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Abstract

Social media texts are often written in a non-standard style and include many lexical variants

such as insertions, phonetic substitutions, abbreviations that mimic spoken language. The nor-

malization of such a variety of non-standard tokens is one promising solution for handling noisy

text. A normalization task is very difficult to conduct in Japanese morphological analysis because

there are no explicit boundaries between words. To address this issue, in this paper we propose a

novel method for normalizing and morphologically analyzing Japanese noisy text. We generate

both character-level and word-level normalization candidates and use discriminative methods to

formulate a cost function. Experimental results show that the proposed method achieves accept-

able levels in both accuracy and recall for word segmentation, POS tagging, and normalization.

These levels exceed those achieved with the conventional rule-based system.

1 Introduction

Social media texts attract a lot of attention in the fields of information extraction and text mining. Al-

though texts of this type contain a lot of information, such as one’s reputation or emotions, they often

contain non-standard tokens (lexical variants) that are considered out-of-Vocabulary (OOV) terms. We

define an OOV as a word that does not exist in the dictionary. Texts in micro-blogging services such

as Twitter are particularly apt to contain words written in a non-standard style, e.g., by lengthening

them (“goooood” for “good”) or abbreviating them (“thinkin’ ” for “thinking”). This is also seen in the

Japanese language, which has standard word forms and variants of them that are often used in social

media texts. To take one word as an example, the standard form is (oishii, “It is delicious”) and

its variants include (oishiiiii), (oishii), and (oishii), where the un-

derlined characters are the differences from the standard form. Such non-standard tokens often degrade

the accuracy of existing language processing systems, which are trained using a clean corpus.

Almost all text normalization tasks for languages other than Japanese (e.g., English), aim to replace

the non-standard tokens that are explicitly segmented using the context-appropriate standard words (Han

et al. (2012), Han and Baldwin (2011), Hassan and Menezes (2013), Li and Liu (2012), Liu et al. (2012),

Liu et al. (2011), Pennell and Liu (2011), Cook and Stevenson (2009), Aw et al. (2006)). On the other

hand, the problem is more complicated in Japanese morphological analysis because Japanese words are

not segmented by explicit delimiters. In traditional Japanese morphological analysis, word segmentation

and part-of-speech (POS) tagging are simultaneously estimated. Therefore, we have to simultaneously

analyze normalization, word segmentation, and POS tagging to estimate the normalized form using the

context information. For example, the input (pan-keiki oishiiii, “This pancake

tastes good”) written in the standard form is (pan-keiki oishii). The result obtained

with the conventional Japanese morphological analyzer MeCab (Kudo (2005)) for this input is

(pancake, noun)/ (unk)/ (unk)/ (unk)/, where slashes indicate the word segmentations and

“unk” means an unknown word. As this result shows, Japanese morphological analyzers often fail to
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correctly estimate the word segmentation if there are unknown words, so the pipeline method (e.g., first

estimating the word segmentations and then estimating the normalization forms) is unsuitable.

Moreover, Japanese has several writing scripts, the main ones being Kanji, Hiragana, and Katakana.

Each word has its own formal written script (e.g., (kyoukasyo, “textbook”) as formally written

in Kanji), but in noisy text, there are many words that are intentionally written in a different script

(e.g., (kyoukasyo, “textbook”) is the Hiragana form of ). These tokens written in

different script also degrade the performance of existing systems because dictionaries basically include

only the standard script. Unlike the character-level variation we described above, this type of variation

occurs on a word level one. Therefore, there are both character-level and word-level non-standard

tokens in Japanese informal written text. Several normalization approaches have been applied to Japanese

text. Sasano et al. (2013) and Oka et al. (2011) introduced simple character level derivational rules for

Japanese morphological analysis that are used to normalize specific patterns of non-standard tokens, such

as for word lengthening and lower-case substitution. Although these approaches handle Japanese noisy

text fairly effectively, they can handle only limited kinds of non-standard tokens.

We propose a novel method of normalization in this study that can handle both character- and word-

level lexical variations in one model. Since it automatically extracts character-level transformation pat-

terns in character-level normalization, it can handle many types of character-level transformations. It

uses two steps (character- and word-level) to generate normalization candidates, and then formulates a

cost function of the word sequences as a discriminative model. The contributions this research makes

can be summarized by citing three points. First, the proposed system can analyze a wider variety of

non-standard token patterns than the conventional system by using our two-step normalization candidate

generation algorithms. Second, it can largely improve the accuracy of Japanese morphological analysis

for non-standard written text by simultaneously performing the normalization and morphological analy-

ses. Third, it can automatically extract character alignments and in so doing reduces the cost of manually

creating many types of transformation patterns. The rest of this paper is organized as follows. Section 2

describes the background to our research, including Japanese traditional morphological analysis, related

work, and data collection methods. Section 3 introduces the proposed approach, which includes lattice

generation and formulation, as a discriminative model. Section 4 discusses experiments we performed

and our analyses of the experimental results. Section 5 concludes the paper with a brief summary and a

mention of future work.

2 Background

2.1 Japanese Morphological Analysis

Many approaches to joint word segmentation and POS tagging including Japanese Morphological anal-

ysis can be interpreted as re-ranking while using a word lattice (Kaji and Kitsuregawa (2013)). There

are two points to consider in the analysis procedure: how to generate the word lattice and how to formu-

late the cost of each path. In Japanese morphological analysis, the dictionary-based approach has been

widely used to generate the word lattice (Kudo et al. (2004), Kurohashi et al. (1994)). In a traditional

approach, an optimal path is sought by using the sum of the two types of costs for the path: the cost

for a candidate word that reflects the word’s occurrence probability, and the cost for a pair of adjacent

POS that reflects the probability of an adjacent occurrence of the pair (Kudo et al. (2004), Kurohashi et

al. (1994)). A greater cost means less probability. The Viterbi algorithm is usually used for finding the

optimal path.

2.2 Related Work

Several studies have been conducted on Japanese morphological analysis in the normalized form. The

approach proposed by Sasano et al. (2013) aims to develop heuristics to flexibly search by using a simple,

manually created derivational rule. Their system generates normalized character sequence based on the

derivational rule, and adding new nodes that are generated from normalized character sequence when

generating the word lattice using dictionary lookup. Figure 1 presents an example of this approach.

If the non-standard written sentence (suugoku tanoshii, “It is such fun”) is input, the
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Figure 1: Example of Japanese morphological analysis and normalization

type non-standard form standard form

(1) Insertion (arigatoou) (arigatou, “Thank you”)

(2) Deletion (samu) (samui, “cold”)

(3) Substitution with phonetic variation (kawaee) (kawaii, “cute”)

(4) Substitution with lowercases and uppercases (arigatou) (arigatou, “Thank you”)

(5) Hiragana substitution (aidei) ID (aidei, “identification card”)

(6) Katakana substitution (arigatou) (arigatou, “Thank you”)

(7) Any combination of (1) to (6) (kaunta) (kaunta, “counter”)

(attsui) (atsui, “hot”)

Table 1: Types of non-standard tokens and examples of annotated data

traditional dictionary-based system generates Nodes that are described using solid lines, as shown in Fig.

1. Since “ ” (suugoku, “such”) and “ ” (tanoshii, “fun”) are OOVs, the traditional system

cannot generate the correct word segments or POS tags. However, their system generates additional

nodes for the OOVs, shown as broken line rectangles in Fig. 1. In this case, derivational rules that

substitute “ ” with “null” and “ ” (i) with “ ” (i) are used and the system can generate the standard

forms “ ” (sugoku, “such”) and “ ” (tanoshii, “fun”) and their POS tags. If we can generate

sufficiently appropriate rules, these approaches seem to be effective. However, there are many types of

derivational patterns in SNS text and it is difficult to cover all of them by hand. Moreover, it becomes a

serious problem how to set the path cost for appropriately re-ranking the word lattice when the number

of candidates increases. Our approach is also based on the dictionary-based approach, however, our

approach is significantly dissimilar from their approach in two ways. First, we automatically generate

derivational patterns (we call them transformation tables) based on the character-level alignment between

non-standard tokens and their standard forms. Compared to generating the rules by hand, our approach

can generate broad coverage rules. Second, we use discriminative methods to formulate a cost function.

Jiang et al. (2008), Kaji and Kitsuregawa (2013) introduce several features to appropriately re-rank the

added nodes. This enables our system to perform well even when the number of candidates increases.

On the other hand, several studies have applied a statistical approach. For example, Sasaki et al.

(2013) proposed a character-level sequential labeling method for normalization. However, it handles

only one-to-one character transformations and does not take the word-level context into account. The

proposed method can handle many-to-many character transformations and takes word-level context into

account, so the scope for handling non-standard tokens is different. Many studies have been done on text

normalization for English; for example Han and Baldwin (2011) classifies whether or not OOVs are non-

standard tokens and estimates standard forms on the basis of contextual, string, and phonetic similarities.

In these studies it was assumed that clear word segmentations existed. However, since Japanese is an

unsegmented language the normalization problem needs to be treated as a joint normalization, word

segmentation, and POS tagging problem.

2.3 Data Collection and Analysis of Non-standard Tokens

In previous studies (Hassan and Menezes (2013), Ling et al. (2013), Liu et al. (2011)), the researchers

proposed unsupervised ways to extract non-standard tokens and their standard forms. For Japanese text,

however, it is very difficult to extract word pairs in an unsupervised way because there is no clear word

segmentation. To address this problem we first extracted non-standard tokens from Twitter text and blog
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Figure 2: Structure of proposed system

Figure 3: Example of candidate generation

text and manually annotated their standard (dictionary) forms. In total, we annotated 4808 tweets and

8023 blog text sentences. Table 1 lists the types of non-standard tokens that we targeted in this study

and examples of the annotated data. Types (1), (2), (3) and (4) are similar to English transform patterns.

Types (5) and (6) are distinctive patterns in Japanese. As previously mentioned Japanese has several

kinds of scripts, the main ones being Kanji, Hiragana, and Katakana. These scripts can be used to write

the same word in several ways. For example, the dictionary entry (sensei, “teacher”) can also

be written in Hiragana form (sensei) or Katakana form (sensei). Most words are

normally written in the standard form, but in informal written text (e.g., Twitter text), these same words

are often written in a non-standard form. In examining Twitter data for such non-standard tokens, we

found that 55.0% of them were types (1) to (3) in Table 1, 4.5% were type (4), 20.1% were types (5)

to (6), 2.7% were type (7), and the rest did not fall under any of these types since they were the result

of dialects, typos, and other factors. In other words, a large majority of the non-standard tokens fell

under types (1) to (7). We excluded those that did not as targets in this study because our proposed

method cannot easily handle them. Types (1) to (4) occur at character-level and so can be learned from

character-level alignment, but types (5) to (6) occur at word-level and it is inefficient to learn them on

a character level basis. Accordingly, we considered generating candidates and features on two levels:

character-level and word-level.

3 Proposed Method

3.1 Overview of Proposed System

We showed the structure of the proposed system in Fig. 2. Our approach adds possible normalization

candidates to a word lattice and finds the best sequence using a Viterbi decoder based on a discriminative

model. We introduced several features that can be used to appropriately evaluate the confidence of the

added nodes as normalization candidates. We generate normalization candidates as indicated in Fig. 3.
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Figure 4: Example of character alignment

We describe the details in the following section.

3.2 Character-level Lattice

3.2.1 Character Alignment between Non-standard Tokens and Their Normalized Forms

We have to create a character-level transformation table to generate the character-level lattice. We used

the joint multigram model proposed by Sittichai et al. (2007) to create the transformation table because

this model can handle many-to-many character alignments between two character sequences. In ob-

serving non-standard tokens and their standard forms, we find there are not only one-to-one character

transformations but also many-to-many character transformations. Furthermore, unlike in translation,

there is no character reordering so the problems that arise are similar to those in transliteration. Accord-

ingly, we adopted a joint multigram model that is widely used for transliteration problems. The optimal

alignment can be formulated as q̂ = arg max
q∈Kd

∏
q∈q p(q) , where d is a pair of non-standard tokens

and its standard form (e.g., d is (arigatoou), (arigatou). Here, q is a partial
character alignment in d (e.g., q is “ , ”), q is the character alignment q set in d (e.g., q of

path 1 in Fig. 4 is {(“ , ”), (“ , ”), (“ , ”), (“ , ”)}. Kd is the possible character

alignment sequence candidates generated from d. We generate n-best optimal path for Kd in this study.

The maximum likelihood training can be performed using the EM algorithm derivated in Bisani and Ney

(2008) and Kubo et al. (2011) to estimate p(q). p(q) can be formulated as follow:

p(q) = γq/
∑
q∈Q

γq (1)

γq =
∑
d∈D

∑
q∈Kd

p(q)nq(q) =
∑
d∈D

∑
q∈Kd

∏
q∈q

p̄(q)∑
q∈Kd

∏
q∈q

p̄(q)
nq(q),

and where D is the number of the d pair, Q is the set of q, and nq(q) is the count of q that occurred in
q. In our system, we allow for standard form deletions (i.e., mapping of a non-standard character to a

null standard character) but not non-standard token deletions. Since we use this alignment as the trans-

formation table when generating a character-level lattice, the lattice size becomes unnecessarily large

if we allow for non-standard form deletions. In the calculation step of the EM algorithm, we calculate

the expectation (partial counts) γq of each alignment in the E-step, calculate the joint probability p(q)
that maximizes the likelihood function in the M-step as described before, and repeat these steps until

convergence occurs. p̄(q) indicates the result of p(q) calculated in the previous step over the iteration.
When generating the character-level lattice, we used alignments that were expected to exceed a prede-

fined threshold. We used γq (q = (ct, cv)) and r(ct, cv) as thereshold, where ct and cv are the partial

character sequence of non-standard token and it’s standard form respectively. r(ct, cv) is calculated by
r(ct, cv) = γq/ncv ., where ncv is the number of occurrences of cv in the training data. We set the thresh-

old γq thres = 0.5 , and r(ct, cv)thres = 0.0001 in this study. We also used r(ct, cv) as a feature of cost
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function in subsection. 3.4.2. When calculating initial value, we set p(ct, cv) high if the character ct and

cv are the same character and the length of each character is 1. We also give the limitation that a Kanji

character does not change to a different character and is aligned with same character in the calculation

step of the character alignment.

3.2.2 Generation of Character-level Lattice Based on Transformation Table

First, repetitions of more than one letter of “ ”, “ ”, “-”, and “ ” are reduced back to one letter (e.g.,

(arigatooooou, “Thank you”) is reduced to (arigatoou)) for the

input text. In addition, repetitions of more than three letters other than “ ”, “ ”, “-”, and “ ” are

reduced back to three letters (e.g., (uresiiiiiii, “I’m happy”) is reduced back to

(uresiiii)). These preprocessing rules are inspired by Han and Baldwin (2011) and determined

by taking the Japanese characteristics into consideration. We also used these rules when we estimated the

alignments of the non-standard tokens and their standard forms. Next, we generate the character-level

normalization candidates if they match the key transformation table in the input text. For example, if the

transformation table contains (q, logp(q))= (“ (yoo), (you)”, -8.39), (“ (o), (o)”, -7.56),

and the input text includes the character sequence “ ” (tyoo), we generate a new sequence “ ”

(tyou) and “ ” (tyoo). In other words, we add new nodes “ ” (you) and “ ” (o) in the position

of “ ” (yoo) and “ ” (o), respectively (see Fig. 3).

3.3 Generation of Word-level Lattice

We generate the word lattice based on the generated character-level lattice using dictionary lookup. We

exploit dictionary lookup by using the possible character sequence of the character-level lattice while

the traditional approach exploits it by using only the input character sequence. For example, we exploit

dictionary lookup for character sequences such as “ ” (tyoo kawaii) and “ ”

(tyou kawaii) and “ ” (chiyou kawaii) and “ ” (tyoo kawaii) (see Fig. 3)

Furthermore, we use the phonetic information of the dictionary to generate the normalization candi-

dates for Hiragana and Katakana substitution. For example, assume “ ” (tyou, “super”) and “ ”

(kawaii, “cute”) are the dictionary words. Then, if the input text contains the character sequences “

” (tyo) (which is written in Hiragana) and “ ” (kawaii) (which is written in Katakana), we add

“ ” (tyo, “super”) and “ ” (kawaii, “cute”) to the word lattice as the normalization candidates

since the two character sequences are pronounced identically. By using this two-step algorithm, we can

handle any combinational derivational patterns, such as Katakana substitutions or substitutions of lower-

cases like “ ” (kawaii) “ ” (kawaii) “ ” (kawaii, “cute”) (see Fig. 3). Note

that we filtered candidates on the basis of a predefined threshold to prevent the generation of unneces-

sary candidates. The threshold was defined on the basis of the character sequence cost of normalization,

which is described in subsection 3.4.2. Furthermore, we limited the number of character transformations

to two per word.

3.4 Decoder

3.4.1 Objective Function

The decoder selects the optimal sequence ŷ from L(s) when given the candidate set L(s) for sentence
s. This is formulated as ŷ = arg min

y∈L(s)
w · f(y) (Jiang et al. (2008), Kaji and Kitsuregawa (2013)), where

ŷ is the optimal path, L(s) is the lattice created for sentence s, and w · f(y) is the dot product between
weight vector w and feature vector f(y). The optimal path is selected according to the w · f(y) value.

3.4.2 Features

The proposed lattice generation algorithm generates a lattice larger than that generated in traditional

dictionary-based lattice generation. Therefore, we need to introduce an appropriate normalization cost

into the objective function. We listed the features we used in Table 2. Let wi be the ith word candidate
and pi be the POS tag of wi. pi−1 andwi−1 are adjacent POS tag and word respectively. We also used the

word unigram cost fwipi , the cost for a pair of adjacent POS fpi−1,pi that are quoted from MeCab (Kudo,

1778



Name Feature

Word unigram cost fwipi

POS bi-gram cost fpi−1,pi

Word-POS bi-gram cost −logpwi−1pi−1,wipi

Character sequence cost log(p′s/p′ti)
where, p′x = p

1/length(x)
x , px =

∏n
j=1 p(cj |cj−1

j−5), x ∈ {s, ti}
Character transformation cost φtransi · (−logr(ct, cv))
Hiragana substitution cost φhi

· fwipi

Katakana substitution cost φki
· fwipi

Table 2: Feature list of the decoder. φtransi is 1 if wi is generated by character transformation, otherwise

0. φhi
is 1 ifwi is generated by Hiragana substitution, otherwise 0. φki

is 1 ifwi is generated by Katakana

substitution, otherwise 0.

2005), and five additional types of costs. These are the word-pos bi-gram cost −logpwi−1pi−1,wipi of a

blog corpus; the character transformation cost φtransi ·(−logr(ct, cv)), which is calculated in Section3.2,
for nodes generated by character transformation; the Hiragana substitution cost φhi

· fwipi for nodes

generated by Hiragana substitution; the Katakana substitution cost φki
· fwipi for nodes generated by

Katakana substitution; and the character sequence cost log(p′s/p′ti) for all the normalized nodes. The

character sequence cost reflects the character sequence probability of the normalization candidates. Here,

s and ti are input string and transformed string respectively. (e.g., In Fig. 3, for the normalized node
“ ” (cute, adjective), s is “ ” and ti is “ ”). Then ps and pti are

calculated by using the character 5-gram of a blog corpus, which is formulated by ps = p(c1 · · · cn) =∏n
j=1 p(cj |cj−1

j−5), where cj is the j th character of character sequence s. p′ti and p′s are normalized by

using the length of each string s and ti as p′ti = p
1/length(ti)
ti

. We set the threshold (p′s/p′ti)thres = 1.5
for generating a Hiragana or Katakana normalization candidate in this study. Since all those features can

be factorized, the optimal path is searched for by using the Viterbi algorithm.

3.4.3 Training

We formulated the objective function for tuning weights w by using Eq. 2. The weights w are trained

by using the minimum error rate training (MERT) Machery et al. (2008). We defined the error function

as the differences between the reference word segmentations and the POS tags of the reference sequence

yref and the system output arg min
y∈L(s)

w · f(y).

ŵ = arg min
w∈W

N∑
i=1

error(yref , arg min
y∈L(s)

w · f(y)) (2)

4 Experiments

4.1 Dataset and Estimated Transformation Table

We conducted experiments to confirm the effectiveness of the proposed method, in which we annotated

corpora of a Japanese blog and Twitter. The Twitter corpus was split into three parts: the training, devel-

opment, and test sets. The test data comprised 300 tweets, development data comprised 500 sentences

and the training data comprised 4208 tweets. We randomly selected the test data which contained at least

one non-standard token. The test data comprised 4635 words, 403 words of them are non-standard token

and are orthographically transformed into normalized form and POS tags. The blog corpus comprised

8023 sentences and all of them were used as training data. Training data was used for extracting char-

acter transformation table and development data was used for estimating parameters of discriminative

model. We used the IPA dictionary provided by MeCab to generate the word-level lattice and extracted

the dictionary-based features. We itemized the estimated character transformation patterns in Table 3.

There were 5228 transformation patterns that were learned from the training data and we used 3268 of

them, which meets the predefined condition. The learned patterns cover most of the previously pro-
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non-standard
character ct

standard
character cv logp(q)

non-standard
character ct

standard
character cv logp(q)

null -4.233 (ssu) (desu) -5.999

(maa) (maa) -5.059 (doo) (dou) -6.210

(syo) (syou) -5.211 (nee) (nai) -6.232

(daro) (darou) -5.570 (rya) (reha) -6.492

(ttsu) null -5.648 (ten) (teru) -6.633

(nto) (ntou) -5.769 (yuu) (iu) -6.660

(wa) (wa) -5.924 (nan) (nano) -6.706

Table 3: Example of character-level transformation table

posed rules. In addition, our method can learn more of the variational patterns that are difficult to create

manually.

4.2 Baseline and Evaluation Metrics

We compared the five methods listed in Table 4 in our experiments. Traditional means that which gen-

erates no normalization candidates and only uses the word cost and the cost for a pair of adjacent POS,

so we can consider it as a traditional Japanese morphological analysis. We compared three baselines,

Baseline1, Baseline2 and Baseline3. Baseline1 is the conventional rule-based method (considering in-

sertion of long sound symbols and lowercases, and substitution with long sound symbols and lower-

cases), which was proposed by Sasano et al. (2013). In Baseline2, 3, and Proposed, we basically use

the proposed discriminative model and features, but there are several differences. Baseline2 only gen-

erates character-level normalization candidates. Baseline3 uses our two-step normalization candidate

generation algorithms, but the character transformation cost of all the normalization candidates that are

generated by character normalization is the same. Proposed generates the character-level and Hiragana

and Katakana normalization candidates and use all features we proposed.

We evaluated each method on the basis of precision and recall and the F-value for the overall system

accuracy. Since Japanese morphological analysis simultaneously estimates the word segmentation and

POS tagging, we have to check whether or not our system is negatively affected by anything other than the

non-standard tokens. We also evaluated the recall with considering only normalized words. That value

directly reflects the performance of our normalization method. We registered emoticons that occurred in

the test data in the dictionary so that they would not negatively affect the systems’ performance.

4.3 Results and Discussion

The results are classified in Table 4. As the table shows, the proposed methods performed statistically

significantly better than the baselines and the traditional method in both precision and recall (p < 0.01),
where the precision was greatly improved. This indicates that our method can not only correctly analyze

the non-standard tokens, but can also reduce the number of wrong words generated. Baseline1 also

improved the accuracy and recall compared to the traditional method, but the effect was limited. When

we compare Proposed with Baseline2, we find the F-value is improved when we take the Hiragana

and Katakana substitution into consideration. Baseline3 also improved the F-value but its performance is

inferior to proposed method.This proves that even if we can generate sufficient normalization candidates,

the results worsen if the weight parameter of each normalization candidate is not appropriately tuned. The

column of “recall∗” in Table 4 specifies the improvement rates of the non-standard tokens. The proposed
methods improve about seven times when using Baseline1 while preventing degradation. These results

prove that we have to generate appropriate and sufficient normalization candidates and appropriately tune

the cost of each candidate to improve both the precision and recall.

We show examples of the system output in Table 5. In the table, slashes indicate the position of the

estimated word segmentations and the words that were correctly analyzed are written in bold font. Exam-

ples (1) to (5) are examples improved by using the proposed method. Examples (6) to (7) are examples

that were not improved and example (8) is an example that was degraded. Examples (1) to (3) include

phonetic variations and example (4) is a Hiragana substitution. Example (5) is a combinational trans-
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word segmentation word segmentation and POS tag

method precision recall F-value precision recall F-value recall∗

Traditional 0.716 0.826 0.767 0.683 0.788 0.732 -

Rule based (BL1∗∗) 0.753 0.833 0.791 0.717 0.794 0.754 0.092

Proposed 0.856 0.883 0.869 0.822 0.849 0.835 0.667

- without Hiragana and Katakana normalization (BL2) 0.834 0.875 0.854 0.798 0.838 0.818 0.509

- character transformation cost is fixed (BL3) 0.838 0.865 0.851 0.807 0.834 0.821 0.533

∗ considering only normalized words, ∗∗ BL:baseline

Table 4: Results of precision and recall of test data

input traditional proposed gold standard

(1) (adii) (a)/ (di)/ (atsui) (atsui, “hot”)

(2) (sugee) (suge)/ (sugoi) (sugoi, “great”)

(3) (gommeen) (go)/ / (me)/ / (n)/ (gomen) (gomen, “I’m sorry”)

(4) (hitsuyou) (hitsu)/ (you) (hitsuyou) (hitsuyou, “necessary”)

(5) (daichuki) (da)/ (ichi)/ (yu)/ (ki)/ (daisuki) (daisuki, “like very much”)

(6) (oseee) (ose)/ (ee)/ (e) (ose) (osoi, “slow”)

(7) (kanwaii) (kan)/ (wa)/ (ii) (kanwa)/ (ii) (kawaii, “cute”)

(8) (inai) (i)/ (nai) (inai) / (i/nai, “absent”)

Table 5: System output examples

formation pattern of a phonetic variation and Hiragana substitution. We can see our system can analyze

such variational non-standard tokens for all these examples. Two types of errors were identified. The first

occurred as the result of a lack of a character transformation pattern and the second was search errors.

Example (6) shows an example of a case in which our system couldn’t generate correct normalization

candidate because there was not corresponding character transformation pattern, even though there was

a similar phonetic transformation pattern. To ensure there will be no lack of transformation patterns,

we should either increase the parallel corpus size to enable the learning of more patterns or derive new

transformation patterns from the learned patterns. Example (7) shows an example of a case in which a

normalized candidate was generated but a search failed to locate it. Example (8) shows an example of a

case in which the result was degraded. Our system can control the degradation well, but there are several

degradation caused by normalization. We will need to develop a more complicated model or introduce

other features into the current model to reduce the number of search errors.

5 Conclusion and Future Work

We introduced a text normalization approach into joint Japanese morphological analysis and showed that

our two-step lattice generation algorithm and formulation using discriminative methods outperforms the

previous method. In future work, we plan to extend this approach by introducing an unsupervised or

semi-supervised parallel corpus extraction for learning character alignments to generate more patterns

at a reduced cost. We also plan to improve our model’s structure and features and implement it with a

decoding method to reduce the number of search errors. In addition, we should consider adding other

types of unknown words (such as named entities) to the morphological analysis system to improve its

overall performance.
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