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Abstract 

While reading a document, a user may encounter concepts, entities, and topics that she is interested in 
exploring more. We propose models of “interestingness”, which aim to predict the level of interest a user 
has in the various text spans in a document. We obtain naturally occurring interest signals by observing 
user browsing behavior in clicks from one page to another. We cast the problem of predicting interesting-
ness as a discriminative learning problem over this data. We leverage features from two principal sources: 
textual context features and topic features that assess the semantics of the document transition. We learn 
our topic features without supervision via probabilistic inference over a graphical model that captures the 
latent joint topic space of the documents in the transition. We train and test our models on millions of real-
world transitions between Wikipedia documents as observed from web browser session logs. On the task 
of predicting which spans are of most interest to users, we show significant improvement over various 
baselines and highlight the value of our latent semantic model. 

1 Introduction 

Reading inevitably leads people to discover interesting concepts, entities, and topics. Predicting what 
interests a user while reading a document has important applications ranging from augmenting the doc-
ument with supplementary information, to ad placement, to content recommendation. We define the task 
of predicting interesting things (ITs) as ranking text spans in an unstructured document according to 
whether a user would want to know more about them. This desire to learn more serves as our proxy for 
interestingness. 

There are many types of observable behavior that indicate user interest in a text span. The closest one 
to our problem definition is found in web browsing, where users click from one document to another 
via named anchors. The click process is generally governed by the user’s interest (modulo erroneous 
clicks). As such, the anchor name can be viewed as a text span of interest for that user. Furthermore, the 
frequency with which users, in aggregate, click on an anchor serves as a good proxy for the level of 
interest1. 

What is perceived as interesting is influenced by many factors. The semantics of the document and 
candidate IT are important. For example, we find that when users read an article about a movie, they are 
more likely to browse to an article about an actor or character than to another movie or the director. 
Also, user profile and geo-temporal information are relevant. For example, interests can differ depend-
ing on the cultural and socio-economic background of a user as well as the time of the session (e.g., 
weekday versus weekend, daytime versus late night, etc.). 

1 Other naturally occurring expressions of user interest, albeit less fitting to our problem, are found in web search queries, 
social media engagement, and others. 
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Strictly speaking, human interestingness is a psychological and cognitive process (Varela et al., 1991). 
Clicks and long dwell times are salient observed behavioral signals of interestingness that have been 
well accepted in the information retrieval literature (Claypool et al., 2001; Mueller and Lockerd, 2001). 
In this paper, we utilize the observed user’s browsing behavior as a supervision signal for modeling 
interestingness. Specifically, we cast the prediction of ITs as a discriminative learning task. We use a 
regression model to predict the likelihood of an anchor in a Wikipedia article to be clicked, which as we 
have seen above can serve as a proxy for interestingness. Based on an empirical study of a sample of 
our data, we use features in our model from the document context (such as the position of the anchor 
text, frequency of the anchor text in the current paragraph, etc.) as well as semantic features that aim to 
capture the latent topic space of the documents in the browsing transition. These semantic features are 
obtained in an unsupervised manner via a joint topic model of source and target documents in browsing 
transitions. We show empirical evidence that our discriminative model is effective in predicting ITs and 
we demonstrate that the automatically learned latent semantic features contribute significantly to the 
model performance. The main contributions of this paper are: 
• We introduce the task of predicting interesting things as identifying what a user likely wants to 

learn more about while reading a document. 
• We use browsing transitions as a proxy for interestingness and model our task using a discrimina-

tive training approach. 
• We propose a semantic probabilistic model of interestingness, which captures the latent aspects 

that drive a user to be interested in browsing from one document to another. Features derived from 
this semantic model are used in our discriminative learner. 

• We show empirical evidence of the effectiveness of our model on an application scenario. 

2 Related Work 

Salience: A notion that might at first glance be confused with interestingness is that of salience (Paranjpe 
2009; Gamon et al. 2013). Salience can be described as the centrality of a term to the content of a 
document. Put another way, it represents what the document is about. Though salience and interesting-
ness can interact, There are clear differences. For example, in a news article about President Obama’s 
visit to Seattle, Obama is salient, yet the average user would probably not be interested in learning more 
about Obama while reading that article. 

Click Prediction: Click prediction models are used pervasively by search engines. Query based click 
prediction aims at computing the probability that a given document in a search-result page is clicked on 
after a user enters some query (Joachims, 2002; Joachims et al., 2005; Agichtein et al., 2006; Guo et al., 
2009a). Click prediction for online advertising is a core signal for estimating the relevance of an ad to a 
search result page or a document (Chatterjee et al., 2003; Broder et al., 2007; Craswell et al., 2008; 
Graepel et al., 2010). Also related are personalized click models, e.g., (Shen et al., 2012), which use 
user-specific click through rate (CTR). Although these applications and our task share the use of CTR 
as a supervision signal, there is a key difference: Whereas in web search CTR is used as a predictor/fea-
ture at runtime, our task specifically aims at predicting interestingness in the absence of web usage 
features: Our input is completely unstructured and there is no assumption of prior user interaction data. 

Use of probabilistic models: Our semantic model is built over LDA (Blei et al., 2003) and has re-
semblances to Link-LDA models (Erosheva et al., 2004) and Comment-LDA models (Yano et al., 2009). 
However, these are tailored for blogs and associated comment discussions which is very different from 
our source to destination browsing transition logs. Guo et al., (2009b) used probabilistic models for 
discovering entity classes from query logs and in (Lin et al., 2012), latent intents in entity centric search 
were explored. Gao et al. (2011) employ statistical machine translation to connect two types of content, 
learning semantic translation of queries to document titles.  None of the above models, however, are 
directly applicable to the joint topic mappings that are involved in source to destination browsing tran-
sitions which are the focus of our work. 

Predicting Popular Content: Modeling interestingness is also related to predicting popular content 
in the Web and content recommenders (Lerman and Hogg, 2010; Szabo and Huberman, 2010; Bandari 
et al., 2012). In contrast to these tasks, we strive to predict what term a user is likely to be interested in 
when reading content. We do not rely on prior browsing history, since we aim to predict interestingness 
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in unstructured text with no interaction history. We show in our experiments that a popularity signal 
alone is not a sufficient predictor for interestingness. 

3 The Interestingness Task 

The process of identifying interesting things (ITs) on a page consists of two parts: (1) generating candi-
date things (e.g., entities, concepts, topics); and (2) scoring and ranking these according to interesting-
ness. In this paper, we fix step 1 and focus our effort on step 2, i.e., the assignment of an interestingness 
score to a candidate. We believe that this scope is appropriate in order to understand the factors that 
enter into what is perceived as interesting by a user. Once we have gained an understanding of the 
interestingness scoring problem, however, there are opportunities in identifying candidates automati-
cally, which we leave for future work. 

In this section we begin by formally defining our task. We then introduce our data set of naturally 
occurring interest signals, followed by an investigation of the factors that influence them. 

3.1 Formal Task Definition 

We define our task as follows. Let 𝑈𝑈  be the set of all documents and 𝐴𝐴 be the set of all candidate text 
spans in all documents in 𝑈𝑈 , generated by some candidate generator. Let 𝐴𝐴𝑢𝑢 ⊂ 𝐴𝐴  be the set of candi-
dates in 𝑢𝑢 ∈ 𝑈𝑈 . We formally define the interestingness task as learning the function below, where 
𝜎𝜎(𝑢𝑢, 𝑎𝑎) is the interestingness of candidate 𝑎𝑎 in 2: 

𝜎𝜎:𝑈𝑈 × 𝐴𝐴 → ℝ  (1) 

3.2 Data Set 

User browsing events on the web (i.e., a user clicking from one document to another) form a naturally 
occurring collection of interestingness signals. That is when a user clicks on an anchor in a document, 
we can postulate that the user is interested in learning more about it, modulo erroneous clicks. 

We collect a large set of many millions of such user browsing events from session logs of a commer-
cial web browser. Specifically, we collect from these logs each occurrence of a user click from one 
Wikipedia page to another during a one month period, from all users in all parts of the world. We refer 
to each such event as a transition. For each transition, our browser log provides metadata, including user 
profile information, geo-location information and session information (e.g., time of click, source/target 
dwell time, etc.) Our data set includes millions of transitions between Wikipedia pages.  

For our task we require: (1) a mechanism for generating candidate things; (2) ample clicks to serve 
as a reliable signal of interestingness for training our models; and (3) accessible content. Our focus on 
Wikipedia satisfies all. First, Wikipedia pages tend to contain many anchors, which can serve as the set 
of candidate things to be ranked. Second, Wikipedia attracts enough traffic to obtain robust browsing 
transition data. Finally, Wikipedia provides full content3 dumps. It is important here to note that our 
choice of Wikipedia as a test bed for our experiments does not restrict the general applicability of our 
approach: We propose a semantic model (Section 4.2) for mining latent features relevant to the phenom-
enon of interestingness which is general and can be applied to generic Web document collections. 

Using uniform sampling, we split our data into three sets: a development set (20%), a training set 
(60%) and a test set (20%). We further subdivide the test set by assigning each transition as belonging 
to the HEAD, TORSO, or TAIL, which we compute using inverse CDF sampling on the test set. We do 
so by assigning the most frequently occurring transitions, accounting for 20% of the (source) traffic, to 
the HEAD. Similarly, the least frequently occurring transitions, accounting for 20% of the (source) traf-
fic, are assigned to the TAIL. The remaining transitions are assigned to the TORSO. This three-way 
split reflects a common practice in the IR community and is based on the observation that web traffic 
frequencies show a very skewed distribution, with a small set of web pages attracting a large amount of 
traffic, and a very long tail of infrequently visited sites. Different regions in that distribution often show 
marked differences in behaviour, and models that are useful in one region are not necessarily as useful 
in another. 

2 We fix 𝜎𝜎(𝑢𝑢, 𝑎𝑎) = 0 for all 𝑎𝑎 ∉ 𝐴𝐴𝑢𝑢. 
3 We utilize the May 3, 2013 English Wikipedia dump from http://dumps.wikimedia.org, consisting of roughly 4.1 million 

articles. 
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3.3 What Factors Influence Interestingness? 

We manually inspected 200 random transitions from our development set. Below, we summarize our 
observations. 

Only few things on a page are interesting: The average number of anchors on a Wikipedia page is 79. 
Of these, only very few are actually clicked by users. For example, the Wikipedia article on the TV 
series “The Big Bang Theory” leads to clicks on anchors linking to the pages of the series’ actors for 
90% of transitions (while these anchors account for only a small fraction of all unique anchors on that 
page). 

The semantics of source and destination pages is important: We manually determined the entity type 
of the Wikipedia articles in our sample, according to schema.org classes. 49% of all source urls in our 
data sample are of the Creative Work category, reflecting the strong popular interest in movies 
(37%), actors (22%), artists (18%), and television series (8%). The next three most prominent categories 
are Organization (12%), Person (11%) and Place (6%). We observed that transitions are influ-
enced by these categories. For example, when the source article category is Movie, the most frequently 
clicked pages are of category Actor (63%) and Character (13%). For source articles of the 
TVSeries category, Actor destination articles account for 86% of clicks. Actor articles lead to 
clicks on Movie articles (45%) and other Actor articles (26%), whereas Artist articles lead to 
clicks on other Artist articles (29%), Movie articles (17%) and MusicRecording articles (18%). 

The structure of the source page plays a role: It is well known that the position of a link on a page 
influences user click behavior: links that are higher on a page or in a more prominent position tend to 
attract more clicks. We noticed similar trends in our data. 

The user plays a role: We hypothesized that users from different geographic and cultural backgrounds 
might exhibit different interests, or that interests are time-bound (e.g., interests on weekends differ from 
those on week days, daytime from nighttime, etc.) Initial experiments showed small effects of these 
factors, however, a more thorough analysis on a larger sample is necessary, which we leave for future 
work. 

4 Modeling Interestingness 

We cast the problem of learning the interestingness function 𝜎𝜎 (see Eq. 1) as a discriminative regression 
learning problem. Below, we first describe this model, and then we introduce our semantic topic model 
which serves to provide semantic features for the discriminative learner. 

4.1 Discriminative Model 

Although our task is to predict ITs from unstructured documents, we can leverage the user interactions 
in our data, described in Section 3.2 as our training signal. 

Given a source document 𝑠𝑠 ∈ 𝑈𝑈 , and an anchor in s leading to destination document d, we use the 
aggregate click frequency of this anchor as a proxy for its interestingness, i.e.: 

𝜎𝜎(𝑠𝑠, 𝑑𝑑) = 𝑝𝑝(𝑑𝑑|𝑠𝑠)                       (2) 

where 𝑝𝑝(𝑑𝑑|𝑠𝑠) is the probability of a user clicking on the anchor to 𝑑𝑑 when viewing 𝑠𝑠3F

4. We use 𝑝𝑝(𝑑𝑑|𝑠𝑠) 
as our regression target computed from our training data. 

For our learning algorithm, we use boosted decision trees (Friedman, 1999). We tune our hyperpa-
rameters (i.e., number of iterations, learning rate, minimum instances in leaf nodes, and the maximum 
number of leaves) using cross-validation on the development set. Each transition in our training data is 
represented as a vector of features, where the features fall into three basic families: 

1 Anchor features (Anc): position of the anchor in the document, frequency of the anchor, anchor 
density in the paragraph, and whether the anchor text matches the title of the destination page. 

2 User session features (Ses): city, country, postal code, region, state and timezone of the user, as 
well as day of week, hour, and weekend vs. workday of the occurrence of the transition. 

4 For notational convenience, we use 𝜎𝜎(𝑠𝑠, 𝑑𝑑) even though Eq. 1 defines its second argument as being a candidate text span. 
Here, it is implicit that d consists of both the target document and the anchor text (which serves as the candidate text span). 
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3 Semantic features: sourced in various experimental configurations from (1) Wikipedia page cate-
gories as assigned by Wikipedia editors (Wiki) or from (2) an unsupervised joint topic transition 
model (JTT) of source and destination pages (described in detail in the next section). 

In some experimental configurations we use Wikipedia page categories as semantic features. We show 
in our experiments (see Section 5) that these are highly discriminative. It is important to note that editor-
labeled category information is available in the Wikipedia domain but not in others. In other words, we 
can use this information to verify that semantics indeed is influential for interestingness, but we should 
design our models to not rely on this. We thus build an unsupervised semantic model of source and 
destination pages, which serves the purpose of providing semantic information without any domain-
specific annotation. 

4.2 The Semantics of Interestingness 

As indicated in Section 3, the semantics of source and destination pages, 𝑠𝑠 and 𝑑𝑑, influence the likeli-
hood that a user is interested in 𝑑𝑑 after viewing 𝑠𝑠. In this section we propose an unsupervised method 
for modeling the transition semantics between 𝑠𝑠 and 𝑑𝑑. As outlined in the previous section, this model 
then serves to generate semantic features for our discriminative model of interestingness. 

Referring to the notations in Table 1, we start by positing a distribution over the joint latent transition 
topics (in the higher level of semantic space), 𝜃𝜃𝑡𝑡 for each transition 𝑡𝑡. The corresponding source 𝑡𝑡(𝑠𝑠) 
and destination 𝑡𝑡(𝑑𝑑) articles of a given transition 𝑡𝑡 are assumed to be admixtures of latent topics that are 
conditioned on the joint topic transition distribution, 𝜃𝜃𝑡𝑡. For ease of reference, we will refer to this model 
as the Joint Transition Topic Model (JTT). The variable names and their descriptions are provided in 
Table 1. Figure 1 shows the plate notation of our model and the generative process: 
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Figure 1. Generative Process and Plate Notation of JTT. 

1. For each topic 𝑘𝑘, draw 𝜑𝜑𝑘𝑘 ~ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛽𝛽) 
2. For each transition 𝑡𝑡: 

a. Draw the joint topic transition distribution, 𝜃𝜃𝑡𝑡 ~ 
𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼) 

b. For each word token 𝑗𝑗 ∈ {1… 𝑁𝑁𝑆𝑆}: 
i. Draw 𝑧𝑧𝑡𝑡,𝑗𝑗

𝑆𝑆  ~ 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡(𝜃𝜃𝑡𝑡) 
ii. Emit 𝑤𝑤𝑡𝑡,𝑗𝑗

𝑆𝑆  ~ 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡(𝜑𝜑𝑘𝑘) 
c. For each word token 𝑗𝑗 ∈ {1… 𝑁𝑁𝐷𝐷}: 

i. Draw 𝑧𝑧𝑡𝑡,𝑗𝑗
𝐷𝐷  ~ 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡(𝜃𝜃𝑡𝑡) 

ii. Emit 𝑤𝑤𝑡𝑡,𝑗𝑗
𝐷𝐷   ~ 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡(𝜑𝜑𝑘𝑘) 
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Variable Description Variable Description 
𝑡𝑡 A transition 𝑡𝑡 𝑍𝑍𝑆𝑆 , 𝑍𝑍𝐷𝐷 Set of all topics in src, dest pages 

𝑡𝑡(𝑠𝑠), 𝑡𝑡(𝑑𝑑) The src and dest pages of 𝑡𝑡 𝑊𝑊 𝑆𝑆, 𝑊𝑊 𝐷𝐷 Set of all word tokens in src, dest pages 

𝜃𝜃𝑡𝑡~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼) Joint src/dest topic distribution Θ = {𝜃𝜃𝑡𝑡} Set of all latent joint transition topic dis-
tributions 

𝑧𝑧𝑠𝑠, 𝑧𝑧𝑑𝑑 Latent topics of  𝑡𝑡(𝑠𝑠), 𝑡𝑡(𝑑𝑑) Φ = {𝜑𝜑𝑘𝑘} Set of all latent topics 
𝑤𝑤𝑠𝑠, 𝑤𝑤𝑑𝑑 Observed word tokens of  𝑡𝑡(𝑠𝑠), 𝑡𝑡(𝑑𝑑) 𝜃𝜃𝑡𝑡,𝑘𝑘 Contribution of topic 𝑘𝑘 in transition 𝑡𝑡 

𝜑𝜑𝑘𝑘 ~ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛽𝛽  Latent topic-word distributions for 
topic 𝑘𝑘 𝑤𝑤𝑡𝑡,𝑗𝑗

𝑆𝑆 , 𝑤𝑤𝑡𝑡,𝑗𝑗
𝐷𝐷  𝑗𝑗th word of transition 𝑡𝑡 in 𝑡𝑡(𝑠𝑠), 𝑡𝑡(𝑑𝑑) 

𝛼𝛼, 𝛽𝛽  Dirichlet parameters for 𝜃𝜃, 𝜑𝜑 𝑧𝑧𝑡𝑡,𝑗𝑗
𝑆𝑆 , 𝑧𝑧𝑡𝑡,𝑗𝑗

𝐷𝐷   Latent topic of 𝑗𝑗th word of 𝑡𝑡 in 𝑡𝑡(𝑠𝑠), 𝑡𝑡(𝑑𝑑) 
𝑁𝑁𝑠𝑠, 𝑁𝑁𝑑𝑑 No. of terms in src and dest pgs of 𝑡𝑡 𝑛𝑛𝑡𝑡(𝑠𝑠),𝑘𝑘

𝑆𝑆  No. of words in 𝑡𝑡(𝑠𝑠) assigned to topic 𝑘𝑘 
𝑇𝑇 = {𝑡𝑡} Set of all transitions, 𝑡𝑡 𝑛𝑛𝑡𝑡(𝑑𝑑),𝑘𝑘

𝐷𝐷  No. of words in 𝑡𝑡(𝑑𝑑) assigned to 𝑘𝑘 
𝐾𝐾 No. of topics 𝑛𝑛𝑘𝑘,𝑣𝑣

𝑆𝑆  No. of times word 𝑣𝑣 assigned to 𝑘𝑘 in 𝑊𝑊 𝑆𝑆 
𝑉𝑉  No. of unique terms in the vocab. 𝑛𝑛𝑘𝑘,𝑣𝑣

𝐷𝐷  No. of times word 𝑣𝑣 assigned to 𝑘𝑘 in 𝑊𝑊 𝐷𝐷 
Table 1. List of notations. 

Exact inference for JTT is intractable. Hence, we use Markov Chain Monte Carlo (MCMC) Gibbs sam-
pling. Rao-Blackwellization (Bishop, 2006) is used to reduce sampling variance by collapsing latent 
variables 𝜃𝜃 and 𝜑𝜑. Owing to space constraints, we omit the full derivation details. The full joint can be 
written succinctly as follows: 

𝑃𝑃(𝑊𝑊𝑆𝑆,𝑊𝑊𝐷𝐷,𝑍𝑍𝑆𝑆, 𝑍𝑍𝐷𝐷) = �∏ 𝐵𝐵�𝑛𝑛𝑡𝑡(𝑠𝑠),[ ]
𝑆𝑆  + 𝑛𝑛𝑡𝑡(𝑑𝑑),[ ]

𝐷𝐷 + 𝛼𝛼�
𝐵𝐵(𝛼𝛼)

𝑇𝑇
𝑡𝑡=1 � = �∏ 𝐵𝐵(𝑛𝑛𝑘𝑘,[ ]

𝑆𝑆  + 𝑛𝑛𝑘𝑘,[ ]
𝐷𝐷 +𝛽𝛽)

𝐵𝐵(𝛽𝛽)
𝐾𝐾
𝑡𝑡=1 � (3) 

Omission of a latter index in the count variables, denoted by [ ], corresponds to the row vector span-
ning over the latter index. The corresponding Gibbs conditional distributions for 𝑧𝑧𝑆𝑆 and 𝑧𝑧𝐷𝐷 are detailed 
below, where the subscript �¬(𝑡𝑡, 𝑗𝑗)� denotes the value of the expression excluding the counts of the 
term (𝑡𝑡, 𝑗𝑗): 

𝑝𝑝�𝑧𝑧𝑡𝑡,𝑗𝑗
𝑆𝑆 = 𝑘𝑘| … � ∝

�𝑛𝑛𝑡𝑡(𝑠𝑠),𝑘𝑘
𝑆𝑆 �

¬(𝑡𝑡,𝑗𝑗)
+ 𝑛𝑛𝑡𝑡(𝑑𝑑),𝑘𝑘

𝐷𝐷 +𝛼𝛼

∑ ��𝑛𝑛𝑡𝑡(𝑠𝑠),𝑘𝑘
𝑆𝑆 �

¬(𝑡𝑡,𝑗𝑗)
+ 𝑛𝑛𝑡𝑡(𝑑𝑑),𝑘𝑘

𝐷𝐷 +𝛼𝛼�𝐾𝐾
𝑘𝑘=1

×
�𝑛𝑛𝑘𝑘,𝑣𝑣

𝑆𝑆 �
¬(𝑡𝑡,𝑗𝑗)

+ 𝑛𝑛𝑘𝑘,𝑣𝑣
𝐷𝐷 +𝛽𝛽

∑ ��𝑛𝑛𝑘𝑘,𝑣𝑣
𝑆𝑆 �

¬(𝑡𝑡,𝑗𝑗)
+ 𝑛𝑛𝑘𝑘,𝑣𝑣

𝐷𝐷 +𝛽𝛽�𝑉𝑉
𝑣𝑣=1

  (4) 

𝑝𝑝�𝑧𝑧𝑡𝑡,𝑗𝑗
𝐷𝐷 = 𝑘𝑘| … � ∝

𝑛𝑛𝑡𝑡(𝑠𝑠),𝑘𝑘
𝑆𝑆  +�𝑛𝑛𝑡𝑡(𝑑𝑑),𝑘𝑘

𝐷𝐷 �
¬(𝑡𝑡,𝑗𝑗)

+𝛼𝛼

∑ �𝑛𝑛𝑡𝑡(𝑠𝑠),𝑘𝑘
𝑆𝑆  +�𝑛𝑛𝑡𝑡(𝑑𝑑),𝑘𝑘

𝐷𝐷 �
¬(𝑡𝑡,𝑗𝑗)

+𝛼𝛼�𝐾𝐾
𝑘𝑘=1

×
𝑛𝑛𝑘𝑘,𝑣𝑣

𝑆𝑆  + �𝑛𝑛𝑘𝑘,𝑣𝑣
𝐷𝐷 �

¬(𝑡𝑡,𝑗𝑗)
+𝛽𝛽

∑ �𝑛𝑛𝑘𝑘,𝑣𝑣
𝑆𝑆  + �𝑛𝑛𝑘𝑘,𝑣𝑣

𝐷𝐷 �
¬(𝑡𝑡,𝑗𝑗)

+𝛽𝛽�𝑉𝑉
𝑣𝑣=1

 (5) 

We learn our joint topic model from a random traffic-weighted sample of 10,000 transitions, which are 
randomly sampled from the development set outlined in Section 3.25. The decision to use this sample 
of 10,000 transitions is based on the observation that there were no statistically significant performance 
gains for models trained on more than 10k transitions. The Dirichlet hyperparameters are set to 𝛼𝛼 = 
50/𝐾𝐾 and 𝛽𝛽 = 0.1 according to the values suggested in (Griffiths and Steyvers, 2004). The number of 
topics, 𝐾𝐾, is empirically set to 50. We also conducted pilot experiments with other hyperparameter set-
tings, larger transition sets and more topics but we found no substantial difference in the end-to-end 
performance. Although increasing the number of topics and modeling more volume usually results in 
lowering perplexities and better fitting in topic models (Blei et al., 2003), it can also result in redun-
dancy in topics which may not be very useful for downstream applications (Chen et al., 2013). For all 
reported experiments we use the posterior estimates of our joint model learned according to the above 
settings. In our discriminative interestingness model, we use three classes of features from JTT to cap-
ture the latent topic distributions of the source page, the destination page, and the joint topics for that 
transition. These correspond to source topic features (𝑍𝑍𝑆𝑆, labeled as JTTsrc in charts), destination topic 
features (𝑍𝑍𝐷𝐷, labeled as JTTdst), and transition topic features (ϴ, labeled as JTTtrans). Each of these 
three sets comprises 50 features, for a total of 150.ϴ is the distribution over joint src and dst topics that 

5 Note that we use the development set to train our semantic model since it is ultimately used to generate features for our dis-
criminative learner of Section 4. Since the learner is trained using the training set, this strategy avoids overfitting our seman-
tic model to the training set. 
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appear in a particular transition. 𝑍𝑍𝑆𝑆 and 𝑍𝑍𝐷𝐷 are the actual topic assignments for individual words in src 
and dst. Upon learning the JTT model, for each K topics, we get a probability of that topic appearing in 
the transition, in the src, and in the dst document (by taking the posterior point estimates for latent 
variables  ϴ, 𝑍𝑍𝑆𝑆, 𝑍𝑍𝐷𝐷 respectively). The GBDT implementation we use for our discriminative model per-
forms binning of these real-valued features over an ensemble of DTs.  

5 Experiments 

We evaluate our interestingness model on the task of proposing 𝑘𝑘 anchors on a page that the user will 
find interesting (highlighting task). Recall the interestingness function 𝜎𝜎 from Eq. 1. In the highlighting 
task, a user is reading a document 𝑠𝑠 ∈ 𝑈𝑈  and is interested in learning more about a set of anchors. Our 
goal in this task is to select 𝑘𝑘 anchors that maximize the cumulative degree of interest of the user, i.e.: 

argmax
𝐴𝐴𝑠𝑠

𝑘𝑘=(𝑎𝑎1,…,𝑎𝑎𝑘𝑘|𝑎𝑎𝑖𝑖∈𝐴𝐴𝑠𝑠)
∑ 𝜎𝜎(𝑠𝑠, 𝑎𝑎𝑖𝑖)𝑎𝑎𝑖𝑖∈𝐴𝐴𝑠𝑠

𝑘𝑘          (6)  

In other words, we consider the ideal selection to consist of the k most interesting anchors according to 
𝜎𝜎(𝑠𝑠, 𝑎𝑎).We compare the interestingness ranking of our models against a gold standard function, 𝜎𝜎′, com-
puted from our test set. Recall that we use the aggregate click frequency of an anchor as a proxy for its 
interestingness. As such, the gold standard function for the test set is computed as: 

𝜎𝜎′(𝑠𝑠, 𝑎𝑎) = 𝑝𝑝(𝑎𝑎|𝑠𝑠)                      (7) 

where 𝑝𝑝(𝑎𝑎|𝑠𝑠) is the probability of a user clicking on the anchor 𝑎𝑎 when viewing 𝑠𝑠. 
Given a source document 𝑠𝑠, we measure the quality of a model’s interestingness ranking against the 

ideal ranking defined above using the standard nDCG metric (Manning et al., 2008). We use the inter-
estingness score of the gold standard as the relevance score. 

Table 2 shows the nDCG results for two baselines and a range of different feature sets. The first high-
level observation is that the task is difficult, given the low baseline results. Since there are many anchors 
on an average page, picking a random set of anchors yields very low nDCG scores. The nDCG numbers 
of our baselines increase as we move from HEAD to TORSO to TAIL, due to the fact that the average 
number of links per page (not unique) decreases in these sets from 170 to 94 to 416. The second baseline 
illustrates that it is not sufficient to simply pick the top n anchors on a page. 

Next, we see that using our set of anchor features (see Section 4.1) in the regression model greatly 
improves performance over the baselines, with the strongest numbers on the HEAD set and decreasing 
effectiveness in TORSO and TAIL. This shows that the distribution of interesting anchors on a page 
differs according to the popularity of the source content, possibly also with the length of the page. Our 
best performing model is the one using anchor features and all three sets of latent semantic features 
(Table 2, row 6; source, destination, and transition topics). 

The biggest improvement is obtained on the HEAD data. This is not surprising given that the topic 
model is trained on a traffic weighted sample of Wikipedia articles and that HEAD pages tend to have 
more content, making the identification of topics more reliable. Regarding the individual contributions 
of the latent semantic features (Table 2, rows 4, 5), destination features alone hurt performance on the 
HEAD set. Latent semantic source features lead to a boost across the board, and the addition of latent 
semantic transition topic features produces the best model, with gains especially pronounced on the 
HEAD data. Figure 2 further shows the performance of our best configuration across ALL, HEAD, 
TORSO, and TAIL. Interestingly, the TAIL exhibits better performance of the model than the TORSO 
(with the exception of nDCG at rank 3 or higher). We hypothesize that this is because the average num-
ber of anchors in a TAIL page is less than half of that in a TORSO page. 

6 Wikipedia editors tend to spend more time on more frequently viewed documents, hence they tend contain more content and 
more anchors. 
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nDCG % HEAD TORSO TAIL 

n @1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10 
Baseline: random 4.07 4.90 6.24 8.10 3.56 4.83 7.66 10.92 6.20 11.74 19.50 25.82 

Baseline: first n an-
chors 

9.99 12.47 17.72 24.33 7.17 9.87 17.06 23.97 9.06 16.66 27.35 34.82 

Anc 21.46 22.50 25.30 29.47 13.85 16.80 22.85 28.20 10.88 19.16 29.33 36.48 
Anc+JTTdst 13.97 16.33 19.69 23.78 11.37 14.17 19.67 24.66 11.62 19.69 29.69 36.35 

Anc+JTTdst+JTTsrc 26.62 30.03 34.82 39.38 17.05 20.82 27.15 32.48 12.27 21.56 31.88 38.85 
Anc+JTT-

dst+JTTsrc+JTTtrans 34.49 35.21 38.01 41.80 18.32 21.69 28.03 33.22 13.06 21.68 32.13 38.01 

Table 2. Highlighting performance (% nDCG @ n) for different feature sets across HEAD, TORSO, 
and TAIL. Bold indicates statistically significant best systems (with 95% confidence). 

Not shown in these results are the effects of using user session features. We consistently found that 
these features did not improve upon the configurations where anchor and JTT features are used. We do 
not, however, rule out the potential of such features on this task, especially in light of our data analysis 
observations from Section 3.3, which suggest an effect from these factors. We leave a more in-depth 
study of the potential contribution of these types of features for future research. 

We now address the question how our unsupervised latent semantic features perform compared to the 
editor-assigned categories for Wikipedia pages, for two reasons. First, it is reasonable to consider the 
manually assigned Wikipedia categories as a (fine-grained) oracle for topic assignments. Second, out-
side of Wikipedia, we do not have the luxury of manually assigned categories/topics. As illustrated in 
Figure 3, we found that Wikipedia categories outperform the JTT topic features, but the latter can re-
cover about two thirds of the nDCG gain compared to Wikipedia categories. 

Finally, in the HEAD part of the data, we have enough historical clickthrough data that we could 
directly leverage for prediction. We conducted experiments where we used the prior probability 𝑝𝑝(𝑑𝑑|𝑠𝑠) 
obtained from the development data (both smoothed and unsmoothed). Following this strategy we can 
achieve up to 65% nDCG@10 as shown in Figure 4 where the use of prior history (labeled “History: 
Target | Source Prior”) is compared to our best model and to baselines. As stressed before, in most real-
life applications, this is not a viable option since anchors or user-interaction logs are unavailable. Even 
in web browsing scenarios, the TORSO and TAIL have no or only very sparse histories. Furthermore, 
the information is not available in a “cold start” scenario involving new and unseen pages. We also 
examined whether the general popularity of a target page is sufficient to predict an anchor’s interesting-
ness, and we found that this signal performs better than the baselines, but significantly worse than our 
models. This series is labeled “History: Target Prior” in Figure 4. 

 
Figure 2. NDCG comparison across overall performance (ALL) versus HEAD, TORSO, and TAIL 

subsets, on the Highlighting task. 
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Figure 3. JTT features versus Wikipedia category features on Highlighting task. 

 
Figure 4. Highlighting task comparison between baselines, best configuration using JTT, and models 

with historical transitions. 
Our highlights task reflects the main goal of our paper, i.e., to predict interestingness in the context of 
any document, whether it be a web page, an email, or a book. A natural extension of our work, especially 
in our experimental setting with Wikipedia transitions, is to predict the next click of a user, i.e., click 
prediction. 

There is a subtle but important difference between the two tasks. Highlights aims to identify a set of 
interesting nuggets for a source document. A user may ultimately click on only a subset of the nuggets, 
and perhaps not in the order of most interest. Our experimental metric, nDCG, reflects this ranking task 
well. Click prediction is an inherently more difficult task, where we focus on predicting exactly the next 
click of a specific user. Unlike in the highlights task, there is no partial credit for retrieving other inter-
esting anchors. Only the exact clicked anchor is considered a correct result. As such, we utilize a differ-
ent metric than nDCG on this task. We measure our model’s performance on the task of click prediction 
using cumulative precision. Given a unique transition event τ(s,a,d) by a particular user at a particular 
time, we present the transition, minus the gold anchor a and destination d, to our models, which in turn 
predict an ordered list of most likely anchors on which the user will click. The cumulative precision at 
k of a model, is 1 if any of the predicted anchors matched a, and 0 otherwise. 
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Table 3 outlines the results on this task and Figure 5 shows the corresponding chart for our best 
configuration. Note that in the click prediction task, the model performs best on the TAIL, followed by 
TORSO and HEAD. This seems to be a reflection of the fact that in this harder task, the total number of 
anchors per page is the most influential factor in model performance. 

Cumulative  
Precision % HEAD TORSO TAIL 

n @1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10 
Baseline: random 1.07 2.08 5.29 10.55 1.94 3.91 9.71 19.00 5.97 11.66 26.43 44.94 

Baseline: first n an-
chors 

2.68 5.77 16.73 33.78 4.10 8.19 22.86 42.08 8.77 16.57 36.80 58.52 

Anc 8.40 12.55 22.04 34.22 8.70 14.37 27.56 42.68 10.59 19.08 38.27 59.04 
Anc+JTTdst 5.48 9.19 17.77 29.14 6.93 12.07 23.90 38.00 11.23 19.59 38.46 57.87 

Anc+JTTdst+JTTsrc 9.02 15.65 30.05 44.72 10.11 17.42 32.08 47.07 11.95 21.47 40.96 61.24 
Anc+JTT-

dst+JTTsrc+JTTtrans 11.53 18.43 31.93 45.36 10.86 18.19 32.96 47.66 12.64 21.58 41.27 61.28 

Table 3. Click prediction results for different feature sets across HEAD, TORSO, and TAIL. Bold indicates sta-
tistically significant best systems (with 95% confidence). 

 
Figure 5. Overall performance (ALL) versus HEAD, TORSO, and TAIL subsets on click prediction. 

6 Conclusion and Future Directions 

We presented a notion of an IT on a page that is grounded in observable browsing behavior during 
content consumption. We implemented a model for prediction of interestingness that we trained and 
tested within the domain of Wikipedia. The model design is generic and not tied to our experimental 
choice of the Wikipedia domain and can be applied to other domains. Our model takes advantage of 
semantic features that we derive from a novel joint topic transition model. This semantic model takes 
into account the topic distributions for the source, destination, and transitions from source to destination. 
We demonstrated that the latent semantic features from our topic model contribute significantly to the 
performance of interestingness prediction, to the point where they perform nearly as well as using editor-
assigned Wikipedia categories as features. We also showed that the transition topics improve results 
over just using source and destination semantic features alone. 

A number of future directions immediately suggest themselves. First, for an application that marks 
interesting ITs on an arbitrary page, we would need a detector for IT candidates. A simple first approach 
would be to use a state-of-the-art Named Entity Recognition (NER) system to cover at least a subset of 
potential candidates. This does not solve the problem entirely, since we know that named entities are 
not the only interesting nuggets – general terms and concepts can also be of interest to a reader. On the 
other hand we do have reason to believe that entities play a very prominent role in web content con-
sumption, based on the frequency with which entities are searched for (see, for example Lin et al. 2012 
and the references cited therein). Using an NER system as a candidate generator would also allow us to 
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add another potentially useful feature to our interestingness prediction model: the type of the entity. One 
could also envision jointly modeling interestingness and candidate detection. 

A second point concerns the observation from the previous section on the different regularities that 
seem to be at play according to the popularity and possibly the length of an article. More detailed ex-
periments are needed to tease out this influence and possibly improve the predictive power of the model. 
User session features did not contribute to model performance when used in conjunction with other 
feature families, but closer investigation of these features is warranted for more personalized models of 
interestingness. Finally, a number of options regarding JTT  could be explored further. Being trained on 
a traffic-weighted sample of articles, the topic model predominantly picks up on popular topics. This 
could be remedied by training on a non-weighted sample, or, more promisingly, on a larger non-
weighted sample with a larger 𝐾𝐾, i.e. more permissible total topics. 
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