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Abstract

In this paper we show how the task of syntactic parsing of non-segmented texts, including com-
pound recognition, can be represented as constraints between phrase-structure parsers and CRF
sequence labellers. In order to build a joint system we use dual decomposition, a way to com-
bine several elementary systems which has proven successful in various NLP tasks. We evaluate
this proposition on the French SPMRL corpus. This method compares favorably with pipeline
architectures and improves state-of-the-art results.

1 Introduction

Dual decomposition (DD), which can be used as a method to combine several elementary systems, has
already been successfully applied to many NLP tasks, in particular syntactic parsing, see (Rush et al.,
2010; Koo et al., 2010) inter alia. Intuitively, the principle can be described quite simply: at decoding
time, the combined systems seek for a consensus on common subtasks, in general the prediction of some
parts of the overall structure, via an iterative process imposing penalties where the systems disagree. If
the systems converge to a solution, it is formally guaranteed to be optimal. Besides, this approach is
quite flexible and easy to implement. One can add or remove elementary systems without rebuilding
the architecture from the ground up. Moreover, the statistical models for the subsystems can often be
estimated independently at training time.

In this paper we show how syntactic parsing of unsegmented texts, integrating compound recognition,
can be represented by constraints between phrase-structure parsers and sequence labellers, either for
compound recognition or part-of-speech (POS) tagging, and solved using DD. We compare this approach
experimentally with pipeline architectures: our system demonstrates state-of-the-art performance. While
this paper focuses on French, the approach is generic and can be applied to any treebank with compound
information, and more generally to tasks combining segmentation and parsing.

This paper is structured as follows. First, we describe the data we use to build our elementary systems.
Second, we present related work in compound recognition, in particular for French, and the type of
information one is able to incorporate in tag sets. Third, we show how CRF-based sequence labellers with
these different tag sets can be combined using DD to obtain an efficient decoding algorithm. Fourth, we
extend our method to add phrase-structure parsers in the combination. Finally, we empirically evaluate
these systems and compare them with pipeline architectures.

2 Data

We use the phrase-structure treebank released for the SPMRL 2013 shared task (Seddah et al., 2013).
This corresponds to a new version of the French Treebank (Abeillé et al., 2003). One of the key dif-
ferences between French data and other treebanks of the shared task is the annotation of compounds.
Compounds are sequences of words with a certain degree of semantic non-compositionality. They form
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a single lexical unit to which one can assign a single POS. In the SPRML corpus 15% of the tokens be-
long to a compound, or 12.7% if we omit numerals: the training, development and test sets respectively
comprise 23658, 2120 and 4049 compounds.

In the treebank, compounds are annotated as subtrees whose roots are labelled with the POS of the
compounds with a + suffix. Each leaf under a compound is the daughter of its own POS tag, which is in
turn the daughter of the root of the compound. For example, the tree in Figure 1 contains a subtree with
the compound adverb pour ’instant (so far) whose category ADV+ dominates the preposition pour, the
determiner /’, and the noun instant.

SENT
ADV+ PONCT NP-SUJ VN PONCT
P DET NC ‘ DET NC \4 ADV VP

Pour 1" instant la  situation est completement bloquée

Figure 1: Syntatic annotation in the SPRML FTB: So far, the situation has been completely blocked.

The sequence labellers used in the experiments are able to exploit external lexical resources that will
help coping with data missing from the training corpus. These resources are dictionaries, consisting of
triplets (flexed form, lemma, POS tag), where form and lemma may be compound or simple.
Several such dictionaries exist for French. We use:

e DELA (Courtois et al., 1997) contains a million entries, among which 110,000 are compounds;
o Lefff (Sagot, 2010) contains 500,000 entries, among which 25,000 are compounds;

e Prolex (Piton et al., 1999) is a toponym dictionary with approximately 100,000 entries.

The described resources are additional to the SPMRL shared task data (Seddah et al., 2013), but were
also used in (Constant et al., 2013a) for the shared task.

3 Compound Recognition

3.1 Related Work

The compound recognition traditionally relies on 2 types of information: lexical and syntactic clues. A
strong lexical association between the tokens of a compound can be detected using a compound dictio-
nary or by measuring a degree of relatedness, which can be learnt on a corpus. Some recent approaches
use sequence labellers. The linear chain CRF model (Lafferty et al., 2001) is widely used, see for ex-
ample (Vincze et al., 2011; Constant and Tellier, 2012). It has proven to be a very adequate model: it
is flexible enough to incorporate information from labelled data and external resources (POS taggers,
compound lexicons or named entity recognisers).

The compound recognition may also be directly performed by syntactic parsers learnt from corpora
where compounds are marked, such as the one we use in this paper' (Arun and Keller, 2005; Green et al.,
2011; Green et al., 2013; Constant et al., 2013b), but these results are contradictory. Green et al. (2011)
experimentally show that a lexicalised model is better than an unlexicalised one. On the other hand,
Constant et al. (2013b) show that, using products of PCFG-LA (Petrov, 2010), unlexicalised models can
be more accurate. They obtain performance on a par with a linear chain CRF system without external
information. But such information is difficult to incorporate directly in a PCFG-LA model. Constant et
al. (2012) resort to a reranker to add arbitrary features in the parse selection process, but their system
showed inferior performance compared with a CRF model with access to the same external information.

!'Such an approach has been used already for joint named entity recognition and parsing based on CRF (Finkel and Manning,
2009).
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3.2 Annotation schemes

Compound recognition can be seen as a segmentation task which consists in assigning to each token a
label with segmentation information. We use label B if the token is the beginning of a word (single or
compound), and label T if the token is inside a compound, but not in initial position. This lexical seg-
mentation can be enriched with additional information, for example POS tags of compounds or tokens in
compounds, and gives a variety of tag sets. This leads us to define 5 simple tag sets for our problem, each
with very simple information, that will be combined in the next section. These tag sets are exemplified
on a sentence with the compound vin rouge (red wine).

1. (basic) recognition with two labels (B and T)
Luc/B aime/B le/B vin/B rouge/I (Luc likes red wine)

2. (partial) recognition with compound POS tags: [BI]-POS for tokens in compounds; B for others
Luc/B aime/B le/B vin/B—NC+ rouge/I—NC+

3. (partial-internal) recognition with token POS tags in compounds
Luc/B aime/B le/B vin/B-NC rouge/I—-ADJ

4. (complete) recognition with POS tags for all tokens; in compounds use compound POS tags
Luc/B-NPP aime/B-V le/B-DET vin/B—NC+ rouge/I—-NC+

5. (complete-internal) recognition with POS tags for all tokens; in compounds use token POS tags
Luc/B—NPP aime/B-V le/B—DET vin/B—NC rouge/I—-ADJ

4 Dual decomposition for compound recognition using CRFs

4.1 A maximisation problem

4.1.1 CRF

A conditional random field (Lafferty et al., 2001), or CREF, is a tuple ¢ = (X, L, we, { f5}p) which
defines the conditional probability of a sequence of labels y € L} given a sequence of words of the same
length z € ¥* as a logistic regression of the form:

exp <Zp€73(x) we - fi (@, yp))
Z(we, )

Pu(yle) = , where ()

we € R%is a d-dimensional weight vector, where d is the number of features of the system,

Z is the partition function

e P(x) is a set of places, in our case the set of unigram and bigram decompositions of sequences
of words. A place p is of the form [i], for unigrams and [¢,4 + 1], for bigrams. We omit x when
context is unambiguous.

yp is the restriction of y to the place p, and we will write y; for yj; and y;y;+1 for yj; ;41
° f; is the feature function for the place p that projects (z,y,) on R,
Our goal is to find the best labelling, i.e. the one that maximises the conditional probability given a

sequence of tokens. One can observe that this labelling also maximises the numerator of Equation 1, as
Z (we, z) does not depend on y. We therefore write:

y¢ = argmax o.(z,y) = arg max Z we - fy (2, yp) (2)
Y Y peP@)
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4.1.2 Viterbi Algorithm for CRFs

Since our combination of CRF systems relies on the Viterbi algorithm, we review it briefly. For a given
input sentence * = zj ...xy, we represent the problem of finding the best labelling with a CRF c as a
best path algorithm in a directed acyclic graph G, = (V, £) built from a set of nodes V' and a set of edges
. Nodes are pairs (z;,1) where z; is an input token and [ is an admissible label for x;.> Edges connect
nodes of the form (z;, 1) to nodes of the form (z;41,!’) and the weights of these arcs are given by c. In
order to find the weight of the best path in this graph, that corresponds to the score of the best labelling,
we use Algorithm 1.> One can remark that the score of a node decomposes as a score s1, computed from
a vector of unigram features, written f[j] (x,1), and a score sy computed from a vector of bigram features,

written fﬁfl i (x,1',1).* The Viterbi algorithm has a time complexity linear in the length of the sentence
and quadratic in the number of labels of the CRF.

Algorithm 1 Viterbi Algorithm for CRFs with unigram and bigram features

: Viterbi(G., we, { f5}p, ABT, ATB):

: for all node v do

w[v] = —o00

: end for

7| (<s>, START)| = w - fp, (z, START)

: for all non initial node v = (z;, 1) in topological order do
S§1 < We - f[cz](le)

S9 — —OO

for all incoming edge v = (x;—1,1") — v do

10: t = m[o'] +we - [z, 151)

11: t —t—b(l")i(l) - ABT[i] —i(1)b(1) - ATP[i] &> only for DD: we ignore this line otherwise
12: ift > so then

13: S2 =1

14: end if

15: end for

16: m[v] « s1 + s2

17: end for

18: return the best scoring path [ (</s>, STOP) ]

WRIADIN B2

4.2 Dual decomposition for CRF combinations

In Section 3.2 we described several annotation schemes that lead to different CRF models. These
schemes give the same lexical segmentation information but they use more or less rich part-of-speech
tag sets. It is not clear a priori if the richness of the tag set has a beneficial effect over segmentation
prediction: there is a compromise between linguistic informativeness and data sparseness. Instead of
trying to find the best annotation scheme, we propose a consensus-based joint system between several
CRF-based sequence labellers for the task of text segmentation relying on dual decomposition (Rush
et al., 2010). This system maximises the sum of the scores of combined CRFs, while enforcing global
consistency between systems in terms of constraints over the admissible solutions. These constraints are
specifically realised as reparametrisations of the elementary CRFs until a consensus is reached. Since
we deal with several annotation schemes, we will use predicates to abstract from them:

e (1) is true if [ starts with B;
e i(l) is true if [ starts with I;
e bi(i,y) is true if b(y;—1) and i(y;) are true;
e ib(i,y) is true if i(y;—1) and b(y;) are true.

For a labelling y, we define 2 boolean vectors that indicate where the compounds begin and end:

2We also include two additional nodes: an initial state (<s>, START) and a final state (</s>, STOP).
3 Algorithm 1 calculates the score and backpointers must be added to retrieve the corresponding path.
“This algorithm takes as input 2 vectors that will be used for DD and will be explained in § 4.2. They can be ignored now.
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e D(y), such that D(y)[i] = 1 if bi(i,y), and O otherwise;
e F(y), such that F'(y)[:] = 1if ib(i, y), and O otherwise.

As we want to combine CRFs, the solution of our system will be a fuple of label sequences with the
same compound segmentation. For an input sequence x, this new maximisation problem is:

(P): find  max N ou(y) =D D> we- fylwyp) 3)
(y sy ) C:l C:l pep(m)
s.t. Juy,ug Ve € [1,n], D(y°) = w1, F(y°) = ua 4)

Objective (3) indicates that we seek for a tuple for which the sum of the scores of its elements is
maximal. Constraints (4) imply that the compound frontiers — transitions B to I and I to B — must be
the same for each element of the tuple. There are several ways to tackle this problem. The first one
is by swapping the sum signs in (3) and noticing that the problem could then be represented by a joint
system relying on dynamic programming — a CRF for which labels would be elements of the product
L =Ly x---x L, —and for which it is straightforward to define a weight vector and feature functions.
We can therefore reuse the Viterbi algorithm but the complexity is quadratic in the size of £, which is
impractical’.

In any case, this approach would be inadequate for inclusion of parsers, and we therefore rely on
lagrangian relaxation. We modify the objective by introducing Lagrange multipliers, two real vectors
ABT and AP indexed by bigram places® for each CRF c of the combination. We obtain a new problem
with the same solution as the previous one, since constraints (4) are garanteed to be satisfied at optimality:

max min Z oe(y°) — Z [(D(yc) —up) - AP+ (F(y%) — ug) - A£B] )

(ylr“wynvul?uQ) (ABI7AIB) c=1

The next step is dualisation, which gives an upper bound of our problem:

n n n
min Zac(y Z () AP +ur Y AP Fye) AP +up Y AP (6)
(ABLATE) (. y u1,u2) c=1 c=1 c=1
We then remark that Y7 ABTand > | ALB must be zeros at optimum (if the problem is feasible).”
It is convenient to convert this remark to hard constraints in order to remove any reference to vectors u;
— and therefore to the coupling contraints — from the objective. We obtain the constrained problem with
the same optimal solution :

(Du): ABI AIB) Z max Jc = D(y)- AEH - F(y°) - AgB] ™
s.t. ZA?I = 0and ZAgB =0 (8)
c=1 c=1

In order to solve (Du) we use the projected subgradient descent method that has already been used
in many problems, for example MRF decoding (Komodakis et al., 2007). For the problem at hand, this
method gives Algorithm 2. This iterative algorithm consists in reparametrising the elementary CRFs of
the system, by modifying the weights associated with the bigram features in places that correspond to
compound frontiers, penalising them on CRFs that diverge from the average solution. This is performed

>One could object that some combinations are forbidden. It remains that the number of labels still grows exponentially.
®Bigram places are identified by their second position.
"Otherwise the sum expressions would be unbounded and their maximum is +oo for an appropriate value of ;.
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by amending the vectors Afl and AgB that are updated at each iteration proportionally to the difference
between the feature vectors for ¢ and the average values of these vectors. Hence the farther a solution
is from the consensus, the more penalised it gets at the next iteration. This algorithm stops when the
updates are null for all CRFs: in this case the consensus is reached.

Algorithm 2 Best segmentation with combined CRF system via subgradient descent

Require: n CRF ¢ = (X, L., we, { f5 }p), an input sentence =, a maximum number of iterations 7, stepsizes {a: }o<t<r
1: for all CRF ¢, bigram end position 4, bigram label pair (I, m) do
2 AP 1, m)© =o; ALB[i,1,m] @ =0
3: end for
4: fort =0 — 7do

5: for all CRF c do

67

7

8

(t) . . (t) (t)
Y = Viterbi(Ge, we, fo, ABT T ALE)

end for
for all CRF c do o "
a(t alt
9: Aflm o <D (yc(w) B ledénnD(y )) ; AﬁB“) o <F (ycm) 3 ZISdSnnF(y ))
10: ACBI(t+1) <—Af1(t) +ACBI(t); AiB(t+1) <—A(I:B(t) +A£B(t)
11: end for
12: i ABT — 0and AZB") = 0 for all ¢ then
13: Exit loop
14: end if
15: end for o “
16: return (y' - ,y™ )

We set the maximum number of iteration 7 to 1000. For the step size, we use a common heuristic:
o = u%kz where £ is the number of times that (Du) has increased between two successive iterations.

4.3 Experimental results for CRF combinations

We modified the wapiti software (Lavergne et al., 2010) with Algorithm 2. Table 1 reports segmen-
tation results on the development set with the different tag sets, the best DD combination, and the best
voting system.®

Tag Set CRF / combination Recall Precision F-score
partial-internal 79.59 8549 82.44
partial 78.98  85.57 82.14
basic 79.74  84.65 82.12
complete 79.69  83.10 81.36
complete-internal 79.03  82.66 80.80
MWE basic complete partial-internal 80.82  86.07 83.36
vote (basic complete partial-internal)  80.49  85.46 82.90

Table 1: Segmentation scores of CRF systems (dev)

System F-score (all)  F-score (compounds)
complete 94.29 78.32
MWE 94.59 80.00

Table 2: Segmentation + POS tagging (dev)

We see that the best system is a combination of 3 CRFs (tag sets basic, complete and partial-internal)
with DD, that we call MWE in the remaining of the paper. The subgradient descent converges on all
instances in 2.14 iterations on average. The DD combination is better than the voting system.

We can also evaluate the POS tagging accuracy of the system for systems including the complete
tag set. We compare the results of the complete CRF with the MWE combination on Table 2. The second
column gives the F-score of the complete task, segmentation and POS tagging. The third column restricts
the evaluation to compounds. Again, the MWE combination outperforms the single system.

8Each system has one vote and in case of a draw, we pick the best system’s decision.
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In some preliminary experiments, the weights of the CRF systems were based on unigram features
mainly —i.e. those described in (Constant et al., 2012). As our CRFs are constrained on transitions from
Bto I and I to B, penalising systems resulted in modifying (low) bigram weights and had only a minor
effect on the predictions and consequently the projected gradient algorithm was slow to converge. We
therefore added bigram templates for some selected unigram templates, so that our system can converge
in a reasonable time. Adding these bigram features resulted in slower elementary CRFs. On average the
enriched CRFs were 1.8 times slower that their preliminary counterparts.

5 Dual Decomposition to combine parsers and sequence labellers

We now present an extension of the previous method to incorporate phrase-structure parsers in the com-
bination. Our approach relies on the following requirement for the systems to agree: if the parser predicts
a compound between positions ¢ and j, then the CRFs must predict compound frontiers at the same po-
sitions. In this definition, like in previous CRF combinations, only the positions are taken into account,
not the grammatical categories. From a parse tree a, we define two feature vectors:

e D(a), such that D(a)[i] = 1 if a contains a subtree for a compound starting at position ¢ — 1
e F(a), such that F'(a)[i] = 1 if a contains a subtree for a compound ending at position i — 1

In other words, D(a)[7] indicates whether the CRFs should label position ¢ — 1 with B and position i
with I, while F'(a)[i] indicates whether the CRFs should label position ¢ — 1 with I and position ¢ with
B. See Figure 2 for an example.

NP

T
DET NC+ ADJ
|

une NC ADIJ volée

carte bleue

B B I B

Figure 2: Parser and CRF alignments (A stolen credit card)

5.1 Parsing with probabilistic context-free grammars

We follow the type of reasoning we used in § 4.2. With a PCFG g, we can define the score of a parse for
an input sentence z as the logarithm of the probability assigned to this parse by g. Finding the best parse
takes a form analogous to the one in Equation 2, and we can write the CKY algorithm as a best path
algorithm with penalties on nodes, as we did for the Viterbi algorithm previously. This is closely related
to the PCFG combinations of (Le Roux et al., 2013). We introduce penalties through two real vectors
ABT and A’ indexed by compound positions. The modified CKY is presented in Algorithm 3° where
the parse forest F is assumed to be already available and we note w the vector of rule log-probabilities.

5.2 System combination

Asin § 4.2, our problem amounts to finding a tuple that now consists of a parse tree and several labellings.
All systems must agree on compound frontiers. Our objective is:

(P : find  max op(a)+9 Z oe(y©) )
(a7y17"'7yn) C:1
s.t. Juy,ug Ve € [1,n], D(y°) = w1, F(y°) = ug, D(a) = u1, F(a) = ug (10)

“Without loss of generality, only binary rules are taken into account.
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Algorithm 3 CKY with node penalties for compound start/end positions

: CKY(F,w, ABT ATB):

: for all node v in the forest 7 do

mv] = —o0

: end for

: for all leaf node x do

wx] =0

: end for

: for all non-terminal node (A4, 4, j) in topological order do

for all incoming hyperedge v = (B, i, k)(C,k 4+ 1,5) — (4,4,j) do
10: s —7[(B,i, k)] + 7[(C,k+1,7)] + wa—pc >wa_pc is the score for rule A — BC
11: if A is a compound label then

12: s s— AP — ATB[j +1]

13: end if

14: if s > 7[(A,1,7)] then

15: m[(A,i,5)] — s

16: end if

17: end for

18: end for

19: return hyperpath with score 7[(ROOT, 1, n)]

We use § to set the relative weights of the CRFs and the PCFG. It will be tuned on the develop-
ment set. We then reuse the same procedure as before: lagrangian relaxation, dualisation, and projected
subgradient descent. Algorithm 4 presents the function we derive from these operations.

Algorithm 4 Find the best segmentation with a PCFG and CRFs

Require: a PCFG parser p, n CRFs, an input sentence x, a bound 7
1: set Lagrange multipliers (penalty vectors) to zero
2: fort =0 — 7do
for all FRF cdo
4 yc( Viterbi(Ge, we, fo, AB!
S: end for
6 a® — CKY(F,w, ABT" AP
’7.
8
9

9V}

(t) (t)

IB
aAc

)

for all CRF c and parser p do
Update penalty vectors proportionally to the difference between corresponding solution and average solution

: end for
10: if update is null for all c and p then
11: Exit loop
12: end if
13: end for

1 ®
)

)

14: return (am7 y

Algorithm 4 follows the method used in § 4 and simply adds the PCFG parser as another subsystem.
This method can then be extended further: for instance, we can add a POS tagger (Rush et al., 2010) or
multiple PCFG parsers (Le Roux et al., 2013). Due to lack of space, we omit the presentation of these
systems, but we experiment with them in the following section.

6 Experiments

For this series of experiments, we used wapiti as in § 4.3 and the LORG PCFG-LA parser in the
configuration presented in (Le Roux et al., 2013) that we modified by implementing Algorithm 4. This
parser already implements a combination of parsers based on DD, a very competitive baseline.

For parse evaluation, we used the EVALB tool, modified by the SPMRL 2013 organisers, in order
to compare our results with the shared task participants. We evaluated several configurations: (i) the
LORG parser alone, a combination of 4 PCFG-LA parsers as in (Le Roux et al., 2013), (ii) a pipeline
of POS, a CRF-based POS tagger, and LORG, (iii) joint LORG and POS, using DD as in (Rush et al.,
2010), (iv) joint LORG and MWE (our best CRF combination for compound segmentation) using DD, and
(v) joint LORG, POS et MWE using DD. We also compare these architectures with 2 additional pipelines,
in which we first run MWE and then merge compounds as single tokens. The converted sentences are
then sent to a version of LORG learnt on this type of corpus. After parsing, compounds are unmerged,
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replaced with the corresponding subtree. In one of these two architectures, we add a POS tagger.
The evaluations for the parsing task of all these configurations are summarised in Table 3. The best
system is the DD joint system combining the POS tagger, the parser and the compound recognisers.

System Recall Precision Fscore EX Tag
LORG 82.01 8237  82.19 18.06 97.35
pipeline POS — LORG 82.36 82.59 8247 1922 9773
DD POS + LORG 82.48 8273 8261 19.19 97.84
DD MWE + LORG 82.91 83.07 8299 19.19 9741
DD POS + MWE + LORG 83.38 83.42 8340 20.73 97.85
pipeline MWE MERGE — LORG — UNMERGE 82.56 82.63 8259 18779 97.39
pipeline MWE MERGE/POS — LORG — UNMERGE  82.73 82.64  82.69 20.02 9757

Table 3: Parse evaluation on dev set (recall, precision and F-score, exactness and POS tagging).

Table 4 shows evaluation results of our best system and comparisons with baseline or alternative
configurations on the SPMRL 2013 test set.

Parsing The DD method performs better than our baseline, and better than the best system in the
SPMRL 2013 shared task (Bjorkelund et al., 2013). This system is a pipeline consisting of a
morpho-syntactic tagger with a very rich and informative tag set, a product of PCFG-LAs, and
a parse reranker. Although this approach is quite different from ours, we believe our system is more
accurate overall because our method is more resilient to an error from one of its components.

Compound recognition and labelling For the task of recognition alone, where only the frontiers are
evaluated, the DD combinations of CRFs performs better than the best single CRF which itself
performs better than the parser alone, but the complete architecture is again the best system. If we
also evaluate compound POS tags, we get similar results. The DD combination is always beneficial.

System Recall Precision Fscore EX Tag
LORG 82.79 83.06 8292 2200 9739
(Bjorkelund et al., 2013) - - 82.86 - -
DD POS + MWE + LORG 83.74 83.85 83.80 23.81 9787
compound recognition LORG 78.03 78.63 7849 - -
compound recognition best single CRF (partial-internal) 78.27 82.84 80.49 - -
compound recognition MWE 79.68 83.50 8154 - -
compound recognition DD POS + MWE + LORG 80.76 84.19 8244 - -
compound recognition + POS tagging LORG 75.43 75.71 75.57 - -
compound recognition + POS tagging MWE 76.49 80.10 7828 - -
compound recognition + POS tagging DD POS + MWE + LORG ~ 77.92 81.23 79.54 - -

Table 4: Evaluation on SPMRL 2013 fest set: parsing (first 3 lines), and compound recognition.

7 Conclusion

We have presented an original architecture for the joint task of syntactic parsing and compound recogni-
tion. We first introduced a combination of recognisers based on linear chain CRFs, and a second system
that adds in a phrase-structure parser. Our experimental prototype improves state-of-the-art on the French
SPMRL corpus.

In order to derive decoding algorithms for these joint systems, we used dual decomposition. This
approach, leading to simple and efficient algorithms, can be extended further to incorporate additional
components. As opposed to pipeline approaches, a component prediction can be corrected if its solution
is too far from the general consensus. As opposed to joint systems relying on pure dynamic programming
to build a complex single system, the search space does not grow exponentially, so we can avoid using
pruning heuristics such as beam search. The price to pay is an iterative algorithm.

Finally, this work paves the way towards component-based NLP software systems that perform com-
plex processing based on consensus between components, as opposed to previous pipelined approaches.
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