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Abstract

We propose an algorithm for coreference resolution based on analogy with shift-reduce pars-
ing. By reconceptualising the task in this way, we unite ranking- and cluster-based approaches
to coreference resolution, which have until now been largely orthogonal. Additionally, our
framework naturally lends itself to rich discourse modelling, which we use to define a series
of psycholinguistically motivated features. We achieve CoNLL scores of 63.33 and 62.91 on
the CoNLL-2012 DEV and TEST splits of the OntoNotes 5 corpus, beating the publicly available
state of the art systems. These results are also competitive with the best reported research systems
despite our system having low memory requirements and a simpler model.

1 Introduction

Coreference resolution is the task of partitioning mentions in a document, usually noun phrases, into
clusters which correspond to their real world referents. It is typically approached as a classification task
between mentions; given a set of mentions, systems predict the likelihood of their being coreferential
with one another and translate these scores into a clustering in a decoding phase.

The task has received considerable research attention due to its importance for downstream inference
in tasks such as named entity linking and relation extraction. While simple, local models of coreference
have established a reasonable baseline, encoding global consistency requirements remains a challenge
since their complete representation is computationally intractable. Two promising but orthogonal direc-
tions addressing the need for global consistency measures are ranking-based decoding (Ng and Cardie,
2002; Denis et al., 2007; Fernandes et al., 2012; Durrett and Klein, 2013; Chang et al., 2013) and
cluster-based modelling (Rahman and Ng, 2009; Raghunathan et al., 2010; Lee et al., 2011; Klenner and
Tuggener, 2011). However, among current systems, decoding strategies are increasingly complex and
cluster-based models do not fully leverage psycholinguistic cues such as reading order.

The primary contribution of our work is a reconceptualisation of the coreference task by analogy with
the shift-reduce parsing algorithm. This reconceptualisation allows us to capitilise on both ranking-
and cluster-based approaches and our system, LIMERIC, outperforms systems using either approach in
isolation. We go beyond the shift-reduce algorithm by interpreting our stack of partially formed clusters
as a reader’s mental status while reading. This allows us to introduce a series of rich discourse features
which capture antecedent competition and cognitive accessiblity via a cluster’s position in the stack.

Our system is simple and efficient, using maximum-margin averaged perceptron classification and
optional beam-search decoding during inference. Despite requiring only a limited amount of memory,
our system achieves the competitive CoNLL scores of 63.33 and 62.91 on the CoNLL-2012 DEV and
TEST splits of the OntoNotes 5 corpus (Pradhan et al., 2012). We argue that this is due to its more faithful
representation of cognitive processing and that extending psycholinguistic insights in modelling is a very
promising research direction for even further improvement.
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2 Related work

Early computational approaches to coreference resolution were built around what is now referred to as
mention-pair models. Such models use two stage resolution; the first stage calculates pairwise scores
reflecting the likelihood that a mention and its candidate antecedents are coreferential while the sec-
ond phase decodes these scores into coreference clusters. The simplest way to decode is locationally
greedy (Soon et al., 2001), in that the closest candidate with a compatibility score over some threshold is
deemed a mention’s antecedent. Anaphoricity determination (determining whether a mention constitutes
a good first mention of an entity) is mediated by the threshold since a mention without a sufficiently
good candidate antecedent starts a new cluster. While these local models achieve a reasonable baseline
(Soon et al. (2001) achieves MUC F-scores of 62.6 and 60.4 on MUC 6 and 7), they can make global
consistency errors which limit their usefulness downstream. For instance, in the following excerpt from
bn/voa/00/voa 0068 of OntoNotes 5, it is possible that a system uses local evidence such as synonymy
to misclassify the ship as the antecedent of a huge Norwegian transport vessel and similarly The battered US
Navy destroyer Cole as the antecendent of the ship; unfortunately, these local decisions imply a clustering
in which Cole is referred to as a Norwegian transport vessel.

The battered US Navy destroyer Cole has begun its journey home from Yemen ... Flanked by other
US warships and guarded by aircraft, the ship was towed out of Aden Harbor to rendezvous with a huge
Norwegian transport vessel

While exhaustive comparison would remedy the situation, complete inference has exponential time
complexity and so is unrealistic for practical systems. Furthermore, since humans are able to resolve
reference on the fly, it seems reasonable that psycholinguistic heuristics would similarly help the task
while remaining efficient.

Active research aims to approximately encode global consistency measures, via ranking-based decod-
ing and cluster-level modelling. Ranking-based decoding strategies (Ng and Cardie, 2002; Denis et al.,
2007) improve locationally greedy decoding by defining a search window and deeming the best, rather
than the closest, candidate within the window to be a mention’s antecedent. The publicly available Rec-
oncile system1 (Stoyanov et al., 2010a; Stoyanov et al., 2010b) uses a simple encoding of this strategy
while more recent approaches (Fernandes et al., 2012; Durrett and Klein, 2013; Chang et al., 2013) in-
corporate the concept within highly sophisticated models. While these systems achieve state of the art
performance, they do so at the expense of model complexity.

In cluster-level modelling approaches (Rahman and Ng, 2009; Raghunathan et al., 2010; Lee et al.,
2011; Klenner and Tuggener, 2011), instead of basing scoring on the compatibility of pairs of mentions,
mentions are compared against incrementally grown partial clusters. This, for instance, may allow a
huge Norwegian transport vessel to be compared against a cluster containing both the ship and The battered
US Navy destroyer Cole, allowing nationality discord to weigh against the clustering. In this way, global
consistency information becomes more important as a mention needs to be compatible with multiple
mentions in a cluster, rather than its closest or best antecedent. However, there have been problems
with these implementations including their being heavily focussed on surface level features and failing
to fully utilise psycholinguistic cues such as reading order. A notable exception is Recasens et al. (2013),
which provides a computational model of low salience discourse entities and demonstrates its efficacy in
filtering system mentions in the Stanford sieve system (Raghunathan et al., 2010; Lee et al., 2011).

Consistent with Klenner and Tuggener (2011) and others, we argue that psycholinguistic insight is
the key to unite cluster- and ranking-based models. This is because theories such as Centering Theory
(Grosz et al., 1995) and Accessibility Theory (Ariel, 2001) describe how the human mind keeps track
of discourse referents as entities rather than distinct mentions, and resolves anaphora via ranked cogni-
tive accessibility. By reformulating the coreference resolution by analogy with the shift-reduce parsing
algorithm, we gain access to the stack of active discourse entities which we rank in order of salience. In
this way, the stack in our model becomes an approximation of a reader’s mental state when reading a
document, allowing us to directly model cognitive models of discourse.

1http://www.cs.utah.edu/nlp/reconcile
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Figure 1: shift-reduce comparisons, bn/voa/00/voa 0068

3 Psycholinguistically informed coreference resolution

The shift-reduce algorithm (Aho and Johnson, 1974) is widely used in parsing due to its efficiency, the
simplicity of its data structures, and its limited memory usage. For syntactic parsing, a queue is initialised
with a series of tokens which is processed in a single reading order pass. Tokens either shift onto a stack
as a leaf fragment or reduce with an existing fragment to former a larger phrasal unit. For the reduce
operation, the classifier needs to determine into which fragment the token should merge.

By drawing an analogy between tokens and phrases in syntactic parsing with mentions and clusters
in coreference resolution, we derive an algorithm for the latter. In particular, we can initialise a queue
of mentions and maintain a stack of clusters which incrementally grow as we read a document. Our
classifier is similarly tasked with determining whether a mention should shift onto the stack as the first
mention of a new discourse entity or should reduce with an already active one (see Figure 1 for the
example of resolving the enqueued mention a huge Norwegian transport vessel). For reduce operations,
we additionally need to determine into which entity cluster the mentions should merge. In this way, the
shift-reduce algorithm expresses a joint decision of anaphoricity and coreferentiality.

We draw from shift-reduce parsing its simplicity and small memory requirement since we believe these
give rise to a more faithful representation of cognitive processing. There are, however, some technical
points to consider. Instead of the reduce operation applying to a small window at the top of the stack
(top two in the case of binarised grammars), we want to search potentially the whole stack, as described
the general formulation of the algorithm. While a full search gives our process worst case O(n2) time
complexity, this is only occurs in the case of an incoherent document which mentions each of its discourse
entities exactly once. In the average case, exhaustive stack search still represents a time saving compared
to full mention-pair models which compare each mention against all potential antecedent mentions. Also,
we don’t aim to form a single full tree covering all the mentions but rather a collection of clusters. While
it is possible to define a document graph of coreference relations (as demonstrated in Fernandes et al.
(2012)), it is not necessary to do so.

The algorithms we employ for training and inference our system are represented in Figure 2.

Initialisation

We initialise the stack to be empty and the queue to be the complete set of mentions extracted from
the parse structure and named entities in a document. Following the literature, our mention extraction
module is designed to be high recall since missed mentions are guaranteed to hurt performance, while it
is possible to learn that spurious mentions should not be reported (e.g. Durrett and Klein (2013)). Thus,
we train and test on predicted mentions despite the availability of gold mentions for training (to keep
system input as similar as possible between training and testing environments) and at test time (since this
is not realistic). In this way, we learn a model that is robust to noise in mention extraction.

Learning

On each training pass through a document, we read the enqueued mentions exactly once, in reading order
without look ahead. As each mention comes to head the queue, we generate a training instance in which
the classifier decides whether it is more likely that the mention shift onto the stack as the first mention of
a new discourse entity or reduce with the cluster of an already active one. In particular, the reduce score
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initialise queue;
initialise stack;
while queue do

active = queue.pop();
prediction = classify(active, stack);
gold = correct classification(active, stack);
if prediction != gold then

update(prediction, gold);
end
cluster = apply pred(active, stack, gold);
promote(cluster, stack);

end

initialise queue;
initialise stacks;
while queue do

active = queue.pop();
forall stacks do

prediction = classify(active, stack);
cluster = apply pred(active, stack, prediction);
promote(cluster, stack);

end
prune stacks(stacks);

end

Figure 2: learning (left) and inference (right) algorithms

is the highest of all potential merges. Features are generated on the fly to reduce memory requirements,
and because the state of the system is determined by each move made. The margin of classification is
widened by augmenting by one the scores corresponding to non-gold decisions.

We then determine whether any difference exists between the classifier’s decision and the gold answer
key by looking for one of five errors, three taken from Durrett and Klein (2013) (falsely anaphoric, falsely
new, wrong link made) and two inspired by the categories used in Kummerfeld and Klein (2013) (extra
mention and extra entity). If an error is detected, we perform perceptron updates of the feature weights,
increasing those corresponding to the gold decision and decreasing those corresponding to the incorrect
prediction. We find that varying the feature value update according to the error made has a performance
benefit, particularly when ‘falsely new’ is given a faster learning rate. This may due to sparsity: across
a corpus, the number of first mentions of an entity is smaller than both that of subsequent mentions,
and singleton mentions. We note that it should be possible to learn a model using uniform updates by
increasing the number of training iterations, though this increases the chance of overfitting. Also, tuning
these parameters may affect different balances in error types for different applications.

As noted in Rahman and Ng (2009), since the mention-cluster indicator functions do not apply to the
case where a new entity is formed (shift operations), reduce comparisons activate many more features
than shift ones do. During development, we noticed that this marked difference in feature set size was
negatively impacting performance as reduce operations were unfairly favoured. To grow the shift feature
weights faster, we introduced a scaling parameter on the update of these feature weights; we found the
ratio of the feature space sizes to work well.

As the final stage, the system applies the decided move. There are two valid ‘decided’ moves, namely
the correct decision, read from the gold standard, or the (potentially incorrect) predicted decision. In this
work, we train by following the path of correct decisions, though we plan future research implementing
the latter. We hope this will improve the robustness of our system given analogous findings in shift-
reduce parsing (Zhang and Nivre, 2012). Novel to our approach, the cluster resulting from application
of the decided move is promoted to the top of the stack since recency increases cognitive accessibility.
This is a crucial implementation detail given the cognitive interpretation we give to the stack of clusters.

Inference
A benefit of our formulation of the coreference task is that inference is little different to training, without
feature weight tuning. In both, documents are processed via a queue of mentions, though a single stack
is replaced by possibly multiple in a beam regularly pruned to a fixed width. This has possible cognitive
underpinnings since humans need to be able to back track if an interpretation proves incorrect. Analo-
gously, it allows our system to reduce the impact of potentially harmful local decisions. Interestingly,
we find in Section 6 that this has little appreciable impact on performance, though this is consistent
with Zhang and Nivre (2012), which finds that beam search in inference can hurt the performance of a
shift-reduce syntactic parser trained on gold decisions.
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4 Rich discourse features

We base our feature space on the pool of features described in the literature (Soon et al., 2001; Ng and
Cardie, 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010a; Stoyanov et al., 2010b; Raghunathan et
al., 2010; Lee et al., 2011). We introduce Discourse likelihood as a novel extension of work in Recasens
et al. (2013), designed to mediate system conservativeness in the decision between whether a cluster
remains a singleton or grows into a larger cluster. Conjunct discord is introduced as a finer grained
extension of traditional number agreement features.

If existing features apply to single mentions or single clusters, they apply in this same way in our
system. To map the mention-pair features in the literature into functions which take a mention-cluster
pair, we use a range of strategies including the existence of a compatible mention for the active among
the cluster pool (Raghunathan et al., 2010), binned proportion of clustered mentions compatible with
the active mention (Rahman and Ng, 2009), or the maximum compatibility score between the clustered
mentions and the active one (based on Ponzetto and Strube (2006)).
The examples here correspond to the reduce1 move in Figure 1.

Lexical data driven lexicalised features from Durrett and Klein (2013); for the active mention the ship,
we would generate the features like head word:ship first pos:DT last shape:LOWER

String match existence and proportion of clustered mentions with various string matches with the
active mention, e.g. head match:none acronym:none

Attribute agreement agreement in animacy, gender, number, and NER values pooled across the cluster,
and active, e.g.number agree:true

Attribute discord where mentions are conjunctions, disagreement between the number of sibling NP
children; disagreement between the citation form of any pronouns in cluster and active

Syntax existence of i-within-i (restriction on anaphora due to government and binding require-
ments on a sentence’s parse tree) or subject-object relation between active and any clustered mention
e.g.iwithini:none

Semantics binned value of maximum Lin et al. (2012) similarity score between active and clustered
mention heads, e.g. lin:high since ship and vessel are highly related; disagreement between coarse
grained semantic classes of nominals determined from WordNet (Fellbaum, 1998)

Length length of mention in number of tokens mlength:3; length of cluster in number of mentions

Distance distance between active and closest clustered mention, measured in number of sentences and
number of intervening mentions

Discourse patterns whether any subsequent mention is an indefinite nominal

Discourse likelihood an integer value representing the likelihood that cluster has proposed length (sin-
gleton or not) given the internal morphosyntactics of the clustered mentions; likelihood of stack given
likelihood of contained clusters

4.1 Stack features

Since position in stack in our model represents relative cognitive accessibility, we introduce Depth fea-
tures as the cognitive analogues of Distance features, designed to more faithfully represent accessibility.

Stack depth depth from top of the stack, binned as top cluster in stack, within five clusters from the
top, within ten clusters from the top, outside this2; raw depth, depth normalised in turn by ignoring
singletons and ignoring clusters not containing a proper name mention raw depth:high, ne depth:top

were all used, with the last two designed to capture the impact of salience
2these values were empirically optimised, though we note that they reflect known constraints on human short-term memory
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a co-presidentNEW

She

...

animacy agree:True-compete
c-l’hood:0

animacy agree:True
c-l’hood:0-compete

Figure 3: stack features, bn/mnb/00/mnb 0023

Stack competition In an aim to model the competition between clusters in the stack, we introduce
stack competition features. In addition to evaluating our mention-cluster features between the active
mention and its proposed antecedent, we also evaluate them between it and the other clusters comprising
the stack. If a stacked cluster evaluates positively with any of these, we generate a labelled version of
the indicated feature. By having these features compete with those of the proposed antecedent, we hope
to better learn a more global ranking of candidates than straightforward search window strategies do.
Figure 3 shows how stack features can be used to distinguish between the attractiveness of merging an
indefinite nominal into a cluster (attractive due to matching linguistic attributes) as compared to starting
a new discourse entity (attractive due to discourse likelihood of indefinite nominal in a new cluster).

4.2 Discourse transition prefixing
After Durrett and Klein (2013), we use discourse transition strings formed from the types of the mention
and its closest candidate antecedent as feature prefixes, e.g. m:nominal+a:nominal. While this inflates
the potential size of the feature space3, the features generated are more meaningful since we would
expect many indicator functions to behave differently for pronouns than for subsequent proper names,
for example, reintroducing entities. Also, since we use perceptron learning, feature weights are only
tuned if the feature is useful in making a decision during training.

5 Results

We evaluate LIMERIC on the OntoNotes 5 corpus (Pradhan et al., 2012) with the included parse and NER

annotations. Our experimental setup matches the specifications of the CoNLL-2012 shared task: we use
the standard corpus splits, official scorer, and report performance on the CoNLL metric which averages
the MUC F-score (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998) and CEAFE (Luo, 2005).

We compare our performance against that of three state of the art systems which reflect the diversity of
current approaches. Stanford4 (Lee et al., 2011) has rule-based decoding with cluster-based modelling.
Berkeley5 (Durrett and Klein, 2013) uses mention-pair features in a factor graph model. Since reported
performance for this system is on CoNLL-2011, we compare against the publicly available system using
the SURFACE model, which doesn’t use features induced from English Gigaword (Graff et al., 2007).
Chang et al. (2013)’s L3M systems comprise both mention-pair and cluster-based variants; we focus on
the former here since these perform better on OntoNotes 5. L3M represents a maximum-margin approach
to ranking models, where CL3M adds some cluster modelling via a constraint term.

5.1 Performance
Table 1 presents our performance on DEV and TEST. Our core LIMERIC system includes all features
described in Section 4 including our novel discourse features Discourse patterns, Discourse likelihood,
and Stack depth. In development, we experiment with system configurations by deactivating semantic
features (-s) and activating stack competition features (+c) in turn. Despite a good CEAFE score, we opt
not to include stack competition features in our final system.

Given the simplicity of our learning and decoding, our system compares favourably with existing
systems. In all configurations, we beat both publicly available systems and the mention-pair variant
L3M: by uniting aspects of ranking- and cluster-based approaches, we achieve benefits beyond either in

3since distinct feature strings correspond to completely distinct features
4http://nlp.stanford.edu/software/corenlp.shtml
5http://nlp.cs.berkeley.edu/berkeleycoref.shtml
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System MUC B3 CEAFE CoNLL
Stanford 64.30 70.46 46.35 60.37
Berkeley 66.10 68.56 50.09 61.58
L3M 67.88 71.88 47.16 62.30
CL3M 69.20 72.89 48.67 63.59
LIMERIC 71.02 68.66 50.31 63.33
LIMERIC +c 70.67 68.33 50.55 63.18
LIMERIC -s 70.53 68.21 50.34 63.03

System MUC B3 CEAFE CoNLL
Stanford 63.83 68.52 45.36 59.23
Berkeley 69.09 65.89 48.26 61.08
L3M 68.31 70.81 46.73 61.95
CL3M 69.64 71.93 48.32 63.30
LIMERIC 71.52 67.47 49.75 62.91

Table 1: CoNLL-2012 DEV (left) and TEST (right)

isolation. Also, we consistently outperform CL3M on two of the three performance metrics; our method
for uniting existing approaches is more direct and psycholinguistically faithful than that in CL3M and
our competitive system results are promising for future work.

Our system’s MUC and CEAFE scores are the highest across all systems on both datasets. Our high
CEAFE score in particular suggests that our system produces an accurate number of clusters. We explore
this further in Figure 4 using the tool described in Kummerfeld and Klein (2013)6. Between Berkeley and
LIMERIC, the notable difference is that we make considerably fewer Divided Entity and Missed Entity
errors for a small increase in Conflated Entity errors. By introducing features which model when a new
discourse entity should form and how the relative accessibility of already active ones impacts coreference
decisions, we more accurately predict the bounds of entity clusters. This modelling is independent of
surface features: 85% and 96% of Berkeley’s Divided Entity errors occur where there is no head match
and string match between mentions, respectively, compared to our values of 87% and 96%.

We note also that, given Kummerfeld and Klein’s finding that MUC recall is highly sensitive to Divided
Entity errors and B3 precision to Conflated Entity errors, we can understand our performance on these
metrics, particularly if our errors occur in larger clusters.

Between LIMERIC and LIMERIC+c, the notable difference is that LIMERIC+c makes fewer Missed
Mention errors, but at a high cost to Extra Entity errors. A principled solution for future work might be
to enrich our model of what makes a discourse transition unfavourable, in contrast to the predominate
tradition of modelling what makes a discourse transition favourable.

Span E-Conf E-Div M-Missed M-Extra E-Missed E-Extra

1,000

2,000

#
er

ro
rs

BERKELEY

LIMERIC

LIMERIC + c

Figure 4: error counts in fine grained categories of Kummerfeld and Klein (2013)

6 System analysis

Features

Since we use simple, linear learning, it is possible to analyse feature weights to introspect system per-
formance. In particular, we would like to understand why our stack competition features, which are well
principled, did not give a substantial performance gain. We do this by analysing the number of non-zero

6https://code.google.com/p/berkeley-coreference-analyser/
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Features % non-zero avg. mag.

Surface 17.4 0.23
POS 61.9 4.55
Shape 57.3 3.77
Str match 93.7 20.60
Length 48.7 2.37
Distance 92.5 19.74

Features % non-zero avg. mag.

Attr agree 88.3 24.88
Attr discord 74.6 20.00
WN similarity 94.5 21.67
Competition 87.9 15.28
Likelihood 61.4 7.47
Depth 93.9 11.73

Table 2: proportion of features within a set with non-zero weight in LIMERIC+c model (left) and average
magnitude of this weight across the set (right); novel features are indicated in bold

features in our feature sets as an indication of how often they were useful in distinguishing predictions,
and average feature weight magnitude as an indication of how trusted they were in inference.

Given the performance decrease of LIMERIC+c against our base system, it is surprising that it is the
competition features which appear to be the best performing of our novel feature space. We are cautious
that their very high feature weight could represent overfitting and future work could use regularisation,
as well as explore any discourse level differences between TRAIN and the TEST datasets.

Depth in stack performs well, particularly given that it captures similar information to Distance and
feature weight needs to be shared between the two feature sets. The least useful feature set is Surface,
probably due to our large feature space size and its sparseness. Since this comprises the greatest number
of features, we anticipate its deactivation will improve efficiency for a minimal impact on performance.

Stack

Our reported performance is based on a search of the full stack, but this gives rise to a large time cost
which is not practical given the role of coreference resolution to inform downstream inference. While
recency is important cue for coreference, it is not clear what bounds we can place on candidate generation
while maintaining good performance. Figure 5 plots the depth from the top of the stack of the correct
reduce operation in DEV.

0 10 20 30 40 50 60
0

1,000

2,000

#
cl

us
te

rs

Figure 5: distribution of correct merge targets in the stack, DEV

We note a very long tail to this distribution and cut it off at depth 60, which cumulatively represents
97% of the data. The vast majority of correct merge targets are near the top of the stack, with 78%
up to depth 10 and 88% up to depth 20. Setting maximum search depth to 60 yields a model which
scores 61.31 on DEV. While this outperforms Stanford and is competitive with Berkeley, the magnitude
of loss is surprising given the distribution in Figure 5. Error analysis shows an increased number of
Conflated Entity and Extra Mention errors, which were shown in Kummerfeld and Klein (2013) to have
a substantial precision cost. We note that this is consistent with our system having good accuracy in
predicting whether or not a new entity cluster should form, but being restricted to choose an incorrect
merge target when the correct one is outside its search window.

2136



Configuration MUC B3 CEAFE CoNLL
LIMERIC+c 70.67 68.33 50.55 63.18
classifier scoring 70.36 68.12 50.65 63.04
# beams=1 70.52 68.21 50.66 63.13
no beam threshold 69.60 67.42 50.12 62.38

Table 3: impact of various parameters for beam search, DEV

Beam search
Beam search affects both time and space complexity since each classification step proposes new stacks
which need to be compared for pruning. Our final system uses a maximum beam size of 10 with a
conservative threshold of 5 for new stack formation. We find little difference between using classification
score or stack discourse likelihood as our pruning metric. The results in Table 3 indicate that beam search
isn’t essential for state of the art performance in our system, our rich feature set is adequate alone. If
we limit the beam to a single stack, we still have competitive performance with CL3M. Indeed, if we
do not set a strict threshold on the score at which a new stack is formed, we are forced to maintain the
maximum 10 stacks and this actually hurts performance. These findings are consistent with those in
Zhang and Nivre (2012), which demonstrates that performance gains are only seen from beam search at
run time when their shift-reduce parser was trained similarly, maintaining a beam of potentially incorrect
predictions and learning to recover as well as possible from unfavourable states.

7 Conclusion

The primary contribution of our work is a reconceptualisation of coreference by analogy with the shift-
reduce parsing algorithm. We present LIMERIC, a simple, low memory coreference resolution system
which achieves the competitive CoNLL scores of 63.33 and 62.91 on the CoNLL-2012 DEV and TEST

splits of OntoNotes 5. Our framework unites ranking- and cluster-based approximations to global con-
sistency encoding, and we outperform systems using either in isolation. By interpreting the stack of
incrementally growing entity clusters in our system as a reader’s mental status while reading, we natu-
rally extend the shift-reduce algorithm to express a series of rich discourse features which perform well
in feature analysis. Our results demonstrate the promise of psycholinguistic insights for coreference res-
olution and future directions include further extension of our discourse, as well as semantic, model. We
plan future work in enriching our training process with beam search, and incorporating more insights
from Centering and Accessibility Theories.
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