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Abstract

We address the problem of estimating the quality of Automatic Speech Recognition (ASR) out-
put at utterance level, without recourse to manual reference transcriptions and when information
about system’s confidence is not accessible. Given a source signal and its automatic transcription,
we approach this problem as a regression task where the word error rate of the transcribed utter-
ance has to be predicted. To this aim, we explore the contribution of different feature sets and
the potential of different algorithms in testing conditions of increasing complexity. Results show
that our automatic quality estimates closely approximate the word error rate scores calculated
over reference transcripts, outperforming a strong baseline in all the testing conditions.

1 Introduction

In recent years, the increasing usage of large vocabulary continuous speech recognition (LVCSR) systems
to transcribe audio recordings from different sources (e.g. Youtube videos, TV programs, DVD movies,
meetings, etc) has sparked the need of accurate, fast and cost-effective methods to estimate the quality
of ASR output. This need contrasts with the fact that, after decades of progress in ASR research, the
established evaluation protocol is based on computing word error rate scores (WER)1 over large test
sets of hand-crafted reference transcriptions. Indeed, despite its reliability, reference-based performance
assessment has an evident drawback represented by the cost of acquiring manual transcripts. Besides
increasing the cost-effectiveness of ASR evaluation routines, bypassing this bottleneck has several other
motivations. From an application perspective, for instance, reference-free quality estimation methods
could be used to: i) decide at run-time whether a given input signal has been properly recognized (e.g.
if a user spoken utterance needs to be repeated in a dialogue application), ii) decide if an automatic
transcription is acceptable as is (e.g. if manual revision is needed in an automatic subtitling application),
or iii) select the best transcription among options from multiple ASR systems.

When information about the inner workings of the system used to produce the transcriptions is acces-
sible, current reference-free confidence estimation methods can supply ASR applications with reliable
indicators about output reliability. This condition, however, does not always hold in the aforementioned
scenarios. A clear motivating example is provided by the exponential growth of captioned TED Talks
and Youtube videos,2 for which no information is available about how transcriptions have been pro-
duced. In this case, neither reference-based methods, nor standard confidence measures can be applied
to obtain useful quality estimates. Nevertheless, in this scenario, supplying reliable indicators of tran-
scription quality has a huge market potential (e.g. to reduce the costs of manual revision/translation)
which motivates our research.

Focusing on these compelling needs, this paper investigates the automatic prediction of ASR out-
put quality when: i) manual reference transcripts are not available and ii) information about the
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1The word error rate is the minimum edit distance between an hypothesis and the reference transcription. Edit distance is
calculated as the number of edits (word insertions, deletions, substitutions) divided by the number of words in the reference.

2Since 2009, Youtube videos in English can be automatically captioned. In 2012, for the 72 hours of video uploaded per
minute, such functionality was already available for 10 languages. Currently, more than 200 million Youtube videos have either
automatic or human-created captions (source: http://goo.gl/9swYSS).
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inner workings of the ASR system is not accessible. Casting the problem as a supervised regression
task, we experiment in a range of testing conditions on a well-known LVCSR setting (i.e. the automatic
transcription of TED talks). In this framework, we analyse the performance of various models (i.e. their
capability to predict utterance-level WER scores) as a function of the different learning algorithms used,
the proposed features, and the amount of training data available.

Our features are categorized according to the type of information they aim to capture. Since the na-
ture of the proposed features is a relevant aspect for the applicability of our approach, an important
distinction is made between “glass-box” and “black-box” features, which are respectively informed and
agnostic about systems’ internal decoding strategies. The former can play an important role when all the
intermediate processing steps are accessible (e.g. in the selection of the best possible transcription hy-
pothesis). In contrast, black-box features have a wider applicability to situations where such information
is not available (e.g. to estimate the quality of online video subtitles).

Another important aspect relevant to our study is the relation between the accuracy of utterance-level
quality predictions and the degree of homogeneity of training and test data. Indeed, as in any supervised
learning framework, the similarity between training and test data has a direct impact on (classification
and regression) results. In order to fully understand the potential of our approach, we hence measure
performance variations under different levels of similarity between the data used to train the regressor
and the data used for evaluation. To this aim, our experiments account for a range of possible conditions.
These vary from the situation in which training and test are fully homogeneous (i.e. same dataset, with
training instances produced by the same ASR system) to the more challenging situation where training
and test are not homogeneous (i.e. different datasets, with training instances produced by different ASR
systems). Our results, obtained with two different state-of-the-art algorithms for regression, demonstrate
that in all such variable conditions our ASR quality estimation models lead to accurate predictions (i.e.
close the word error rate scores calculated over reference transcripts).

To the best of our knowledge, this paper represents the first extensive investigation on reference-
free and system-agnostic automatic estimation of ASR output quality. Along this direction, our main
contributions can be summarized as follows:

1. We propose a supervised, application-oriented approach to ASR quality estimation that bypasses
the need of manual reference transcriptions and is system-independent.

2. We evaluate our method with different learning algorithms and in different conditions, showing that
its estimates closely approximate the WER scores calculated over reference transcripts.

3. We perform feature analysis, isolating the contribution of each feature set in all the testing condi-
tions.

4. We analyse the learning curves of our best models, investigating the relation between performance
results and the amount of data needed for training.

Overall, these contributions provide useful insights about the feasibility of automatic ASR quality esti-
mation, opening interesting research avenues relevant for system development and for ASR applications.

2 Related Work

As a reference-free automatic evaluation method, our work introduces a valid application-oriented alter-
native to the standard evaluation protocols used within current ASR evaluation campaigns such as IWSLT
(Federico et al., 2011; Federico et al., 2012; Cettolo et al., 2013).3 Besides that, our approach to ASR
quality estimation (QE) also differs from the well-established confidence estimation (CE) techniques
proposed in previous ASR literature (Sukkar and Lee, 1996; Evermann and Woodland, 2000; Wessel et
al., 2001; Sanchis et al., 2012; Seigel, 2013, inter alia). Such difference firstly relies in the fact that,
while in CE is the system itself that provides an indicator of the reliability of its output transcriptions,
QE aims to provide an external and more objective measure of goodness through WER predictions. A

3See http://www.iwslt2013.org/ for details about the last edition of the IWSLT Workshop held in 2013.
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second (related) difference is that, in contrast with previous CE methods that heavily rely on information
about the internal behaviour of the ASR system, our technique does not necessarily depend on the access
to such information. This extends its applicability to scenarios (out of the scope of CE research) where
the quality of transcriptions produced by (possibly unknown) ASR systems has to be evaluated/compared
solely based on information about the input audio signals and the output transcriptions.

An interesting approach exploiting ASR word accuracy estimates to automatically score the profi-
ciency of non-native English speakers has been proposed by Yoon et al. (2010). To our knowledge this
work is the most similar to the one presented here, although it differs in the application domain and sev-
eral other aspects. First of all, similar to CE methods, it makes some use of glass-box features derived
from knowledge about the ASR internal workings (e.g. word confidence and acoustic/language model
probabilities). Secondly, the domain addressed is constrained to responses to prompted utterances, while
in this paper we address a large unconstrained domain, namely the automatic transcription of lectures
(TED talks) covering different topics. Finally, (Yoon et al., 2010) is based on a rather simple model
whose performance is not carefully analysed from the learning point of view (e.g. by comparing the
contribution different state-of-the-art algorithms) as we do here.

The problem of automating system evaluation without a gold standard has been addressed also in other
NLP areas. For instance, (Louis and Nenkova, 2013) recently addressed the assessment of machine-
generated summaries without model summaries. The strongest parallelism with our work, however,
can be found in the Machine Translation (MT) evaluation field, where the goal of bypassing the need
of manually-created reference translations has motivated a large body of research.4 Quality estimation
for MT and ASR have a number of commonalities. First, they both deal with a “source” (respectively
a sentence in a language L and an acoustic utterance) and an “hypothesis” whose quality has to be
estimated without references (respectively a translation in a language L1 and an automatic transcription
of the audio signal). Second, they can be addressed at various granularities. Indeed, ASR output quality
estimation is similar to its MT counterpart where research focused on quality predictions at word level
(Ueffing and Ney, 2007; Bach et al., 2011), sentence level (Specia et al., 2009; Mehdad et al., 2012)
and document level (Soricut and Echihabi, 2010). Third, both tasks are suitable for supervised machine
learning methods, either for classification (Blatz et al., 2003; Quirk, 2004) or for regression (Specia et
al., 2010; Specia, 2011). Finally, both tasks motivate efforts in designing features capable to capture
the difficulty to process the source, the plausibility of the output hypothesis and (but not necessarily) the
confidence of the decoding process (Felice, 2012; Rubino et al., 2013b).

3 Approach

We approach the automatic estimation of ASR output quality as a supervised regression problem. Given
a training set of (signal, transcription, WER) instances, the task is to predict the WER of each instance
in a test set of unseen (signal, transcription) pairs.

Features. As shown in Table 1, the features used in our experiments (68 in total) can be categorized in
four main groups. The first group (ASR features) includes several glass-box features proposed in previous
literature on ASR confidence estimation (Litman et al., 2000; Gabsdil and Lemon, 2004; Goldwater et al.,
2010; Higgins et al., 2011). These features are suitable only for the ideal situation in which information
about systems’ internal decoding strategies is available (as in the experiments discussed in §4.1). We use
them as a term of comparison to evaluate the usefulness of the other three groups (signal, hybrid and
textual), which belong to the black-box type. These features, which are totally uninformed about the
decoding process, have wider applicability to the system-independent ASR quality estimation tasks that
represent our target scenario (see Sections 4.2 and 4.3). More in detail:

• ASR features aim to capture the confidence of the speech recognizer and the reliability of the whole
decoding process. In our experiments, as we do not have access to decoders of other systems, they
are computed only for the ASR system developed in our labs (Falavigna et al., 2013). These features

4For a complete overview of the current approaches to MT quality estimation we refer the reader to the WMT12 and WMT13
shared task reports (Callison-Burch et al., 2012; Bojar et al., 2013).
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are extracted both from word graphs (WGs) and n-best lists (n=100). In Table 1 “Total probabil-
ity” is the weighted sum of log Language Model (LM) and log Acoustic Model (AM) probabilities.
LM probability is computed with a 4-gram backoff LM, trained over about 5 billion words using
the IRSTLM toolkit (Federico et al., 2008) and the modified shift-beta smoothing method. AM
probability is computed using a set of tied-state triphone Hidden Markov Models having, as output
state density, a mixture of Gaussian probability densities with diagonal covariance matrices. “Mean
probability” is obtained dividing the total probability by the number of hypothesized ASR output
items (words + silences). Confidence scores are computed averaging time posterior word proba-
bilities (Evermann and Woodland, 2000). “Proportion of low confidence words” is the fraction of
words having confidence values ≤ 0.5. The remaining ASR features are directly extracted from
word graphs and n-best lists scores.

• Signal features aim to capture the difficulty to transcribe a given input looking at the signal as a
whole. They are computed from raw vectors extracted through frame analysis (we employ 20ms
analysis window and 10ms analysis step). For each analysed window, 12 Mel Frequency Cepstral
Coefficients (MFCCs) are evaluated plus log energy. Then, for each given segment, minimum,
maximum and mean values of raw energy, as well as the mean MFCCs values and total segment
duration, are computed to form the signal feature vector.

• Hybrid features provide a more fine-grained way to capture the difficulty of transcribing the signal.
This is done by considering information about word and silence/noise regions, as well as their
respective duration. These features are computed after having performed forced alignment between
the input audio signal and the corresponding automatic hypotheses. Forced alignment is carried
out with our ASR system (Falavigna et al., 2013), in order to detect audio segments related to
words, hesitations and silences in the hypothesis. Pitch features have been computed with the Praat
software tool (Boersma and Weenink, 2005).

• Textual features aim to capture the plausibility (i.e. the fluency) of an output transcription. To
this aim, we consider surface information (such as the number of words and the percentage of
numbers/content-words/nouns/verbs in the hypothesis) as well as information about LM perplexity
and probability of the hypothesis (both at the level of words and parts of speech)5.

Feature selection is performed throughout all our experiments to maximize results and, at the same
time, analyse the contribution of the proposed features. To this aim, we use Randomized Lasso, or
stability selection (Meinshausen and Bühlmann, 2010), which re-samples the training data several times
and fits a Lasso regression model on each sample. Features that appear in a given number of samples are
considered more informative for the task at hand, and hence retained (those marked in bold in Table 1
are the most informative ones based on the experiments described in Sections 4.2 and 4.3).

Learning algorithms. To build our regression models we experimented with two non-parametric learn-
ing approaches: Support Vector Machines (SVMs) (Shawe-Taylor and Cristianini, 2004) and Extremely
Randomized Trees (XT) (Geurts et al., 2006). SVMs are non-parametric deterministic algorithms that
have been widely used in several fields, in particular in NLP where they are the state-of-the-art for various
tasks. Extra-Trees are a tree-based ensemble method for supervised classification and regression that
were also successfully used for MT quality estimation (de Souza et al., 2013; de Souza et al., 2014a). In
XTs each tree can be parametrized differently. When a tree is built, the node splitting step is done at ran-
dom by picking the best split among a random subset of the input features. The results of the individual
trees are combined by averaging their predictions. Hyper-parameter optimization of the SVM (with Ra-
dial basis function kernel – RBF) and XT models was performed using randomized search (Bergstra and
Bengio, 2012). We used both learning methods as implemented in the Scikit-learn package (Pedregosa
et al., 2011).

5The PoS LM has been obtained by processing with the TreeTagger (Schmid, 1995) the same data used for the word LM.
6Hesitations, such as “uhm”, “eh” and “ah” are found through matches with a predefined list. Consecutive repeated words

in the same utterance are also considered as hesitations.
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ASR (16)

Total probability of ASR output (w · logPLM + logPAM ), mean probability, total
acoustic probability, mean acoustic probability, mean confidence score, Std of confi-
dence scores, confidence scores per second, proportion of low-confidence words, WG
node density, WG transition density, Mean/Std/Min n-best probability, Mean/Std/Min
n-best acoustic probability.

Signal (16)
Total segment duration (sec), Mean/Min/Max raw energy (dB), mean MFCC[1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11,12].

Hybrid (26)

SNR (dB), mean noise energy (dB), Mean/Min/Max word energy (dB), Min/Max
noise energy (dB), (max word - min noise) energy (dB), # silences, ratio of silences
and words, # words per second, # silences per second, total duration of words
(sec), total duration of silences (sec), mean duration of words (sec), mean duration
of silences (sec), ratio of (tot duration silences) and (tot duration words), Std of word
duration (sec), Std of silence duration (sec), (tot duration words) - (tot duration
silences), Mean/Std/Min./Max. pitch (Hz), # hesitations,6 frequency of hesitations.

Textual (10)

Number of words, LM log probability of the hypothesis, LM log probability of
POS of the hypothesis, LM log perplexity of POS of the hypothesis, Perplexity of
the hypothesis, % of numbers in the hypothesis, % of tokens in the hypothesis which
do not contain only a-z, % of content words in the hypothesis, % of nouns in the
hypothesis, % of verbs in the hypothesis

Table 1: Full list of the 68 features used in our experiments, divided into four groups. The most predictive
black-box features (resulting from feature selection in the §4.3 experiments) are marked in bold.

4 Experiments

To evaluate our approach we carried out three sets of experiments. In each set our feature groups are
analysed: i) with the two learning algorithms, ii) in combination/isolation, iii) with/without feature se-
lection. The three sets differ in terms of the difficulty of the quality estimation task from the learning
point of view. To experiment with situations of increasing complexity, we alternate conditions in which
all the features (glass-box and black-box) can be used, training and test sets are non-/homogeneous, the
quality estimator is trained on transcriptions generated by the same/different ASR systems.

Data. The data used in the experiments consists of the audio recordings delivered for the IWSLT 2013
evaluation campaign (Cettolo et al., 2013). One of the tasks of IWSLT 2013 is the automatic tran-
scription of English TED talks, a global set of conferences whose audio/video recordings are publicly
available. The main challenges for ASR in these talks include: the large variability of topics (hence
a large, unconstrained vocabulary), the presence of non-native speakers and a rather informal speaking
style. Each IWSLT participant submitted one primary ASR output run for each of the talks included in
the test set plus some optional contrastive ASR outputs. In addition, participants sent submissions for
the ASR tracks delivered for the 2012 evaluation campaign. Our experiments have been carried out on
the primary submissions, sent by 8 participants, related to the 2012 (consisting in 11 different talks) and
2013 (28 different talks) test sets. The 2012 test set has a total duration of around 1h45sec, it contains
1,118 reference sentences and 18,613 running words. On such dataset, participants’ primary submissions
achieved a mean utterance WER ranging from 10.5% to 18.4% (in this work a WER score is computed
for each reference sentence, and mean utterance WER represents the average of sentence WERs). The
2013 test set has a total duration of around 3h55sec, it contains 2,238 reference sentences and 41,545 run-
ning words. On this dataset, primary participants’ submissions achieve a mean utterance WER ranging
from 15.9% to 30.8%.

In our experiments, we always use 1,118 utterances for training the regressor and 1,120 for testing. To
this aim, the IWSLT 2013 data is randomly sampled three times in training and test sets of such dimen-
sions. While for the 2012 test set manual utterance segmentation has been provided by the organizers, for
the 2013 data the participants had to employ their own automatic segmentation systems before decoding
the audio tracks (thus resulting in a different number of ASR sentence hypotheses for each team). Hence,
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to ensure that each participant has the same number of ASR sentence hypotheses, an alignment with the
reference manual segmentation has been performed in our experiments.

Evaluation. Our evaluation is carried out in terms of Mean Absolute Error (MAE), a standard metric
for regression problems. The MAE is the average of the absolute errors ei = |fi − yi|, where fi is
the prediction of the model and yi is the actual WER for the ith test instance. WER is calculated with
the NIST SCLITE Scoring Package.7 As it is a measure of error, lower MAE scores indicate that our
predictions are closer to the real WER calculated for each test instance against the reference transcripts.
For each experiment, we report the mean and the standard deviation of the MAE achieved by the best
performing QE models on the IWSLT 2013 test sets.

Baseline. Besides measuring performance in terms of global MAE, each model is compared against a
common baseline for regression tasks. This baseline, which is particularly relevant in settings featuring
different data distributions between training and test sets, is calculated by labelling each test instance
with the mean WER score calculated on the training set. Previous works, also in MT quality estimation,
demonstrated that its results can be particularly hard to beat (Rubino et al., 2013a).

4.1 Experiment 1

In the first set of experiments we consider the easiest situation from the learning perspective. In this
setting we predict the WER of transcriptions produced by our ASR system (denoted by X), whose inner
workings are known (thus enabling the use of glass-box features). To investigate the relation between
prediction accuracy and the degree of homogeneity of training and test data, we experiment both with
similar datasets (disjoint training and test sampled from IWSLT13) and different datasets (IWSLT12
for training and samples from IWSLT13 for test). Results are reported in Table 2, where the notation
“LetterYear - LetterYear” indicates the systems and the datasets used for training and test (respectively
our system X, and data from IWSLT12 and/or IWSLT13).

Train - Test ALL (glass-box + BB COMB) ASR (glass-box) BB COMB (Signal+Hybrid+Textual) Baseline
X13 - X13 11.56±0.29 SVR 12.11±0.29 XT 15.17±0.06 XT 19.84±0.06
X12 - X13 12.61±0.13 XT 13.78±0.16 XT 16.78±0.18 XT 19.06±0.12

Train - Test Signal Hybrid Textual Baseline
X13 - X13 16.42±0.1 XT 17.61±0.12 XT 17.42±0.15 SVR 19.84±0.06
X12 - X13 18.85±0.09† XT 18.39±0.22 XT 17.58±0.15 XT 19.06±0.12

Table 2: MAE results using the same system on different datasets, with and without glass-box features.

As can be seen from the table, the two models using ALL the features achieve the largest improvements
over the strong baseline used for comparison (up to 8.2 MAE points in the X13 - X13 setting). This is
not surprising if we consider the high predictive power of ASR (glass-box) features that, when used in
isolation, lead to a considerably lower MAE with respect to the other three groups. However, it’s worth
observing that also the combination of only the black-box features (BB COMB) allows the QE predictors
to significantly outperform the baseline (up to 4.67 MAE points in X13 - X13). Such improvements come
from the joint contribution of each of the three groups, which achieve good results also in isolation.
Indeed, except in one case where the gain over the baseline is not significant8 (X12 - X13 with the Signal
features), their MAE reduction ranges between 0.67 (X12 - X13 Hybrid) and 3.42 MAE points (X13 -
X13 Signal). The good prediction capability of the black-box features is also shown by the fact that, when
combined with the glass-box features, they lead to improvements between 0.55 and 1.17 MAE points
over the ASR features alone. Considering the privileged condition of the (system-informed) glass-box
features, this is a remarkable result that suggests some complementarity between the two groups.

In general, our supervised approach is sensitive to the similarity between training and test. This is
evidenced by higher MAE results when non-homogeneous datasets (i.e. X12 - X13) are processed. In

7http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
8Statistical significance is measured by considering the overlap of confidence intervals defined by the standard deviation

range around the mean. In our tables, the results marked with the “†” symbol are not significantly better than the baseline.
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terms of algorithms, XT generally performs better than SVR, in particular when the QE model is trained
and tested on non-homogeneous data. This can be explained by their higher generalization capability
due to variance reductions as explained in (Hastie et al., 2009, Chapter 15).

4.2 Experiment 2

In this set of experiments we consider a situation of intermediate difficulty from the learning perspective.
Our objective is to evaluate, on homogeneous datasets (sampled from IWSLT13), the output of ASR
systems whose inner workings are not known (hence only black-box features can be used). To make
our analysis more complete, we also evaluate the performance of models trained on a given ASR system
to predict the WER of hypotheses produced by a different one. This situation is closer to application
scenarios in which the evaluated ASR system is unknown and different from the one used to train the
quality estimator. Two systems with very different performance are considered for this purpose: the best
and the worst according to the official IWSLT 2013 ranking (respectively denoted by A and Z).

Train - Test BB COMB Signal Hybrid Textual Baseline
A13 - A13 11.18±0.22 SVR 11.91±0.23 SVR 12.76±0.18 SVR 12.57±0.13 SVR 14.35±0.1
Z13 - A13 16.01±0.23 SVR 18.04±0.22 SVR 17.24±0.22 SVR 18.01±0.2 XT 21.58±0.15
Z13 - Z13 15.52±0.6 XT 16.94±0.41 XT 17.04±0.56 SVR 17.84±0.4 XT 19.65±0.43
A13 - Z13 17.36±0.43 XT 18.7±0.53 XT 18.21±0.45 XT 19.38±0.45 XT 21.03±0.51

Table 3: MAE results using different systems on the same dataset, without glass-box features.

The results reported in Table 3 confirm that: i) the combination of black-box features (BB COMB)
always leads to the best QE models, which significantly outperform the baseline, ii) the same holds
also when each single group is used in isolation, iii) with less homogeneous training and test data, XT
performs generally better than SVR.

In addition, it’s worth noting that when a QE model is trained and tested on data transcribed by
the same ASR system the results are significantly better (the MAE is always about 1.0 - 6.0 points
lower). Indeed, as also shown by the same behaviour of our baseline, this condition is simpler and more
suitable for supervised learning methods. This depends on the fact that each ASR system has its own
coherent behaviour, which results in transcriptions with similar characteristics that supervised models
are able to learn (e.g. recurring errors, similar WER distributions). In contrast, when training and test
data are produced by different ASR systems, supervised learning becomes more difficult and the output
predictions less reliable. Each feature group is affected by this situation, but it is interesting to note that
the Hybrid features are more robust than the other two groups to less homogeneous datasets. This can be
explained by the fact that they are extracted after applying forced alignment by means of a third system,
which is likely to normalise and reduce the difference between training and test data. Overall, also in
this more complex scenario where the glass-box features cannot be used, our results demonstrate a good
prediction capability of the QE models, which are still able to beat a strong baseline.

4.3 Experiment 3

In the third set of experiments we consider the hardest case from the learning point of view. In this setting
the evaluated ASR systems are unknown and training/test data are non homogeneous (i.e. training from
IWSLT12, test from samples of IWSLT13). Results are reported in Table 4.

Train - Test BB COMB Signal Hybrid Textual Baseline
A12 - A13 12.81±0.08 XT 13.57±0.13† XT 12.85±0.1 XT 13.25±0.23† XT 13.65±0.17
Z12 - A13 14.78±0.1 SVR 15.66±0.09† XT 13.56±0.09 SVR 13.63±0.24 SVR 15.51±0.35

Z12 - Z13 17.16±0.4 XT 19.34±0.32† XT 17.68±0.3 XT 19.59±0.11† XT 19.98±0.29
A12 - Z13 19.83±0.23 XT 21.85±0.2 XT 20.68±0.13 XT 22.62±0.08 XT 23.04±0.18

Table 4: MAE results using different systems on different dataset, without glass-box features.

Also in the most challenging scenario our results substantially confirm the previous findings. Indeed,
except in one case (Z12 - A13), the following observations still hold: i) when used in combination, the
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Figure 1: Learning curves for the best systems of “Experiment 3” (using BB COMB features).

black-box features (BB COMB) lead to the best QE models, which significantly outperform the baseline,
ii) this holds also when each single group is used in isolation (although not significantly in 5 out of 12
settings), iii) with less homogeneous training and test data, XT performs generally better than SVR.

Unsurprisingly, as also observed in the previous set of experiments, the low homogeneity of training
and test data has an impact on the accuracy of the predictions. The effect of training and testing on
less homogeneous data produced by different systems is now clearly visible. Except for the more robust
Hybrid features, which in the Z12 - A13 setting produce the best model, the results obtained with the two
other groups decreased to the point that their improvement over the baseline is often not significant. Nev-
ertheless, even under the challenging conditions posed by this realistic and application-oriented scenario,
reference-free and system-agnostic ASR evaluation remains a feasible task.

5 Feature Analysis and Learning Curves

In order to gain additional insights about the effectiveness of our method, we performed a further analysis
of the “Experiment 3” results. In such challenging scenario, the most interesting from the application
perspective, we first identified the most predictive features among those in the BB COMB set. To this
aim, we collected the features that are always chosen by the feature selection algorithm proposed in §3.
The resulting list contains features from all the three black-box groups (marked in bold in Table 1). This
confirms their complementarity in predicting the quality of a transcribed utterance.

In the same setting, we also investigated the relation between the amount of data used to train our
models and the accuracy of their predictions. To this aim, we measured performance variations when
the same models (i.e. those obtained with the BB COMB set) are trained on different amounts of data.
For each training set, nine subsets were created (with 10%, 20%,..., 90% of the data) by sub-sampling
sentences from a uniform distribution. The process was iterated 5 times. Each subset was used to build
the relative QE regressor, which was then evaluated on our test sets. Figure 1 shows the resulting learning
curves (each point is the average result of the 5 runs on each test set; the error bars show ±1std). As
can be seen from all the curves, after an initial fluctuation of the MAE, performance results with 40% of
the training data are comparable with those obtained using the whole training set. Moreover, it’s worth
remarking that in three out of four cases the models trained with such amount of data already outperform
the baseline (for Z12 - A13 the MAE is only 0.01 point higher). This suggests that reference-free, system-
independent models for ASR quality estimation are able to provide informative predictions even with a
limited amount (∼400 manual transcripts) of training instances.
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6 Conclusion

We investigated the problem of automatically predicting the word error rate of an automatically-
transcribed utterance in a large vocabulary continuous speech recognition setting. In such scenario,
we proposed a supervised regression approach that bypasses the need of manual reference transcriptions
and does not necessarily depend on information about system’s confidence (first contribution of the pa-
per). Then, by evaluating models obtained with different state-of-the-art learning algorithms, we showed
that our automatic predictions outperform a strong baseline and closely approximate the WER scores
calculated over reference transcripts (second contribution). Different feature groups have been proposed
and their contribution has been analysed in a range of testing conditions of increasing difficulty (third
contribution). This made possible to isolate informative features that significantly contribute to the per-
formance of our quality estimation models, and to get useful insights about the potential of our approach
when different sources of information (glass-box, black box features) are available. Finally, analysing
the relation between prediction performance and the size of the training set, we showed that the results
obtained with 40% of the data are already comparable to our best MAE (fourth contribution).

Our analysis revealed a dependency between the performance of the quality estimation models and
the degree of homogeneity between training and test data. This aspect is particularly relevant from the
application perspective since in real working conditions the availability of large amounts of representa-
tive training instances is far from being guaranteed. In quality estimation for machine translation (a task
featuring strong similarities with ours), these issues have recently motivated studies on domain adapta-
tion and online learning techniques (de Souza et al., 2014b; Turchi et al., 2014). This suggests, as a first
direction for future work, the investigation of approaches capable to better exploit the available training
data and mitigate the impact of large differences between training and test instances.
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Frank Wessel, Ralf Schlüter, Klaus Macherey, and Hermann Ney. 2001. Confidence Measures for Large Vocabu-
lary Continuous Speech Recognition. 9(3):288–298.

Su-Youn Yoon, Lei Chen, and Klaus Zechner. 2010. Predicting word accuracy for the automatic speech recogni-
tion of non-native speech. In Proc. of INTERSPEECH, pages 773–776, Makuhari,Chiba, Japan.

1823


