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Abstract

This paper presents the first experiments on identifying implicit discourse relations (i.e., relations
lacking an overt discourse connective) in French. Given the little amount of annotated data for
this task, our system resorts to additional data automatically labeled using unambiguous connec-
tives, a method introduced by (Marcu and Echihabi, 2002). We first show that a system trained
solely on these artificial data does not generalize well to natural implicit examples, thus echoing
the conclusion made by (Sporleder and Lascarides, 2008) for English. We then explain these ini-
tial results by analyzing the different types of distribution difference between natural and artificial
implicit data. This finally leads us to propose a number of very simple methods, all inspired from
work on domain adaptation, for combining the two types of data. Through various experiments
on the French ANNODIS corpus, we show that our best system achieves an accuracy of 41.7%,
corresponding to a 4.4% significant gain over a system solely trained on manually labeled data.

1 Introduction

An important bottleneck for automatic discourse understanding is the proper identification of implicit
relations between discourse units. What makes these relations difficult is that they lack strong surface
cues like a discourse marker. This point is illustrated in the French examples (1) and (2).1 In (1), the
connective mais (but) triggers a relation of contrast, whereas in (2), there is no explicit connective to
signal the explanation relation, and the relation has to be inferred through other ways (in this case, a
causal relation between having injured players and loosing).

(1) La hulotte est un rapace nocturne, mais elle peut vivre le jour.
The tawny owl is a nocturnal bird of prey, but it can live in the daytime.

(2) L’équipe a perdu lamentablement hier. Elle avait trop de blessés.
The team lost miserably yesterday. It had too many injured players.

Implicit relations are very widespread in naturally-occurring data. Thus, they make up between 39.5%
and 54% of the annotated examples in the Penn Discourse TreeBank (PDTB) (Prasad et al., 2008),
depending on the relation types used.2 A quick look at other discourse corpora suggests that the problem
is as pervasive (if not more) in other languages. The French ANNODIS corpus does not annotate the
distinction between explicit and implicit relations, but a projection of a French connective lexicon on the
data gives a proportion of 47.4 to 71% of implicit relations, depending on the set of relations.3 For the
German discourse corpus of (Gastel et al., 2011), (Versley, 2013) report 65% of implicit relations.

In this paper, we tackle the problem of automatically identifying implicit discourse relations in French.
To date, the large majority of studies on this task have focused on English, and to a lesser extent on
German. Performance remain relatively low compared to explicit relations, due to the lack of strong
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1All our examples are taken from the ANNODIS corpus: http://redac.univ-tlse2.fr/corpus/annodis/.
2The former count does not include AltLex, EntRel and NoRel as implicit examples, whereas the latter does.
3The first count does not include attribution, e-elaboration and frame examples.
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predictors. Because it relies on more complex, interacting factors, the identification of implicit relations
requires a lot of data. But the available annotated for French is scarce: while the PDTB contains about
40, 000 examples, the French ANNODIS only has about 3, 000 examples. An additional challenge for
building such a system for French compared to English is the lack of external lexical ressources (e.g.,
semantic verb classification, polarity database).

A natural approach to deal with the lack of annotated implicit data is to resort to additional data
automatically obtained from explicit examples in which the connective is removed (Marcu and Echihabi,
2002). Provided that one could reliably identify discourse connectives, this approach makes it possible to
create large amounts of additional implicit data from raw texts. Unfortunately, (Sporleder and Lascarides,
2008) show that a system trained on this type of artificially generated data does not generalize well,
leading to important performance degradation compared to a system solely trained on natural data.

The central question we address in this paper is how to better leverage the large amount of automat-
ically generated data. We first show that the bad generalization performance of the system trained on
artificial data lies in important distribution differences between the two datasets. This analysis in turn
leads us to investigate various simple schemes for combining natural and artificial data methods inspired
from the field of domain adaptation. Our best combined system yields a significant improvement of 4.4%
over a system solely trained on the available manually annotated data.

The rest of this paper is organized as follows. Section 2 summarizes previous works on implicit
relation identification. In section 3, we describe the problems introduced by the use of artificial data and
the methods we develop to deal with them. In section 4, we give a description of the data used, and in
section 5, we detail our feature set. Our experiments are then summarized in section 6.

2 Related Work

To date, there have been only a few attempts at building full document-based discourse parsers. On the
RST-DT (Carlson et al., 2001), the best performing system is (Joty et al., 2013), who report an F1 score
of 55.71 for labeled stuctures (with 23 relations). On the same corpus, (Sagae, 2009) and (Hernault et
al., 2010) report F1 scores of 44.5 and 47.3, respectively. On the PDTB, the parser of Lin et al. (2010)
obtains an F1 score of 33 (16 explicit relations, 11 implicit relations). On the ANNODIS corpus, Muller
et al. (2012) reports F1 scores of 36.1 (17 relations) and 46.8 (4 relations).

These still modest performance are due to wrong attachment decisions, as well as to errors in relation
labeling. Most of these latter errors are mostly imputable to wrong classifications of implicit relations.
Thus, the current best accuracy performance on explicit PDTB relations are 94.15% on 4 relations (Pitler
and Nenkova, 2009), and 86.77% on 16 relations (Lin et al., 2010). By contrast, the best identification
system for implicit PDTB relations obtains an accuracy of 65.4% on 4 relations in (Pitler et al., 2009), and
down to 40.2% for 11 of the level 2 relations of PDTB (Lin et al., 2009). For German, Versley (2013)’s
study on implicit relations reports 42.5 in F1 for 5 relations and 18.7 for 21 relations. For French, Muller
et al. (2012) report an accuracy score of 63.6% for their relation labeling system (over 17 relations), but
they do not provide separate scores for explicit vs. implicit relations.

This performance drop reflects the difficulty of identifying a rhetorical relation in the absence of an
explicit discourse marker. As shown by (Park and Cardie, 2012), the identification of implicit relations
relies on more diverse and noisy predictors from syntax (in the form of prediction rules) and (lexical)
semantics (e.g., polarity, semantic classes and fine-grained semantic tags for verbs). Unfortunately, most
of the semantic resources used to derive features for English (polarity database, Inquirer tags) are not
available for French. Zhou et al. (2010) try to predict the implicit connectives annotated in the PDTB
as a way of predicting the relation, a method only possible with this corpus. They obtain results lower
than those reported by (Park and Cardie, 2012). In another context, Sporleder (2008) shows that using
WordNet is less effective than lemmatisation for capturing semantic generalization, and (Wang et al.,
2010) use tree kernels in order to better capture important syntactic information. In another context,
Sporleder (2008) shows that using WordNet is less effective than lemmatisation for capturing semantic
generalization, and (Wang et al., 2010) use tree kernels in order to better capture important syntactic
information.
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Another set of studies we directly build upon explore the idea that many connectives unambiguously
trigger a unique relation, thus allowing to construct massive amount of (artificially) labelled implicit
examples from raw data. Marcu and Echihabi (2002) were the first to use this method: they were mainly
interested in showing that a removed connective could be recovered from its linguistic context. In turn,
they only tested their approach on examples that were also generated automatically, and not on manually
annotated implicit examples. In this setting, they report an accuracy of 49.7 (6 classes), significantly
above luck. Reusing the same approach, Sporleder and Lascarides (2008) then showed that a system
trained on a large amount of artificial examples (72000 examples) performs much worse than the same
system trained on a much smaller amount of natural examples (1, 051 examples) implicit examples, with
accuracies of 25.8 and 40.3, respectively.

Marcu and Echihabi’s (2002) original approach was based on the idea of finding pairs of semantically
related words that together trigger a relation (such as “nocturne/jour” (“nocturnal/daytime”) in example
1 of contrast). Interestingly, Pitler et al. (2009) showed that word pairs extracted from artificial data are
not helpful for implicit relation identification and, moreover, that the most informative word pairs are not
semantically related. Blair-Goldensohn et al. (2007) showed that, for cause and contrast at least, results
can be enhanced by improving the quality of the artificial data. Finally, Wang et al. (2012) propose a
first approach that exploits both natural and artificial data. Specifically, they select the most informative
training points among natural and artificial examples, both coming from the PDTB or the RST DT. They
define deterministic rules for identifying so-called “typical” examples of a relation, the “seed” sets that
are then expanded using a simple clustering algorithm. They report performance results well over those
of (Pitler et al., 2009), but using a different evaluation protocole. 4 Also, their method is not easy
to repoduce, especially for French, where we can not define the same deterministic rules as some of
these depend on polarity information, for which we do not have external resources. Furthermore, their
approach only extracts 1 to 5% of the data as seed examples, which would represent too few examples on
our corpus. Finally, we are interested in finer-grained relations, thus more difficult to discriminate using
these kind of rules.

3 Proposed Approach

Our approach builds upon and extends the method of (Marcu and Echihabi, 2002) and (Sporleder and
Lascarides, 2008) by investigating different strategies for combining natural and artificial examples of
implicit discourse relations. These different combination schemes are inspired from domain adaptation
and are motivated by the fact that artificial and natural examples follow different probability distributions.

3.1 Distribution Differences

Most machine learning algorithms are based on the assumption that data from training and test samples
are independently and identically distributed (i.e., the i.i.d. sampling assumption). Yet, it seems that the
use of artificial data clearly undermines this assumption. There is indeed no guarantee that our artificial
examples should follow a distribution similar to that of the manual examples. This leads to the problem
of learning from non-iid data, a problem that has attracted growing attention these last years in machine
learning and NLP (Sogaard, 2013), (Hand, 2006).

In this particular context, we have two sets of data with the same output space (i.e., the discourse
relations), and the same kind of inputs space (i.e., spans of text). But our data samples can differ in a
number of ways. Following the terminology in (Moreno-Torres et al., 2012), we may encounter all the
different kinds of shift that can appear in a classification problem.

Prior Probability Shift This shift describes changes in the marginal distribution of the output (i.e., the
relations). The artificial data do not have the same class distribution as the natural ones (see section 4).
Neither do they have the same distribution as the natural explicit, because of the automatic extraction.
This problem can be easily handled by resampling artificial data (see section 4).

4Wang et al. (2012) only use the first annotated relation and ignore the Entity relation, whereas Pitler et al. (2009) keep all
the annotations and map Entity examples to the Expansion class.
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Covariate Shift This shift describes changes in the marginal distribution of the input (i.e., the pairs of
spans of text). Artifical examples are originally explicit examples minus their connective, so it is rea-
sonnable to think that these examples will have a different distribution from the natural implicit examples.
Moreover, it is possible that, by removing the connective, we have made these examples semantically
unfelicitous or even ungrammatical. Segmentation is another issue, since it is automatic and based on
heuristics (see section 4). For example, artificial examples can not be multi-sentential whereas it can be
the case for natural ones.

Concept Shift This shift describes changes in the joint distribution of inputs and outputs. Consider
for instance the occurrences of relations within inter- and intra-sentential contexts. The proportion of
inter-sentential examples in natural and artificial datasets is the same for contrast (57.1%), it is similar
for result (resp. 45.7% and 39.8%), but very different for continuation (resp. 70% and 96.5%) and for
explanation (resp. 21.4% and 53.0%). Moreover, the extraction method is prone to errors, and it may
be the case that we wrongly identify a word form as a discourse connective. Thus, we may produce
examples annotated with a wrong relation or that do not involve any discourse relation at all. Finally,
deleting a connective can make the discourse ackward or even incoherent (Asher and Lascarides, 2003).
We can actually witness this with example (1). As shown by (Sporleder and Lascarides, 2008), deleting
the connective can also change the inferred relation. They found examples of explanation in which an
implicit relation becomes the only one inferable after removing the explicit marker.The deletion can
also change the inferred relation (Sporleder and Lascarides, 2008). We found an even worse effect in
our French corpus. In example (3), the connective puisqu(e) (because) triggers an explanation, thus the
events are ordered following the causal law. The cause, “migrer” (“migrate”), comes before the effect,
“deviennent” (“becomes”). But when we delete the connective, the order of the events seems to be
reversed. Keeping the first clause as the first argument, we then obtain a result relation in this sentence.

(3) Les Amorrites deviennent à la période suivante de sérieux adversaires des souverains d’Ur,
puisqu’ils commencent alors à migrer en grand nombre vers la Mésopotamie.
In the next period, Amorrites become severe opponents of the sovereigns of Ur, because they then
begin to migrate in large numbers to Mesopotamia.

3.2 Methods Inspired by Domain Adaptation

A way to deal with all the distribution differences observed is to reframe our problem within the frame-
work of domain adaptation. Informally, the task of domain adaptation is to port some system from one
domain, the source, to another, the target. Informally, we have a distribution Ds for the source data and
a distribution Dt for the target data. The goal of the classifier is to build a good approximation of Dt. If
one uses data following the distribution Ds in order to build this approximation, then the performance
will depend of the similarity between Ds and Dt. If these distributions are too dissimilar, the approxi-
mation will be bad and so will be the performance. It is the case in particular when the domains (e.g.,
text genres) are different. The goal of domain adaptation is precisely to deal with data from different
distributions (Jiang, 2008), (Mansour et al., 2009). We are not exactly in the same setting, but we can
regard the artificial data as the source, and the natural data, on which we evaluate, as the target.

As a first step, we decided to investigate the simplest domain adaptation methods there is, such as
those described in (Daumé III, 2007). These methods either combine directly the data or the models
built on each set of data. Performance of all these systems will be compared to the base systems trained
on only one set of data, in section 6.

Data combination The first possibility is to combine the data. The first model is trained on all natural
and artificial data together (UNION). This method does not allow us to control the importance of the two
sets of data nor to evaluate their influence on the system. We thus refine it in two ways. First, we only
add to the manual data randomly selected samples from the artificial data (ARTSUB). Alternatively, we
keep all the artificial examples but reweight (or, equivalently, duplicate) the manual examples (NATW).
Both these schemes allow us to avoid a massive imbalance between the two kinds of data.
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Model combination The second strategy consists in combining the models. A first set of methods
involve adding new features. That is, we train a model on the artificial data, then run it on the natural
examples. We use these predictions as new attributes for the natural model (ADDPRED). The parameter
associated to the attribute therefore measures the importance to be given to the predictions made by the
model trained on artificial data. We propose a variation of this method by adding the probabilities of each
prediction as supplementary attributes (ADDPROB). The intuition is that even if the classifier is wrong, it
could still be consistent in its errors. Yet another model combination consists in using the parameters of
the artificial model as initial values for the manual model parameters (ARTINIT). This method allows to
give an initial information to the natural model rather than a random intialization. Finally, we also build
a model by linearly interpolating the two basic models (LININT).

In addition to these combination schemes, we also add a method to automatically select examples
among the artificial set based on the confidence of the artificial model. Its aim is to filter out noisy
examples, our hypothesis being that the more confident the model, the less noisy the example.

4 Data

In this work, we choose to focus on 4 relations, contrast, result, continuation and explanation, each
of which can be either explicit or implicit. These are the same as the relations used in (Sporleder and
Lascarides, 2008), allowing for easy comparison across languages, with the exception of the relation
summary which does not appear in the ANNODIS corpus. Although it is difficult to map these relations
onto the relation set of the PDTB, we can say that our relations are closer to level 2 and level 3 (i.e.,
fine-grained) PDTB relations than level 1 (i.e., coarse-grained) ones.

4.1 Manually Annotated Data: ANNODIS

Our natural implicit examples are taken from the ANNODIS corpus, which is to date the only available
French corpus annotated at the discourse level. Its annotations are based on the SDRT framework (Asher
and Lascarides, 2003). It consists of 86 newspaper and Wikipedia articles. 3, 339 examples have been
annotated using 17 relations. In way of comparison, note that the PDTB has roughly 12 times more
annotated relations than ANNODIS. Documents are segmented in Elementary Discourse Units (EDUs)
which can be clauses, prepositionnal phrases and some adverbials and parentheticals if the span of text
describes an event. The relations link EDUs and complex segments, adjacent or not. The connectives are
not annotated, which means that the examples of implicit relations had to be extracted automatically.

The corpus has been pre-processed using the MELt tagger (Denis and Sagot, 2009) for POS-tagging,
lemmatization and morphological markings. Then, the documents have been parsed using the the MST-
Parser (McDonald and Pereira, 2006) trained for French by (Candito et al., 2010). In order to identify
implicit examples, we used the French lexicon of connectives (LexConn) developed by Roze et al. (2012).
We simply matched all possible connective forms associated with the annotated relations (discarding à,
which is too ambiguous). We did not add constraints on the connective position, as we wanted to be
sure to exclude all explicit examples, this method led us to miss a few implicit examples. Out of 1, 108
examples annotated with one of the 4 relations considered, 494 were found to be implicit (see table 2).

4.2 Automatically Annotated Data

The artificial data are automatically extracted from raw data using heuristic rules. We use LexConn to
mine explicit instances in the corpus Est Républicain composed of newspaper articles (9M sentences),
with the same pre-processings as ANNODIS. LexConn contains 329 connectives, among them, 131 are
unambiguous for our 4 relations. We grouped pragmatic relations (i.e., the relation is between speech
acts) and non pragmatic relations (i.e., the relation is between facts) relations, assuming they involve the
same kind of predictors, and the 3 contrastive relations, as only one type of contrast is annotated in ANN-
ODIS. We did not take into account 3 connectives corresponding to unknown part-of-speech. Our first
evaluation led us to delete 6 connectives, very ambiguous between discourse and non discourse readings,
such as “maintenant” (“now”). We eventually settled on 122 connectives, among which 100 were seen
in the corpus in a configuration matching one of our pre-defined patterns. As a comparison, (Sporleder
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and Lascarides, 2008) only had 50 such connectives. We finally use 122 connectives, among which 100
were seen in a correct configuration in the corpus. As a comparison, 50 were used in (Sporleder and
Lascarides, 2008).

Position Part-of-speech Patterns Examples
Inter-sentential All POS A1. C(,) A2. A1. Malheureusement(,) A2

A1. Surtout, A2.

Adv.
A1. beg-A2(,) C(,) end-A2. A1. beg-A2, de plus, end-A2.

A1. beg-A2(,) en outre(,) end-A2.
A1. A2, C. A1. A2, remarque.

Intra-sentential All POS A1, C(,) A2. A1, de plus(,) A2.
A1(,) donc(,) A2.

SC and Prep. C A1, A2. Preuve que A1, A2.
Puisque A1, A2.

Adv.
A1, beg-A2(,) C (,) end-A2. A1, beg-A2, de plus, end-A2.

A1, beg-A2(,) en outre(,) A2.
A1, A2, C. A1, A2, réflexion faite.

Table 1: Defined patterns with some examples. “A1” stands for the first argument, “A2” for the second
and “C” stands for the connective ; “beg” and “end” stand resp. for the beginning and the end of an
argument ; “(x)” indicates that “x” is not necessary, depending on the connective form. Some patterns
are only possible for some sets of connectives based on their part-of-speech (Subordinating Conjunction
(SC), Preposition (Prep.), Averbials (Adv.)).

The heuristic used to extract the examples has two main steps. First, we search forms used in discourse
readings using patterns (see table 1) that were manually defined for each connective based on its position,
its part-of-speechand the punctuation around it. Second, we identify the connectives arguments using the
same information. We make the same simplifying assumptions as in the previous studies: an argument
covers at most one sentence, and we have at most 2 EDUs within a sentence. As additional constraint,
we also require the presence of a verb in each relation argument. When two connectives occur in the
same segment, it is possible that one modifies the other. In turn, a naive extraction could produce two
examples with different relations but the same arguments. To avoid the creation of spurious examples,
we extract two examples in these cases only if one is inter- and the other intra-sentential according to our
extraction patterns.

Natural dataset Artificial dataset
Relation Explicit Implicit Available Training Test
contrast 100 42 252 793 23 409 2 926
result 52 110 50 297 23 409 2 926
continuation 404 272 29 261 23 409 2 926
explanation 58 70 59 909 23 409 2 926
All 614 494 392 260 93 636 11 704

Table 2: Number of examples in our corpora, for the natural dataset, only the implicit examples are used.

This simple method allows to quickly generate a large amount of data. In total, we extracted 392, 260
examples (see table 2). This initial dataset was rebalanced in a way to keep the maximum number of
available examples (thus dealing with the prior probability shift). We used 80% of the data as training
set, and 10% the development and test set. Note that there are some important differences in the label
distributions between natural and artificial data. For instance, the most represented relation in the natural
data (continuation) is the least represented in the artificial data. This is because the connectives that
trigger this relation are highly ambiguous between discourse and non-discourse readings. Finally, this
method generates some noise: out of 250 random examples, we found 37 errors in span boudaries and
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18 cases in which the connective form does not have a discourse reading.

5 Features

We adapted various features used in previous studies. The lack of ressources for French prevented us
from using them all, especially the semantic ones. These features correspond to surface information and
others more linguistic. As a comparison, (Marcu and Echihabi, 2002) only used pairs of words.

Sporleder and Lascarides (2008) used various linguistic features but no syntaxic ones. (Wang et al.,
2012) used semantic, syntaxic and lexical information. We used lexico-syntaxic information. Finally,
note that our goal is to evaluate the efficiency of data combinations. Thus we did not try to optimize this
feature set, as it would have introduced another parameter in our model.

Indication of syntactic complexity: we compute the number of nominal, verbal, prepositional, adjec-
tival and adverbial phrases.

Information concerning the heads of the arguments: we keep the lemma of negative element linked
to the head, we also get some temporal/aspectual information (number of auxiliaries dependent of the
head, tense, person, number of the auxiliaries), information about the heads dependents (if an object, a
by-object or a modifier is present ; if a preposition dependent of the head, subject or object is present ;
part-of-speech of the modifiers and prepositional dependents of the head, subject and object) and some
morphological information (tense and person of the head if verbal, gender if non verbal, number of the
head, precise part-of-speech, “VPP”, and simplified,“V”). We also add features pairing the tenses for
verbal heads and the heads numbers.

Position: we add a feature indicating if the example is inter or intra-sentential.

Indication of thematic continuity: we compute general lemma overlap and lemma overlap for open
class words.

6 Experiments

Our main objective is to assess whether one can use the artificial data to improve the performance of a
system solely based on data manually annotated only available in small amount. We therefore test the
methods described in section 3.

We experimented with a maximum entropy classifier from the MegaM5 package, in multiclass clas-
sification, with a maximum of 100 iterations. We did not try to optimize the regularization parameter
which is then equal to 1.

We rebalance the corpus of manually annotated data to a maximum of 70 examples per relation.6 We
have too few annotated examples to be able to construct a separate test set sufficiently large to make
statistical significance test. Thus, we decided to make a stratified nested cross-validation. It has been
shown that this method provides an estimate of the error that is very close to that one could obtain
on an independent evaluation set ((Varma and Simon, 2006), (Scheffer, 1999)), as it prevents us from
optimizing our hyper-parameters and performing evaluation on the same data. Specifically, there are two
cross-validation loops: the inner loop is used for tuning the hyper-parameters (as described in section
6.2) and the outer loop estimates the generalization error. The data are first split into N folds. We take
the fold k (with 1 ≤ k ≤ N ) as the current evaluation set. The N − 1 other folds are used as training
data and split into M folds used for model fitting. The best model is then evaluated on the fold k.
Finally, we report performance on the N folds. We used two 5-fold cross-validation in order to select
and evaluate the best models for the systems described in section 3.2. We have no guarantee to select the
best models at each test step, but this procedure allows to evaluate the stability of the system with respect
to the hyper-parameters (i.e. the chosen values should not be too scattered), the overfitting (i.e. inner and

5http://www.umiacs.umd.edu/~hal/megam/version0_3/
6Our focus is on the methodology of data combination, so we left for future work the issue of dealing with the highly

imbalanced relation distribution of the natural data. Incidentally, note that this setting prevents us from getting a system solely
performing well on highly frequent relations.
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outer estimations should be close) and the stability of the models (i.e. variance in the predictive capacity,
between the results on the outer folds).

As in the previous studies, we report performance using micro-averaged accuracy and F1 score per
relation. In order to evaluate the statistical significance of our results, we use the Student’s t-test (with p-
value< 0.05) which has been proved to work with very small sample (see (de Winter, 2013)) if the effect
size (computed using the Cohen coefficient) and the correlation between the sample are large enough,
while, as noted in (de Winter, 2013), the Wilcoxon signed rank test (that we initially tried) could lead to
overestimated p-value with such small sample. The results of the most relevant systems are presented in
table 3.

Without selection With selection
NATONLY ARTONLY ADDPRED ARTINIT ADDPRED+SELEC NATW+selec

Accuracy 37.3 23.0 39.3 40.1 41.7∗ 41.3
contrast 15.0 23.2 16.0 16.9 20.8 19.2
result 47.6 15.7 50.6 45.9 51.0 48.3
continuation 28.1 32.1 31.9 34.0 31.2 32.4
explanation 47.9 22.4 46.7 52.2 53.9 53.4

Table 3: Most relevant systems, with or without selection of examples, overall accuracy and F1 score per
relation, ∗ corresponds to a significant improvement over NATONLY.

6.1 Basic Models

In the first set of experiments, we trained two classifiers. The first one is trained on the natural implicit
data (NATONLY, 252 examples), and the second one on the artificial implicit data (ARTONLY, 93, 636
examples). We test both models on natural implicit data.

The overall accuracy of the NATONLY model is 37.3 with F1 score ranging from 15.0 for contrast
to 47.9 for explanation. The performance on contrast is fairly low, probably because this relation is
the least frequent in our training set. Note that the overall accuracy obtained is quite close to the 40.3
obtained for English by (Sporleder and Lascarides, 2008).

The overall accuracy of the ARTONLY model is 47.8 when evaluated on the same type of data, that
is, artificial ones (11, 704 test examples), but only 23.0 when evaluated on natural data. This significant
drop in performance has been observed in the previous studies on English. It can be attributed to the
distribution differences described in section 3. We can observe that the use of the artificial data lowers
the F1 score for result and explanation while, for contrast, F1 score is raised by about 10 points.

6.2 Models with Combinations

In this section, we present the results for the systems using both natural and artificial data. We either
directly combine the data or use the data to build separate models that are then combined. Some of these
models use hyper-parameters. When weighting the natural examples, we test weights c ∈ [0.5, 1, 5]
and c ∈ [10; 2000] with an increment of 10 until 100, of 50 until 1000 and of 500 until 2000. When
adding random subsets of artificial data, we add each time k times the number of natural examples
artificial examples with k ∈ [0.1; 600] with an increment of 0.1 until 1, of 10 until 100 and of 50 until
600. Finally, when taking a linear interpolation of the models, we build a new model by weighting the
artificial model by α ∈ [0.1; 0.9] with increments of 0.1.

In general, we observe that most of the systems lead to similar or higher accuracy than NATONLY, but
none of the improvements is statistically significant. The best system is ARTINIT (accuracy 40.1, p-value
of 0.18 and a small effect size, 0.39). Two other systems get an accuracy score better than 39, that is AD-
DPRED (39.3) and LININT (39.3), but not significantly better than NATONLY. The system ADDPROB,
similar to ADDPRED, leads to lower accuracy, showing that adding the probabilities decrease the per-
formance. For these systems, the scores on each of the outer folds are close7, specially for ADDPRED,

7ARTINIT : standard deviation (sd) = 0.074, mean = 40.1 ; ADDPRED : sd = 0.037, ADDPROB sd = 0.061, mean ' 39
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revealing a high model stability. The other systems allow to evaluate the impact of the artificial data on
the final results.

The only method leading to lower results is when training on the union of the data sets (UNION), the
accuracy (22.6) is similar to ARTONLY. This was expected, as the natural data are about 372 times less
numerous than the artificial ones, the new model is thus more influenced by the latter. Note that Wang et
al. (2012) also experiment this setting but do not observe such a gap, maybe because their artificial data
are based on manually annotated explicit examples, which are likely to be less noisy.

When directly combining the data, either by adding random subsets of the artificial data (ARTSUB,
accuracy 34.5) or by weighting the natural examples (NATW, accuracy 38.9), we observe, on the in-
ner folds, an inverse trend. As expected, the accuracy increases as the influence of the artificial data
decreases, that is, decreasing the coefficients for ARTSUB and increasing the weights for NATW. Ob-
serving the results in the inner folds reveals a same trend about the relative importance of the two kinds
of data: natural data have to be around 2.5 times more important than the artificial ones. We also ob-
serve this effect with LININT, with the mean of the choosen α values equals to 0.3. We also note that
the variance for the values of the hyper-parameter for ARTSUB is pretty high, probably caused by the
randomness of the subsamples selection. It is a bit lower for NATW and LININT showing that these
methods are more robust. Nevertheless, the strategy does not give an a priori good value for the hyper-
parameter but restricts the space of values (1020 plus or minus 272 for NATW and 0.3 plus or minus 0.18
for LININT).

6.3 Models with Automatic Selection of Examples

Previous experiments showed that adding artificial data mostly improves the performance but still not
significantly. We assume that a lot of the artificial data are noisy, which could hurt the systems. The
method of selection of examples thus aims at eliminating potentially noisy examples. The artificial
model is used on the training set, and we keep the examples that are predicted with a probability higher
than a threshold s ∈ [0.3; 0.85] with an increment of 0.1 until 0.5 and of 0.05 until 0.85. If the model
is confident enough about its prediction, the example might not correspond to noise, that is, a word
form that does not have a discourse readings and/or a segmentation error. We also check whether the
connective is redundant. For each threshold, we rebalance the data based on the least represented relation
(+SELEC systems).

The automatic selection of examples allows to improve previous results. The accuracy of the AR-
TONLY model moves from 23.0 to 25.0 with selection, and the system UNION move from 22.6 to 40.1
with selection.

The best results are obtained when we use artificial data to create new features but when we add only
the relation predicted by the artificial model (ADDPRED+SELEC). With this system, we observe a clear
tendency toward significance (accuracy 41.7 with a large effect size, 0.756, and a high correlation, 0.842).
The F1 scores for all classes are improved : 20.8 for contrast, 51.0 for result, 31.2 for continuation and
53.9 for explanation. Two other systems get an accuracy over 40: NATW+SELEC (accuracy 41.3, with
a trend toward significance8) and UNION+SELEC (no significantly higher than NATONLY). We note that
ADDPRED corresponds to the best baseline in (Daumé III and Marcu, 2006), which shows the relevance
of dealing with the distributions differences in our data through domain adaptation methods.

The automatic selection step allows a more important weight on the informations provided by the
artificial data. For LININT+SELEC, the best results are obtained with an almost equal influence of the
two models. In the same way, the mean of the choosen values for the coefficient for NATW+SELEC

is much lower, and it increases a lot for ARTSUB+SELEC allowing for larger subsamples. Even if the
choosen values are widly scattered, these observations tend to prove that the selection improves the
quality of our artificial corpus. Regarding the choosen values for the thresholds, the mean over all the
systems is 0.7, with a variable standard deviation but always greater than 0.1. This deviation is pretty
high, this hyper-parameter probably needs a better optimisation, by repeating the inner loop for example,
but these experiments will allow to reduce the search space.

8p-value = 0.077, large effect size, 0.68 and high correlation, 0.67
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The automatic selection of examples leads to one system, namely ADDPRED+SELEC, significantly
improving the accuracy of NATONLY. This shows that the artificial data, when rightly integrated, can
thus be used to improve a system identifying implicit relations, especially if their influence is low, the
model is driven towards the good distribution.

6.4 Effects on the Identification of the Relations

Looking at the F1 score per relation, we observed that these systems have dissimilar behaviors. A larger
influence of the artificial model allows improvements for contrast: the best result for this relation is ob-
tained when only the artificial data are used for training (at best, 28.8 F1 score with ARTONLY+SELEC).
The identification of the relation continuation seems to be also improved by the influence of the artificial
data. We can observe it with the linear interpolation of the models: the mean of the F1 score increases
with the increasing of the α coefficient for these relations. For continuation, however, the best mean F1

is obtained with α = 0.8, this relation needs a certain degree of influence from the natural data. Some
support for this proposition can be found in the fact that the best result for this relation is obtained with
NATW (at best, 44.7 F1 score). For the other relations, a large weight on the artificial data clearly de-
creases the F1 score. However, the identification of explanation is improved when we add the predictions
of the artificial model (at best, ADDPRED+SELEC, 53.9 F1 score). Improvement is fairly low for result
(at best, 51.0 with ADDPRED+SELEC).

The relation contrast might take advantage of less noisy artificial data as most of the examples are
extracted using the connective mais (but) always in discourse readings. For explanation, predictions of
the artificial model could be quiet coherent as most of the artificial examples correspond to the pragmatic
relation explanation∗. Moreover, if we look at the feature distribution (850 features overall), we observe
a gap of more than 30% for 2 and 5 features for result and explanation that is not observed for contrast
and continuation, the relations that make the most of the artificial data.

7 Conclusion

We have presented the first system that identifies implicit discourse relations for French. This kind
of relation is difficult to identify because of the lack of specific predictors. In the previous studies
on English, the performance on this task are fairly low despite the use of complex features, probably
because of a lack of manually annotated data. To deal with this issue, even more crucial for French,
our system also resorts to additional data, automatically annotated using discourse connectives. These
new data, however, do not generalize well to natural implicit data, because of distribution differences.
We thus test methods inspired by domain adaptation in order to combine natural and artificial data.
We add an automatic selection of examples among the artificial data to deal with noise generated by
the method of automatic annotation. We manage to get significant improvement over a system solely
trained using available data manually annotated by using automatic selection and the addition of features
corresponding to the predictions of the artificial model.

In future work, we will explore more sophisticated methods to deal with data samples that follow
different distributions. We will also explore ways to deal with imbalanced data and use our methods on
all the relations annotated in our French corpus. Finally, we will test these methods on English corpora,
in order to compare their efficiency with previous studies.
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