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Abstract

This paper describes a new Word Sense Disambiguation (WSD) algorithm which extends two
well-known variations of the Lesk WSD method. Given a word and its context, Lesk algorithm
exploits the idea of maximum number of shared words (maximum overlaps) between the context
of a word and each definition of its senses (gloss) in order to select the proper meaning. The main
contribution of our approach relies on the use of a word similarity function defined on a distribu-
tional semantic space to compute the gloss-context overlap. As sense inventory we adopt Babel-
Net, a large multilingual semantic network built exploiting both WordNet and Wikipedia. Besides
linguistic knowledge, BabelNet also represents encyclopedic concepts coming from Wikipedia.
The evaluation performed on SemEval-2013 Multilingual Word Sense Disambiguation shows
that our algorithm goes beyond the most frequent sense baseline and the simplified version of the
Lesk algorithm. Moreover, when compared with the other participants in SemEval-2013 task,
our approach is able to outperform the best system for English.

1 Introduction

Unsupervised Word Sense Disambiguation (WSD) algorithms aim at resolving word ambiguity with-
out the use of annotated corpora. Among these, two categories of knowledge-based algorithms gained
popularity: overlap- and graph-based methods. The former owes its success to the simple intuition un-
derlying that family of algorithms, while the diffusion of the latter started growing after the development
of semantic networks.

The overlap-based algorithms stem from the Lesk (1986) one, which inspired a whole family of meth-
ods that exploit the number of common words in two sense definitions (glosses) to select the proper
meaning in a context. Glosses play a key role in Lesk algorithm, which exploits only two types of in-
formation: 1) the set of dictionary entries, one for each possible word meaning, and 2) the information
about the context in which the word occurs. The idea is simple: given two words, the algorithm selects
those senses whose definitions have the maximum overlap, i.e. the highest number of common words in
the definition of the senses. In order to extract definitions, Lesk adopted the Oxford Advanced Learner’s
dictionary. This approach suffers from two problems: 1) complexity, the number of comparisons in-
creases combinatorially with the number of words in a text; and 2) definition expressiveness, the overlap
is based only on word co-occurrences in glosses. The first problem was tackled by a “simplified” version
of Lesk algorithm (Kilgarriff and Rosenzweig, 2000), which disambiguated each word separately. Given
a word, the meaning whose gloss shows the maximum overlap with the current context, represented by
the surrounding words, is selected. The simplified Lesk significantly outperforms the original Lesk al-
gorithm as proved by Vasilescu et al. (2004). The second problem was faced by Banerjee and Pedersen
(2002), who proposed an “adapted” Lesk algorithm. The adapted variation exploits relationships among
meanings: each gloss is extended by the definitions of semantically related meanings. Banerjee and
Pedersen adopt WordNet as semantic network and their algorithm takes into account several relations:
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hypernym, hyponym, holonym, meronym, troponym and attribute relation. The adapted algorithm out-
performs the Lesk one in disambiguating nouns in SensEval-2 English task. Despite these improvements,
overlap-based algorithms failed to stand the pace with figures achieved by graph approaches. Their abil-
ity to disambiguate all words in a sequence at once, meanwhile exploiting the existing interconnections
(edges) between senses (nodes), has made these algorithms more principled than methods that use the
sense definition overlaps. Moreover, the success of PageRank in web search has inspired a new vein of
algorithms for sense disambiguation that blossomed during the past years. Although graph-based algo-
rithms have taken advantage of the rich set of relationships available in dictionaries like WordNet, they
completely neglected the role of glosses in the disambiguation process.

From our standpoint, glosses are an important piece of information since they extensionally define a
word meaning. In this paper we propose a revised version of the simplified and adapted Lesk variations
that overcomes limits due to the definition expressiveness. Our method replaces the concept of overlap
with that of similarity. Similarity is computed on a Distributional Semantic Space (DSS) in order to
account for semantic relationships between words occurring in the definition and context, for as they
emerge from the use in the language. Indeed, Distributional Semantics Models (DSM) exploit the ge-
ometric metaphor of meanings, which are represented through points into a space where distance is a
measure of semantic similarity. The point representation inherits information about all co-occurring con-
text words, and then it is suitable for computing the overlap where no exact word matching can occur. In
addition, we introduce two functions: the former assigns an inverse gloss frequency (IGF) score to each
term occurring in the extended gloss, the latter exploits information about sense frequencies extracted
from an annotated corpus.

We choose BabelNet (Navigli and Ponzetto, 2012) as sense inventory. BabelNet is a very large se-
mantic network built up exploiting both WordNet and Wikipedia. Besides linguistic knowledge, it also
represents encyclopedic concepts coming from Wikipedia and information about named entities. This
makes our approach inherently multilingual and suitable for tasks such as named entity disambiguation.
The evaluation on SemEval-2013 Multilingual Word Sense Disambiguation (Navigli et al., 2013) proves
that our method is able to outperform both baselines (simplified Lesk and most frequent sense) and, for
English language, also the best SemEval-2013 participant.

The paper is structured as follows. Section 2 provides a brief introduction to Distributional Semantic
Models, while Section 3 describes the proposed methodology. Evaluation and details about the algo-
rithm implementation are reported in Section 4, while related work is described in Section 5. Finally,
conclusions close the paper.

2 Distributional Semantic Models

Semantic (or Word) Spaces are geometrical spaces of words where vectors express concepts, and their
proximity is a measure of the semantic relatedness. One of their greatest virtues is that they can be
built using entirely unsupervised analysis of free text. Moreover, they make few language-specific as-
sumptions since only tokenized text is needed. WordSpaces are inspired by the distributional hypothesis
(Harris, 1968) whereby the meaning of a word is determined by the rules of its use in the context of
ordinary and concrete language behaviour. This means that words are semantically similar if they share
contexts (surrounding words). Building a WordSpace involves the definition of a distributional model,
that is a quadruple (Lowe, 2001) consisting of: the space basis (word vectors) and dimension; the func-
tion that takes into account word co-occurrences and how these are represented in the final vector; a
similarity function defined over vectors; and eventually a map that transforms the vector space.

Our idea is to apply DSMs to WSD for computing the overlap between the gloss of the meaning and the
context as a similarity measure between their corresponding vector representations in a SemanticSpace.
In this paper we build a SemanticSpace (co-occurrences matrix M ) by analysing the distribution of words
in a large corpus, then M is reduced using Latent Semantic Analysis (LSA) (Landauer and Dumais,
1997). LSA collects the text data in a co-occurrence matrix, which is then decomposed into smaller
matrices with Singular-Value Decomposition (SVD). Hence, LSA represents high-dimensional vectors
in a lower-dimensional space while capturing latent semantic structures in the text data.
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Given the vector representation of two words, DSMs usually compute their similarity as the cosine of
the angle between them. In our case, the gloss and the context are composed by several terms, so in order
to compute their similarity we need a method to compose the words occurring in these sentences. It is
possible to combine words through vector addition (+) that corresponds to the point-wise sum of vector
components. For each set of terms, phrase or sentence, we build its vector representation by adding the
vectors associated to the words it is composed of. Then, the similarity measure is computed as the cosine
similarity between the two phrases/sentences. More formally, if g = g1g2...gn and c = c1c2...cm are
the gloss and the context respectively, we build their vector representation g and c in the SemanticSpace
through addition of word vectors belonging to them:

g = g1 + g2 + . . . + gn

c = c1 + c2 . . . + cm
(1)

The cosine similarity between g and c is a measure of the similarity of the two sentences that we consider
as a score associated to the candidate meaning with respect to the context.

3 Methodology

At the heart of our approach there is the simplified Lesk algorithm. Given a text w1w2...wn of n words,
we disambiguate one at a time taking into account the similarity between the gloss associated to each
sense of the target word wi and the context. The meaning whose gloss has the highest similarity is
selected. The context could be represented by a subset of surrounding words or the whole text where the
word occurs. Moreover, taking into account the idea of the Banerjee’s adaptation, we expand each gloss
with those of related meanings.

Our sense inventory is BabelNet, a very large multilingual semantic network built relying on both
WordNet and Wikipedia. In BabelNet linguistic knowledge is enriched with encyclopedic concepts
coming from Wikipedia. WordNet synsets and Wikipedia concepts (pages) are connected in an auto-
matic way. We choose BabelNet for three reasons: 1) glosses are richer and contain text from Wikipedia,
2) it is multilingual, thus the proposed algorithm can be applied to several languages, and 3) it also con-
tains information about named entities, thus an algorithm using BabelNet could be potentially used to
disambiguate entities.

Our algorithm consists of five steps:

1. Look-up. For each word wi, the set of possible word meanings is retrieved from BabelNet. First,
we look for senses coming from WordNet (or WordNet translated into languages different from
English). If no sense is found, we retrieve senses from Wikipedia. We adopt this strategy because
mixing up all senses from Wikipedia and WordNet results in worse performance. Conversely, if a
word does not occur in WordNet it is probably a named entity, thus Wikipedia could provide useful
information to disambiguate it.

2. Building the context. The context C is represented by the l words to the left and to the right of wi.
We also adopt a particular configuration in which the context is represented by all the words that
occur in the text.

3. Gloss expansion. We indicate with sij the j-th sense associated to the target word wi. We expand
the gloss gij that describes the j-th sense using the function “getRelatedMap” provided by BabelNet
API. This method returns all the meanings related to a particular sense. For each related meaning,
we retrieve its gloss and concatenate it to the original gloss gij of sij . During this step we remove
glosses belonging to synsets related by the “antonym” relationship. The result of this step is an
extended gloss denoted by g∗ij . In order to give more importance to terms occurring in the original
gloss, the words in the expanded gloss are weighed taking into account both the distance between
sij and the related synsets and the word frequencies. More details about term scoring are reported
in Subsection 3.2.
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4. Building semantic vectors. Exploiting the DSM described in Section 2, we build the vector repre-
sentation for each gloss g∗ij associated with the senses of wi and the context C.

5. Selecting the correct meaning. For each gloss g∗ij , the algorithm computes the cosine similarity
between its vector representation and context vector C. The similarity is linearly combined with the
probability p(sij |wi) that takes into account the sense distribution of sij given the word wi; details
are reported in Subsection 3.1. The sense with the highest similarity is chosen.

In order to compare our approach to the simplified Lesk algorithm, we developed a variation of our
method in which, rather than building the semantic vectors, we count the common words between each
extended gloss g∗ij and the context C. In this case, we apply stemming to maximize the overlap.

3.1 Sense Distribution
The selection of the correct meaning takes also into account the senses distribution of the word wi. We
retrieve information about sense occurrences from WordNet (Fellbaum, 1998), which reports for each
word wi its sense inventory Si with the number of times that the word wi was tagged with sij in SemCor.
SemCor is a collection of 352 documents manually annotated with WordNet synsets. We introduce the
sense distribution factor in order to consider the probability that a word wi can be tagged with the sense
sij . Moreover, since some synsets do not occur in SemCor and can cause zero probabilities, we adopt an
additive smoothing (also called Laplace smoothing). Finally the probability is computed as follow:

p(sij |wi) =
t(wi, sij) + 1
#wi + |Si| (2)

where t(wi, sij) is the number of times the word wi is tagged with sij and #wi is the number of occur-
rences of wi in SemCor.

3.2 Gloss Term Scoring
The extended gloss conflates words from the gloss directly associated with the synset sij with those of
the glosses appearing in the related synsets. When we add words to the extended gloss, we weigh them
by a factor inversely proportional to the distance in the graph (number of edges) between sij and the
related synsets so to reflect their different origin. Let d be that distance, then the weight is computed
as 1

1+d . Finally, we re-weigh words using a strategy similar to the inverse document frequency (IDF )
that we call inverse gloss frequency (IGF ). The idea is that if a word occurs in all the extended glosses
associated with a word, then it poorly characterizes the meaning description. Let gf∗

k be the number of
extended glosses that contain a word wk, then IGF is computed as follow:

IGFk = 1 + log2
|Si|
gf∗

k

(3)

This approach is similar to the idea proposed by Vasilescu et al. (2004), where TF-IDF of terms is
computed taking into account the glosses in the whole WordNet, while we compute IGF considering
only the glosses associated to each word. Finally, the weight for the word wk appearing h times in the
extended gloss g∗ij is given by:

weight(wk, g
∗
ij) = h× IGFk × 1

1 + d
(4)

4 Evaluation

The evaluation is performed using the dataset provided by the organizers of the Task-12 of SemEval-
2013. The task concerns Multilingual Word Sense Disambiguation, a traditional WSD “all-words” ex-
periment in which systems are expected to assign the correct BabelNet synset to all occurrences of noun
phrases (which refer to both disambiguated nouns and named entities) within arbitrary texts in different
languages.
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The goal of our evaluation is twofold: to prove that our strategy outperforms the simplified Lesk
approach, and then to compare our system with respect to the other task participants.

In both the experiments we consider two languages, English and Italian, to evaluate performance in a
multilingual setting. It is important to underline that in our approach only stemming and the corpus used
to build the distributional model are language dependent.

4.1 System Setup
Our method1 is completely developed in JAVA using BabelNet API 1.1.1 provided by the authors2. We
adopt the standard Lucene analyzer to tokenize both glosses and the context, while Snowball library3 is
used for stemming in several European languages. The SemanticSpaces for the two languages are built
using proprietary code relying on two Lucene indexes, which contain documents from British National
Corpus (BNC) for English, and from Wikipedia dump for Italian, respectively. For each language, the
co-occurrences matrix M contains information about the top 100,000 most frequent words in the corpus.
M is reduced by LSA using the SVDLIBC tool4 and setting a reduced dimension equal to 200. The
result of the SVD decomposition is stored in a binary format used by our algorithm implementation.

It is important to underline that BabelNet Italian glosses are taken from MultiWordNet, which does
not contain glosses for all the synsets. Then, we replace each missing gloss by the words that belong to
the synset.

We evaluate our system by setting two parameters: 1) the context size (3, 5, 10, 20 and the whole text);
2) the use of information about sense distribution (see Formula (2) in Subsection 3.1).

The gloss term scoring function is always applied, since it provides better results. The synset distance
d used to expand the gloss is fixed to 1; we experimented with a distance d set to 2 without any improve-
ment. The sense distribution is linearly combined with the cosine similarity score through a coefficient
set to 0.5.

Some notes about sense frequency: by using only sense distribution to select a sense we obtain an
algorithm that performs like the most frequent sense (MFS). In other words, the algorithm always assigns
the most probable meaning. It is well known that this approach obtains very good performance and it is
hard to be outperformed especially by unsupervised approaches.

4.2 English Evaluation
Table 1 reports results of our algorithm (DSM) compared with the best simplified Lesk approaches
(LESK) in terms of precision (P), recall (R), F-measure (F) and attempt (A). Attempt is the percentage
of words disambiguated by the algorithm. SenseDistr. column reports the information about when the
sense distribution formula (see Subsection 3.1) is used (Y) or not (N); it is also important to point out
that MSF produces the same results of using only sense distribution i.e. the first sense is the most likely
one. We have experimented different context sizes also for the Lesk algorithm, although for the sake of
readability we report only the best Lesk with and without sense distribution.

All our runs always obtain an attempt of 100%; thus the precision and recall values are always the
same. The run EN.DSM.10 obtains the best result using both sense distribution information and the
whole text (W ) as context. Another important outcome is the result obtained by the run EN.DSM.5 that,
without information about sense distribution, is able to overcome the MFS baseline. To the best of our
knowledge, this is the first completely unsupervised system able to overcome the MFS baseline without
using sense frequency. Both results (EN.DSM.10 and EN.DSM.5) suggest that the vector representation
of the whole text helps the system to achieve the best performance.

Considering the Lesk method, generally, the best size for the context is 3, then a larger set of sur-
rounding words results in worse performance, differently to what happens in the distributional approach.
This is probably due to the fact that words distant from the target one match some incorrect glosses. It is
important to note that no simplified Lesk run is able to overcome the MFS baseline.

1Available on line: https://github.com/pippokill/lesk-wsd-dsm
2Available on line: http://lcl.uniroma1.it/babelnet/download.jsp
3Available on line: http://snowball.tartarus.org/
4Available on line: http://tedlab.mit.edu/\textasciitildedr/SVDLIBC/
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Run ContextSize SenseDistr. P R F A

MFS - - 0.656 0.656 0.656 100%
EN.LESK.1 3 N 0.525 0.525 0.525 100%
EN.LESK.6 3 Y 0.633 0.633 0.633 100%
EN.DSM.1 3 N 0.536 0.536 0.536 100%
EN.DSM.2 5 N 0.605 0.605 0.605 100%
EN.DSM.3 10 N 0.633 0.633 0.633 100%
EN.DSM.4 20 N 0.650 0.650 0.650 100%
EN.DSM.5 W N 0.687 0.687 0.687 100%
EN.DSM.6 3 Y 0.669 0.669 0.669 100%
EN.DSM.7 5 Y 0.677 0.677 0.677 100%
EN.DSM.8 10 Y 0.689 0.689 0.689 100%
EN.DSM.9 20 Y 0.696 0.696 0.696 100%
EN.DSM.10 W Y 0.715 0.715 0.715 100%

Table 1: Results of the English evaluation.

Comparing DSM-based with simplified Lesk approaches, the former consistently outperform Lesk-
based algorithms when considering the use (or not) of sense distribution.

4.3 Italian Evaluation
Table 2 reports results of our algorithm for the Italian language. In this case we still obtain the best result
(IT.DSM.10) using DSM and sense distribution. As for English, the systems without sense distribution
overcome the MFS baseline. However, in this case simplified Lesk with sense distribution is able to
outperform the MFS. We ascribe this different behaviour to the problem of missing glosses that we
solved by adding the words in the synset.

Run ContextSize SenseDistr. P R F A

MFS - - 0.572 0.572 0.572 100%
IT.LESK.2 5 N 0.531 0.530 0.530 99.71%
IT.LESK.10 W Y 0.608 0.606 0.607 99.71%
IT.DSM.1 3 N 0.611 0.609 0.610 99.71%
IT.DSM.2 5 N 0.608 0.607 0.607 99.71%
IT.DSM.3 10 N 0.627 0.625 0.626 99.71%
IT.DSM.4 20 N 0.629 0.627 0.628 99.71%
IT.DSM.5 W N 0.634 0.632 0.633 99.71%
IT.DSM.6 3 Y 0.632 0.630 0.631 99.71%
IT.DSM.7 5 Y 0.631 0.629 0.630 99.71%
IT.DSM.8 10 Y 0.636 0.634 0.635 99.71%
IT.DSM.9 20 Y 0.640 0.638 0.639 99.71%
IT.DSM.10 W Y 0.642 0.640 0.641 99.71%

Table 2: Results of the Italian evaluation.

4.4 Task Results
In this subsection, we report our best performance (Table 3) with respect to the other participants in the
SemEval-2013 Task-12 on multilingual Word Sense Disambiguation, for both English (Table 3a) and
Italian (Table 3b).

Regarding the English language, our best methods are able to outperform all the systems. It is im-
portant to underline that our method without knowledge about sense distribution (EN.DSM.5) outper-
forms both the MFS and all the task participants. This is a very important outcome because generally
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System F

EN.DSM.10 0.715
EN.DSM.5 0.687
UMCC-DLSI-2 0.685
UMCC-DLSI-3 0.680
UMCC-DLSI-1 0.677
MFS 0.656
DAEBAK 0.604
GETALP-BN-1 0.263
GETALP-BN-2 0.266

(a) English

System F

UMCC-DLSI-2 0.658
UMCC-DLSI-1 0.657
IT.DSM.10 0.641
IT.DSM.5 0.633
DAEBAK 0.613
MFS 0.572
GETALP-BN-2 0.325
GETALP-BN-1 0.324

(b) Italian

Table 3: Results of our best systems with respect to the Semeval-2013 participants.

knowledge-base approaches without information about sense frequencies obtain low results. For exam-
ple, the UMCC-DLSI system (Gutiérrez et al., 2013) exploits sense frequency to modify prior probability
of synset nodes in the PageRank, and DAEBAK system (Manion and Sainudiin, 2013) uses MFS when it
is not able to select a meaning. Our experiments show that a dictionary-based approach and the adoption
of a distributional semantic model for computing the similarity are enough to obtain good results. More-
over, by adding information about sense frequencies we are able to boost our performance and obtain
over 70% of F-measure.

For Italian, our systems are not able to reach the same performance as for English, although they still
outperform the MFS and two task participants. We think that these results are due to the same problem
observed for the Italian evaluation (Subsection 4.3), that is to say, the poor quality of glosses.

5 Related Work

WSD has been an active area of NLP whose roots stem from early work in Machine Translation. Am-
biguity resolution has been pursued as a way to improve retrieval systems, and generally to get better
information access. Despite its ancient roots and perceived importance, this task is still far from being
resolved.

Our WSD method relies on both the Lesk algorithm and its two variants: simplified (Kilgarriff and
Rosenzweig, 2000) and adapted (Banerjee and Pedersen, 2002). Several approaches have modified the
Lesk algorithm to reduce is exponential complexity, like the one based on Simulated Annealing (Cowie
et al., 1992). Basile et al. (2007) adopted the simplified Lesk algorithm to disambiguate adjectives
and adverbs, combining it with other two methods for nouns and verbs: the combination of different
approaches for each part-of-speech resulted in better performance with respect to the use of a single
strategy. More recently, Schwab et al. (2013) proposed GETALP, another unsupervised WSD algorithm
inspired by Lesk. Their approach computes a local similarity using the classical Lesk measure (overlap
between glosses), and then the local similarity is propagated to the whole text (global similarity) using
an algorithm inspired by the Ant Colony. This approach got the lowest results during the SemEval-2013
Task 12 evaluation due to a bug in the system. However, the correct implementation achieves 0.583 of
F-measure for English and 0.528 for Italian.

Another problem with the Lesk-based approaches is to maximize the chances of overlap between
glosses or between the gloss and the context. To solve this problem, Ponzetto and Navigli (2010) ex-
tended WordNet with Wikipedia pages (WordNet++) in order to produce a richer lexical resource, ob-
taining the English portion of BabelNet. The simple Lesk algorithm built over WordNet++ outperformed
the WordNet-base version, although it was not successful in overtaking the MFS baseline. Our approach
tries to extend glosses using related synsets and adopts distributional semantics to address the problem
of data sparsity. A different perspective has been recently proposed by Wang and Hirst (2014), where the
limits of the exact string matching between glosses and context are overcome by a Naive Bayes-based
similarity measure.
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Other unsupervised approaches rely on graph algorithms that exploit the graph generated by a semantic
network where the senses are connected through semantic relations. For example, DAEBAK (Manion
and Sainudiin, 2013) adopts a sub-graph of BabelNet generated taking into account the surrounding
words of the target word. A measure of connectivity computed on the sub-graph is used to extract the
most probable sense. The MFS is used when the algorithm is not able to choose any sense. Also Navigli
and Lapata (2010) exploit the idea of graph connectivity measures for identifying the most important
node (sense) in the graph. Experiments conducted on SemCor show that the Degree Centrality provides
best results compared to other well known techniques, such as PageRank, HITS, Key Player Problem
and Betweenness Centrality. Graph-based methods also showed their validity during the SemEval 2013
Multilingual Word Sense Disambiguation task. The best system, UMCC-DLSI (Gutiérrez et al., 2013),
builds a graph using several resources: WordNet, WordNet Domains and the eXtended WordNet. Then,
the best sense is selected using the PageRank algorithm where the a priori probability of senses is es-
timated according to the sense frequencies. This is an extension of UBK algorithm (Agirre and Soroa,
2009), the first application of personalized PageRank to the WSD problem.

On the distributional side, Brody and Lapata (2008) use distributional similarity to automatically an-
notate a corpus for training a supervised method. Each target word in the corpus is paired with a list
of neighbours selected via distributional similarity. A neighbour is linked to a sense in WordNet and
then it is used for the annotation. Differently from our approach, distributional similarity is used to auto-
matically annotate a training corpus rather than directly disambiguate terms. Miller et al. (2012) exploit
a distributional thesaurus to expand both glosses and the context, then they apply the classical word
overlap adopted in the simplified Lesk. This approach is strongly related to our, although our approach
directly computes the overlap in the geometric space that implements the distributional semantic model.
In particular, we build a vector representation for both the gloss and the context. In recent years, other
approaches have tried to solve unsupervised WSD relying on distributional information. Gliozzo et al.
(2005) build a matrix taking into account words and WordNet domains. The matrix is reduced using LSA
and then it is combined in a kernel exploited in a supervised approach. Martinez et al. (2008) propose a
method based on topic signatures automatically constructed using the Web, while Li et al. (2010) adopt
Latent Dirichlet Allocation (LDA) to compute a conditional probability between a sense and the context.
In this model, a sense is represented by its paraphrases used to build the LDA model.

6 Conclusions and Future Work

In this paper we describe an unsupervised WSD approach which selects the best sense according to the
distributional similarity with respect to the context. In particular, the similarity is computed representing
both the gloss and the context as vectors in a geometric space generated by a distributional semantic
model based on LSA. The evaluation, conducted on the Task-12 of SemEval-2013, shows promising
results: our method is able to overcome both the most frequent sense baseline and, for English, also the
other task participants. We provide two implementations of our approach, with and without exploiting
sense frequencies. For English, both implementations outperform the SemEval-2013 participants and the
MFS. Differently, for Italian both implementations do not reach the figures of the best participant, but
they are able to defeat the MFS. As future work, we plan to extend our evaluation to other languages, and
to investigate how to adapt our approach to a specific domain. In particular, distributional models built
upon a domain corpus, and sense frequencies extracted from the same corpus, could result in a domain
adaptation of our algorithm.
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