese. Heylighen and Dewaele (2002) and
Li et al. (2013) both offer text-level quantifications of formality; the former is based on POS frequency,
while the latter is based on the Coh-Metrix textual metrics. Using these kinds of metrics, formality
has been evaluated in social media (Mosquera and Moreda, 2012). A supervised text classification ap-
proach to formality is offered by Sheika and Inkpen (2012). Lexical formality is obviously related to
lexicon-based readability (Kidwell et al., 2009) and lexical simplification (Carroll et al., 1999), and is
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also relevant to the recent interest in identifying social relationships (Peterson et al., 2011) and shows of
politeness (Danescu-Niculescu-Mizil et al., 2013).

3 Method

Our approach to lexicon acquisition falls into the general category of corpus-based techniques. For both
attributes addressed in this paper, we use the same corpus, the 2009 ICWSM Spinn3r dataset (Burton et
al., 2009), a publicly-available blog corpus which we also used in our earlier work on lexical formality
(Brooke et al., 2010). Blogs are a good resource for broad lexical acquisition because they are very
broad in style and content, and are available in essentially unlimited amounts. We use the English Tier 1
(high-quality) blogs that have at least 100 word types, excluding duplicate texts; after this filtering, our
dataset contains a total of about 2.4 million blogs.

To build a lexicon for any continuous attribute of interest, we begin by creating co-occurrence profiles
as follows: First, we select a document frequency range min-df, max-df that determines a set of profile
words P in a corpus S, where for each p ∈ P, the document frequency df S

p of p in S is limited to be
min-df < df S

p < max-df ; that is, each profile word appears in more than min-df documents, but fewer
than max-df documents in our corpus. Then, given a sample size n and a target word w that we wish to
profile, we sample a set of n texts from S which contain the target word (or all the documents where the
word appears, if it appears fewer than n times), and count the document frequency of each profile word
p in this subcorpus, Tw. We ignore the term frequencies within individual documents because a binary
representation is known to be preferred for stylistic dimensions like formality (Brooke et al., 2010),
and this seems to be also somewhat true in the domain of polarity, where better results can be obtained
when multiple instances of a polar word are discounted (Taboada et al., 2011). To avoid overfitting our
statistical model, we do not count a word as appearing with itself. Once we have sub-corpus document
frequences df Tw

p for each p, for each profile word p we define the element of our co-occurrence profile
vector vp as

vp =
df Tw

p

∑q∈P df Tw
q

That is, we normalize each count by the sum across all counts, such that the L1 norm of v is 1. For our
applications here, the dimension of the co-occurrence profile vector is typically in the tens of thousands,
but to illustrate the creation of this vector, suppose we choose an extremely narrow document frequency
band min-df, max-df, such there were only three co-occurrence profile words: p1,p2,p3. For some word
w, we sample n instances of texts from our corpus which contain w, and find that p1 appears in 10
of these texts, p2 in 40 of them, and p3 in 50 of them. The resulting co-occurrence profile vector is
v = 〈0.1,0.4,0.5〉. This profile could be viewed as a distributional vector space representation of the
word (Turney and Pantel, 2010), or as an estimate of the probability of each p occurring with w; without
any further manipulation, however, we will use it directly as a feature vector for our supervised ranking.

In order to proceed with a supervised approach, we need a ranking of a set of words relevant to
the lexical attribute that we wish to acquire; this ranking is specific to the attribute in question, so we
discuss this in later sections. Given such a ranking (which, we note, may be partial), we apply SVMrank

(Joachims, 2002), which is part of the SVMlight set of SVM-based machine learning tools. SVMrank

was developed for ranking web page results, and, to our knowledge, has not been applied in this space.
SVMrank uses an algorithm which optimizes the Kendall’s τ (Kendall, 1955) between a correct ranking ra

and the automatically-generated ranking rb. The simplest version of τ is based on the number of pairwise
rankings which are in concord (C), i.e. both rankings rank the pair relative to each other and the pairwise
rankings are the same, or in discord (D), i.e. both rankings rank the pair relative to each other but the
rankings offered are contradictory. τ is defined as:

τ(ra,rb) =
C−D
C +D
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In practice, this is accomplished in SVMrank by modifying the original SVM algorithm to use as feature
vectors the difference between ranked input vectors, rather than the input vectors directly. In the context
of this feature space, this means that the model is trained on vectors which represent the differences in the
co-occurrence profiles of ranked words; if the word with co-occurrence profile u is ranked higher than
a word with co-occurrence profile v in our annotation, then SVMrank will try to find a weight vector w
such that (u−v) ·w > 0, where w is constrained to be a sum of co-occurrence profile differences (i.e. the
support vectors). Like standard SVM, ranking SVM uses a C parameter which represents the trade-off
between margin size and classification errors, though the interpretation of the margin in ranking SVM
is less clear. The output of the classification step of SVMrank is a number for each word which can be
used directly to rank words, or which can be normalized across words into a scale. If the input rankings
also have a continuous numerical representation (which is true in our case for polarity), then this ranking
approach can be compared directly to a standard regression which is not directly sensitive to rankings; to
maximize comparability, we use the regression function included in SVMlight for this purpose. For both,
we used a linear kernel.

There is a small number of parameters that need to be set: the sample size n, the frequency range
min-df, max-df, and the SVM C parameter. For each of the two lexical attributes of interest, we carried
out independent tuning of these parameters using 5-fold crossvalidation in the training set, carrying out a
grid search at powers of 10. We will discuss the values of parameters with respect to specific experiments
later, but we mention here that a higher-than-default C, which corresponds to more emphasis on avoiding
error rather than maximizing the margin, gave better results for both ranking and correlation, though with
diminishing returns. The role of n is primarily to make the method (much) more tractable, but we suspect
it might be beneficial to the training of the model for the profiles to be based on a uniform number of
examples across word types.

Before we move on to the experimental evaluation, we highlight some intrinsic advantages of this
model, independent of performance. As a technique based on large corpus co-occurrence, it has the im-
portant property that it can go beyond the limited vocabulary offered by, for instance, WordNet. Since
we rely only on co-occurrence, we are not at all limited to individual words (or specific types of words):
we could just as easily derive attribute values for n-grams, collocations, or full lexico-grammatical con-
structions (for instance, distinguishing high as related to price from high as related to quality); though
our interest here is in general lexical properties, there is no reason this approach could not be used
for domain-specific applications, for any lexical units that appear often enough to obtain a reliable co-
occurrence profile. Unlike many graph-based techniques, new vocabulary can be classified directly with-
out perturbing the model, potentially in an online fashion if the corpus is properly indexed (which, we
note, is by far the most time-consuming step of our method). Though some lemmatization may be re-
quired for highly inflectional languages, the method extends easily to any language for which blog data
is likely to be available in sufficient quantities. Our approach is more straightforward than most other
methods based on co-occurrence, which means fewer arbitrary choices and nuisance variables (such as
the dimensionality k or feature weighting typically used in dimensionality-reduction approaches such as
LSA); the parameters that we have are fairly well-behaved. Unlike methods which rely only on examples
from the extremes of a spectrum to derive a quantification of it, our method naturally integrates examples
from the middle of the spectrum (e.g. neutral examples in the case of polarity), but does not inherently
require fine-grained quantification of the entire spectrum; in fact, pairwise examples alone could be used
for training.

4 Polarity experiments

4.1 Word-level Evaluation

We first consider whether our model can be used to build a lexicon which reflects the polarity spectrum.
Our training set of words is taken from the SO-CAL dictionary (Taboada et al., 2011), which has man-
ually assigned SO (polarity) values for words at integer intervals in the range +5 to −5. The entire
dictionary contains about 5000 words, but we do not use the entire set: first, we restrict our investigation
here to adjectives, which allows us to sidestep inflection issues (we do not consider comparative adjec-
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tives), and we randomly select only 50 words from each of the 11 possible SO ratings in the dictionary
(for a total of 550 words), so as to mimic a (relatively) low-resource situation as we might find working
in other languages, and to make it possible to keep the counts equal across SO ratings. Note that the SO-
CAL dictionary does not contain neutral words (words not in the dictionary are assumed to be neutral),
but we used a set of about 200 hand-marked neutral adjectives that had been excluded from the lexicon
during its creation from the words in a set of Epinions product reviews, and which were used for the
original dictionary evaluation by Taboada et al. (2011).

After training our model, we evaluate in two test sets. The first test set is the rest of the SO-CAL
dictionary, excluding words in the training set as well as those not given a rating by SentiWordNet (see
below). Note that this set is not balanced across SO values, since there are many more weakly positive
(SO 1 to 3) or weakly negative (SO −1 to −3) words than more-extreme or neutral words; we would
argue, though, that this reflects the actual situation in subjective corpora such as product reviews. To test
whether we might be overfitting to the product reviews domain, we also test using annotations from the
MPQA (Subjectivity) lexicon (Wilson et al., 2005), which was built primarily from news texts.1 For this,
we again include only words that are in SentiWordNet. The MPQA lexicon uses a very different tagging
schema than the SO-CAL dictionary, with 3 polarity categories (positive, negative, and neutral) as well
as two degrees of subjectivity, weak or strong. Strong or weak subjectivity is defined as how reliable
an indicator of subjectivity the word is, which does not directly correspond to the rationale used for
the SO-CAL dictionary (which is closer to the notion of force or intensity); the results in Taboada et al.
(2011) and our own examination of the lexicon suggest, however, that there is some correlation.2 Despite
this uncertainty, we combined the MPQA tags to form a polarity spectrum: strongly subjective negative,
weakly subjective negative, neutral, weakly subjective positive, strongly subjective positive. Given a
ranking by our SVM ranker, we evaluate overall pairwise accuracy by considering all possible pairings
of words across different ratings within the SO-CAL or MPQA test sets, and count the percentage of
those where the ordering of the pair with respect to the polarity spectrum is correctly predicted by the
ranking. For a more detailed breakdown, we divide these pairwise comparisons into 3 categories: polarity
(pairs which involve one positive and one negative word), neutrality (pairs which have one neutral word),
and intensity (pairs which have two words with the same polarity). Note that much work in bootstrapping
lexicons for sentiment analysis uses precision and recall, but this is not the most appropriate evaluation
metric in this case because our method can assign a rank (and, eventually, an SO value) to any word in the
2 million word vocabulary of our corpus.3 Here, we are interested only in reliability of these rankings.

During parameter tuning in the development phase, we found that min-df = 103, max-df = 105 was a
good choice: in other words, our profile words are words that appear less than once in 24 texts, but more
than once in 2400 texts. In the ICWSM, there are 30,852 words that fall into this category, so that is the
length of our feature vector. Based on results in the development set, we take n = 1000 as our default;
larger samples provided no appreciable benefit and were even slightly worse in some cases. For the SVM
C parameter, we used 100. We also test using SVM correlation, using the same parameters.

In addition to these variations on our co-occurrence profile technique, we also compare with three
independent alternatives. The first is SentiWordNet 3.0 (Baccianella et al., 2010), which uses a random
walk method in WordNet to derive positive, negative, and neutral values (which sum to 1) for each synset
in WordNet. We follow Taboada et al. (2011) in converting this to a single spectrum for each word by
subtracting the negative score from the positive score, and averaging the result across senses for each

1There are of course other popular manually-built lexicons, for instance the General Inquirer (Stone et al., 1966), but they
tend to have only binary annotations.

2One example of where these two dictionaries differ is the word nervous, which is tagged as a strongly subjective negative
word in the MPQA, but has only a−1 score in the SO-CAL dictionary, since it does not describe a particularly intense negative
emotion. An example of a −5 word is horrendous, which is also a strongly subjective negative word in the MPQA. Instances
of discord where the SO-CAL dictionary is clearly stronger are rarer, but an example is comprehensive, which has an SO of 3
in SO-CAL, but is weakly subjective in the MPQA, probably because of its common descriptive uses, such as in the context of
insurance and (in the UK) education.

3We have not yet build such a lexicon, but, to facilitate comparison, but we are making available raw scores for all the
adjectives already contained in at least one of the SO-CAL, MPQA, and SentiWordNet lists (excluding the 550 training words),
as well as lists of specific words used for training and testing. These resources can be found at http://www.cs.toronto.edu/
∼jbrooke/rankingpolarity.zip .

2176



Table 1: Results of polarity experiments. Left side of table shows pairwise accuracy (%) for various
sentiment lexicon ranking methods in SO-CAL and MPQA test sets. Pol. = Pairs with different polarity;
Neu. = Pairs with at least one neutral word; Int. = Pairs with the same polarity, but different intensi-
ties. Right side of table shows text polarity classification accuracy (%) in Epinions Corpus for various
adjective lexicons. Bold is best in column.

SO-CAL words MPQA words Epinions texts
Method Pol. Neu. Int. All Pol. Neu. Int. All Acc.

SentiWordNet 82.3 72.3 57.4 72.1 82.8 72.0 49.9 72.0 65.8
LSA 83.5 70.6 63.0 74.5 82.5 70.2 64.0 75.8 66.3
PMI 86.3 73.6 65.8 77.3 84.5 73.4 61.6 76.9 68.0
Profile regression 80.2 67.6 59.6 71.2 77.6 69.0 74.7 75.8 60.3
Profile ranking 88.6 75.7 67.5 79.4 87.5 74.0 56.5 77.0 71.8

word (in that paper, they also considered using only the most common sense but found the results to be
indistinguishable). The second alternative uses the semi-supervised LSA-based method of Turney and
Littman (2003). For the first step, singular value decomposition, we use a binary term-document matrix
with the same ICWSM texts as our supervised model, with k = 500 (a fairly standard choice). In the
second step, which involves calculating the cosine similarity with a set of seed terms using the LSA
vectors and then taking the difference, the positive and negative seeds are just the training instances for
our supervised model (neutral terms are discarded). Our third comparison is the PMI approach of Turney
(2002), which is still popular: for instance, PMI was used to built a Twitter sentiment lexicon in the
winning entry in a recent shared task (Mohammad et al., 2013). Because they have access to the same
corpus and even the same example words as our method, the LSA and PMI alternatives are most directly
comparable to ours.

The results for the word-level polarity experiments are shown in the left side of Table 1. In the SO-
CAL test set, the results are clear: our SVM ranking method is preferred over alternatives, across all the
different categories of pairwise comparison. The relative difficulty of each pair type reflects the average
distance between relevant pairs on the spectrum, as expected. Surprisingly, the correlation method,
despite using the same feature input as the ranking method, is the worst performing method here, though
SentiWordNet is only marginally better, while LSA falls roughly in the middle of the range, and PMI is
the strongest competitor. One potential criticism is that a ranking method is likely to have an advantage
when evaluating by rank. This is true, but we think that relative rank among words is fundamental to
the notion of a spectrum, whereas the bucketing of words into evenly spaced integer ratings is just an
annotation convenience. That said, our output ranking is perhaps too fine-grained in comparison to our
input (offering a full ranking for all words), and it would be desirable if our ranking algorithm allowed
us to encourage some words to be ranked the same.

Although SVM ranking is also the best method on the MPQA test set, the results are marginal as
compared to the SO-CAL test. Part of this could be a moderate amount of domain overfitting, or perhaps
the ranking method is better at fine-grained scales relative to the other methods. However, the most
obvious difference between the test sets appears relative to the intensity comparison, where the profile
ranking performance is relatively poor. This is likely attributable to the differences between the two
kinds of annotations: the SVM ranking method learns the SO-CAL intensity scale fairly well, but this
actually becomes a handicap when degree of subjectivity and not force is the deciding factor; on the other
hand, corpus-based models which did relatively poorly in all the other evaluations (profile regression,
LSA) actually do somewhat better in MPQA intensity than their most comparable alternatives (profile
ranking, PMI) to a degree that is in fact proportional to their relative inferiority elsewhere, suggesting
that sensitivity to degree of subjectivity might be interfering with acquisition of the SO-CAL polarity
spectrum. Interestingly, the value provided by SentiWordNet does not seem to correspond well to either
of these interpretations of intensity, since it does rather poorly with respect to both.
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4.2 Text-level Evaluation

The most common use of polarity lexicons is the task of text polarity classification (Turney, 2002),
identifying whether an opinionated text is positive or negative. In this section, we convert the initial
output of the models to polarity lexicons with an appropriate scale so that we can use the SO-CAL
software (Taboada et al., 2011) to carry out text sentiment analysis with our alternative adjective lexicons
rather than its original, manually-built one. SO-CAL is an unsupervised lexical sentiment analysis system
with a number of built-in features, e.g. handling of negation and intensification, that improve the accuracy
of the model, particularly when using a fine-grained, high-precision lexicon. Taboada et al. evaluate
across 4 corpora of balanced product reviews. For our evaluation, we use one of those corpora, a set of
400 product reviews from Epinions, with 50 balanced texts from each of 8 product categories (movies,
books, cars, computers, cookware, hotels, phones, and music). Taboada et al. call this corpus Epinions
2, to distinguish it from the Epinions corpus that the SO-CAL dictionary was built from. They report an
accuracy of 80% using SO-CAL with all word types and features enabled.

Our interest here is to test the influence of lexicon quality on polarity detection. Coverage, though
of course important, is actually a potential source of noise: Low coverage can naturally result in low
performance, but Taboada et al. point out that high coverage can also cause problems, when many of the
rarer words added to the lexicon, even when human-tagged, are not relevant to the primary sentiment of
the text, but rather irrelevant aspects like (in the movie or book domain) character descriptions. Steps
can be taken to mitigate this by identifying relevant sentiment (Scheible and Schütze, 2013), but here
we sidestep this problem by forcing our lexicons to have exactly the same coverage by limiting them to
words that appear in the static SentiWordNet lexicon. Again, we also consider only adjectives here.

To build the lexicon for this evaluation we used a different training set: it is not possible to take 50
samples from each SO rating in the SO-CAL adjective lexicon and not have training words that also
appear in the corpus, which we explicitly wanted to avoid.4 Instead, we train using all the adjectives in
the SO-CAL dictionary that either don’t appear in the Epinions corpus or don’t appear in SentiWordNet
(since we are limiting our output lexicon to SentiWordNet words). This results in a much larger training
set than in the word-level evaluation (about 1500 words), but they are distributed unevenly across SO
ratings. Relative to the word-level evaluation, this is closer to the situation if we were using the entire
SO-CAL dictionary to expand the lexicon. We use the same set of training words as seeds for LSA.

To convert SentiWordNet to a SO-CAL-compatible dictionary, we simply multiply the raw score,
guaranteed to be between −1 and +1, by 5, creating a range of −5 to +5. For the raw scores for our
other three options (LSA, profile regression, and profile ranking), we linearly scale the raw score so that
the mean within the lexicon is 0, and a SO +5 word is at the third standard deviation away from the
mean; we choose a rather severe scaling so that there are only a handful of words in the lexicon whose
absolute value is over 5, which SO-CAL is not designed for.

The results of this evaluation are shown on right side of Table 1. Profile ranking is once again dom-
inant, almost 4 percentage points better than the second-best option. The ordering of the lexicons here
is exactly the same as we saw for the word-level evaluation in SO-CAL, though SentiWordNet does
somewhat better than would be expected from those scores. Again, regression does quite poorly despite
having access to the same feature vectors as the ranking method. We note that our results here are also
markedly better than all the other automatic lexicons compared by Taboada et al., namely a PMI-derived
lexicon based on Google counts (Taboada et al., 2006), and a binary lexicon built by expanding entries
in a thesaurus (Mohammad et al., 2009), and are even a bit better than using the human-tagged (binary)
annotations from the General Inquirer (Stone et al., 1966), though we are still quite a long way from what
is possible with the full manual SO-CAL dictionary. Since the quality of the lexicon is directly reflected
in our polarity classification scores here, it is not surprising that our gold-standard lexicon is superior;
in this context, it should be viewed as an upper bound. Nevertheless, we have strong evidence here that
our co-occurrence profile ranking method is a step in the right direction relative to other methods for
automatically building lexicons.

4For all of our evaluations in this paper we were careful never to use the score of a word which appeared in our training set;
the drawback of this is that our training set size is not constant.
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5 Formality Experiments

5.1 Word-level Evaluation
Though the lexicon is perhaps more fundamental to distinctions of polarity than is the case for formality,
nevertheless formality is strongly expressed through word choice; for instance, in English using the
word dude to address a socially-powerful stranger would generally be unacceptable, and it would be
very strange to address a good friend as sir, except as a joke. These are not isolated examples: a huge
portion of the vocabulary is marked to some degree in this fashion, and requires special attention when
moving across text genres or social situations. Word length (in English, at least) and word frequency
can be used as a simple proxy (longer, rarer words are, on average, more formal), but the example above
belies this approach: sir is a shorter word than dude, and it is not immediately obvious that it would
appear less in, for instance, a news corpus, than dude.

In previous work (Brooke et al., 2010), we used the LSA co-occurrence method of Turney and Littman
(2003) discussed in the previous section to derive a formality lexicon using the ICWSM (which was the
best among various corpora tested, including the BNC). For testing, we used a set of 399 synonym
pairs that were pulled from a writing manual focused on word choice, Choose the Right Word (CTRW)
(Hayakawa, 1994), where the author explicitly compared words for their formality, showing that co-
occurrence was a better approach to identifying lexical formality than proxies related to word length or
word frequency. We note that many of the distinctions in the CTRW set are quite subtle, for example
determine vs. ascertain, both of which seem at least somewhat formal, though ascertain was judged by
the expert to be the more formal of the two. In this section we will build a formality ranking using our
profile ranking method, and show that it is better than the LSA method in the CTRW dataset. Here, we
follow our earlier work in using a much smaller k value (20) than is typical for topical uses of LSA,
which we found was better for this dataset, since major stylistic differences seem to be mostly captured
in the first few dimensions after dimensionality reduction, a result which is consistent with the work of
Biber (1988) looking at differences across registers.

Unlike for polarity, there is no resource available that offers a full scale of formality for a large number
of words, and the set used in our initial work on formality has only extreme, handpicked words. In more
recent work (Brooke and Hirst, 2013), we used a larger set of words (900) that included a variety of
different styles that had been tagged by a group of 5 annotators. In that work, we did not use the
term “formality,” but one of our styles, colloquial, corresponds to the informal end of the spectrum,
and two other styles, objective and literary, can both be viewed as social-distancing language.5 The
words tagged by annotators as belonging to neither of these categories will serve as the middle of this
spectrum. Compared to our polarity lexicon, our training set therefore is much more coarse-grained (with
only 3 rankings, as compared to 11 for polarity), but the pairwise relationships can be used to build a
fine-grained scale. As before, we remove all words that overlap with our test set.

With respect to parameters, we use the same n as in the polarity experiments, but in development we
saw better performance from a higher C (10,000) and a lower bottom bound on the document frequency
range, df-min = 102. The latter might reflect the fact that rare vocabulary has a strong tendency to be
associated with extreme formality, though there is also a limit to this, since if a word is so rare that it
hardly ever co-occurs with anything, it cannot possibly be useful for training no matter how good an
example of extreme formality it is. The results using these settings are shown in the left side of Table 2.
Again, our profiling method is clearly better than lexicon-based alternatives. LSA outperforms PMI in
the word-level task, a result which is consistent with our other work in stylistic lexical induction (Brooke
and Hirst, 2013),6 and all the co-occurrence methods are well above the word-length baseline.

Figure 1 contains a more detailed analysis of the influence of individual document frequency bands: we

5The objective dimension corresponds roughly to the style of a technical document, while the literary dimension involves
flowery, even archaic language that suggests a literary sophistication. Contrast so with synonyms therefore (objective) and thus
(literary), which are both more formal, but in different ways.

6We suspect this is due to the fact that LSA vectors encode information about word frequency: even when the vector norm is
controlled for, we have found that the LSA vectors of high- and low-frequency words have consistently different distributions,
which may help in identifying extremely low frequency, highly formal words appearing in the CTRW dataset; by contrast, PMI
and other probability-based approaches seem to behave more erratically when presented with low-frequency items.
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Table 2: Results of the formality experiments. The second column shows pairwise accuracy of different
models identifying the more formal of two synonyms in CTRW test set. The third column shows average
correlation with two human 5-point Likert-scale formality annotations of the 500 sentence test set.

Method CTRW words Sentence Evaluation
Word length 63.7 0.36
LSA 78.7 0.49
PMI 72.2 0.52
Profile ranking 86.5 0.55

Figure 1: Pairwise accuracy in the CTRW test set for various frequency bands. Dotted line represents
performance using best parameters from development phase, i.e. max-df = 102, max-df = 105.

built models for each of our frequency bands (ranges between two consecutive powers of ten), and tested
them in the CTRW corpus. The flat dotted line represents the larger band we used based on development
performance, 102–105. We see that accuracy peaks at 103 to 104 df band, at a value (87.3%) which is
higher than we saw with the larger band chosen based on the development set. The words in this band
are fairly uncommon, appearing less than once in 240 texts, but greater than once in 2400 texts; still, as
a group they provide enough evidence to make a strong determination of formalty.

5.2 Sentence-level Evaluation
Lahiri and Lu (2011) report on the creation of 5-point Likert scale annotations of sentence-level formality,
with two ratings for each of 500 sentences taken from separate texts in a diverse corpus which includes
news, blogs, forums, and academic papers (Lahiri et al., 2011). In this section, we use this annotation
to carry out an extrinsic evaluation of our lexical formality ratings. As far as we are aware, this is
the first use of this annotation for evaluating metrics of formality. We extract all lexical words (verbs,
adjectives, adverbs, and nouns, though we omit proper nouns) from the sentences and use the 3-way
formality annotation with these words removed to create LSA, PMI, and profile ranking models, which
are then used to create a formality lexicon for these words, using the same method we used to create the
SO lexicon. Given a lexicon, we averaged the formality score across each sentence (ignoring duplicate
items) to get a formality score for each sentence. We calculate Pearson’s correlation coefficient between
our score and each of the two annotators, and then average the result. For comparison, the correlation
between the two human annotators is 0.60.

The results in Table 2 indicate that the preference for the profile ranking method seen in the CTRW set
extends directly to sentence-level formality ranking, and the level of correlation reached by the profile
ranking method approaches correlation between humans. This supports our claim that lexical choice
is very important to formality: our results here indicate that humans with access to other indicators of
formality (for instance, use or avoidance of particular syntactic constructions) agree only slightly more
with each other than our lexicon-only model does with them.
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6 Conclusion

In this paper we have presented a novel approach to determining where a word lies on a spectrum, using
just counts of words that it tends to appear with and an SVM ranking algorithm, both of which are key
components to its success. We have shown that it can be applied to at least two continuous attributes of
interest in computational linguistics, namely polarity and formality, and that the benefits of this method
relative to established alternatives are visible not just in direct lexicon evaluation, but also in the NLP
tasks where these lexicons can be used. Even with a relatively small set of words to train with, we
see little sign of overfitting, and although we have focused on a small set of words here, our method is
efficient enough that it could easily be applied to a much larger set of lexicogrammatical units, though
we will also have to derive ways to filter out unreliable assignments to reduce overall noise. Other
future work will involve looking at other spectra, other languages, other supervised ranking models, and
improving our performance generally by being more selective of profile words or training examples or
by refining our rankings by including other sources of information such as WordNet.
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