A Markovian approach to distributional semantics
with application to semantic compositionality

Edouard Grave Guillaume Obozinski Francis Bach
EECS Department LIGM - Université Paris-Est  Inria — Sierra project-team
UC Berkeley Ecole des Ponts — ParisTech ~ Ecole Normale Supérieure

gravel@berkeley.edu guillaume.obozinski francis.bach@ens.fr
@imagine.enpc.fr

Abstract

In this article, we describe a new approach to distributional semantics. This approach relies
on a generative model of sentences with latent variables, which takes the syntax into account
by using syntactic dependency trees. Words are then represented as posterior distributions over
those latent classes, and the model allows to naturally obtain in-context and out-of-context word
representations, which are comparable. We train our model on a large corpus and demonstrate
the compositionality capabilities of our approach on different datasets.

1 Introduction

It is often considered that words appearing in similar contexts tend to have similar meaning (Harris,
1954). This idea, known as the distributional hypothesis was famously summarized by Firth (1957)
as follow: “you shall know a word by the company it keeps.” The distributional hypothesis has been
applied in computational linguistics in order to automatically build word representations that capture
their meaning. For example, simple distributional information about words, such as co-occurence counts,
can be extracted from a large text corpus, and used to build a vectorial representation of words (Lund
and Burgess, 1996; Landauer and Dumais, 1997). According to the distributional hypothesis, two words
having similar vectorial representations must have similar meanings. It is thus possible and easy to
compare words using their vectorial representations.

In natural languages, sentences are formed by the composition of simpler elements: words. It is
thus reasonable to assume that the meaning of a sentence is determined by combining the meanings
of its parts and the syntactic relations between them. This principle, often attributed to the German
logician Frege, is known as semantic compositionality. Recently, researchers in computational linguistics
started to investigate how the principle of compositionality could be applied to distributional models of
semantics (Clark and Pulman, 2007; Mitchell and Lapata, 2008). Given the representations of individual
words, such as federal and agency, is it possible to combine them in order to obtain a representation
capturing the meaning of the noun phrase federal agency?

Most approaches to distributional semantics represent words as vectors in a high-dimensional space
and use linear algebra operations to combine individual word representations in order to obtain represen-
tations for complex units. In this article, we propose a probabilistic approach to distributional semantics.
This approach is based on the generative model of sentences with latent variables, which was introduced
by Grave et al. (2013). We make the following contributions:

e Given the model introduced by Grave et al. (2013), we describe how in-context and ouf-of-context
words can be represented by posterior distributions over latent variables (section 4).

e We evaluate out-of-context representations on human similarity judgements prediction tasks and
determine what kind of semantic relations are favored by our approach (section 5).
o Finally, we evaluate in-context representations on two similarity tasks for short phrases (section 6).
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2 Related work

Most approaches to distributional semantics are based on vector space models (VSM), in which words
are represented as vectors in a high-dimensional space. These vectors are obtained from a large text
corpus, by extracting distributional information about words such as the contexts in which they appear.
A corpus is then represented as a word-by-context co-occurence matrix. Contexts can be defined as
documents in which the target word appear (Deerwester et al., 1990; Landauer and Dumais, 1997) or
as words that appear in the neighbourhood of the target word, for example in the same sentence or in a
fixed-size window around the target word (Schutze, 1992; Lund and Burgess, 1996).

Next to vector space models, other approaches to distributional semantics are based on probabilistic
models of documents, such as probabilistic latent semantic analysis (pLSA) introduced by Hofmann
(1999) and which is inspired by latent semantic analysis, or latent Dirichlet allocation (LDA), introduced
by Blei et al. (2003). In those models, each document is viewed as a mixture of k topics, where each
topic is a distribution over the words of the vocabulary.

The previous models do not take into account the linguistic structure of the sentences used to build
word representations. Several models have been proposed to address this limitation. In those models, the
contexts are defined by using the syntactic relations between words (Lin, 1998; Curran and Moens, 2002;
Turney, 2006; Pad6 and Lapata, 2007; Baroni and Lenci, 2010). For example, two words are considered
in the same context if there exists a syntactic relation between them, or if there is a path between them in
the dependency graph.

One of the first approaches to semantic compositionality using vector space models was proposed
by Mitchell and Lapata (2008). In this study, individual word representations are combined using linear
algebra operations such as addition, componentwise multiplication, tensor product or dilation. Those dif-
ferent composition operations are then used to disambiguate intransitive verbs given a subject (Mitchell
and Lapata, 2008) or to compute similarity scores between pairs of small phrases (Mitchell and Lapata,
2010).

Another approach to semantic compositionality is to learn the function used to compose individual
word representations. First, a semantic space containing representations for both individual words and
phrases is built. For example, the words federal, agency and the phrase federal agency all have a vectorial
representation. Then, a function mapping individual word representations to phrase representations can
be learnt in a supervised way. Guevara (2010) proposed to use partial least square regression to learn
this function. Similarly, Baroni and Zamparelli (2010) proposed to learn a matrix A for each adjective,
such that the vectorial representation p of the adjective-noun phrase can be obtained from the vectorial
representation b of the noun by the matrix-vector multiplication:

p = Ab.

Socher et al. (2012) later generalized this model by proposing to represent each node in a parse tree by a
vector capturing the meaning and a matrix capturing the compositional effects. A composition function,
inspired by artificial neural networks, is recursively applied in the tree to compute those representations.

Following the theoretical framework introduced by Coecke et al. (2010), Grefenstette and Sadrzadeh
(2011) proposed to represent relational words (such as verbs) by tensors and theirs arguments (such
as nouns) by vectors. Composing a relational word with its arguments is then performed by taking
the pointwise product between the tensor and the Kronecker product of the vectors representing the
arguments. Jenatton et al. (2012) and Van de Cruys et al. (2013) proposed two approaches to model
subject-verb-object triples based on tensor factorization.

Finally, research in computation of word meaning in context is closely related to distributional seman-
tic compositionality. Erk and Pad6 (2008) proposed a structured vector space model in which a word
is represented by multiple vectors, capturing its meaning but also the selectional restrictions it has for
the different arguments. Those different vectors can then be combined to compute a word representation
in context. This model was later generalized by Thater et al. (2010). Dinu and Lapata (2010) intro-
duced a probabilistic model for computing word representations in context. In their approach, words are
represented as probability distributions over latent senses.

1448



e

Computers can be designed to do anything with information

Figure 1: Example of a dependency tree and its corresponding graphical model.

3 Model of semantics

In this section we briefly review the generative model of sentences introduced by Grave et al. (2013), and
which serves as the basis of our approach to distributional semantics.

3.1 Generative model of sentences

We denote the tokens of a sentence of length K by the K-uple w = (wy, ..., wr) € {1,..., V}¥, where
V is the size of the vocabulary and each integer represents a word. We suppose that each token wy, is
associated to a corresponding semantic class ¢, € {1, ..., C'}, where C'is the number of semantic classes.
Finally, the syntactic dependency tree corresponding to the sentence is represented by the function 7 :
{1,..., K} — {0, ..., K'}, where (k) represents the parent of word k and 0 is the root of the tree (which
is not associated to a word).

Given a tree 7, the semantic classes and the words of a sentence are generated as follows. The semantic
class of the root of the tree is set to a special start symbol, represented by the integer 0.! Then, the
semantic classes corresponding to words are recursively generated down the tree: each semantic class
¢k is drawn from a multinomial distribution pr(cy | cﬁ(k)), conditioned on the semantic class ¢ () of
its parent in the tree. Finally, each word wy, is also drawn from a multinomial distribution po (wy | k),
conditioned on its corresponding semantic class cg. Thus, the joint probability distribution on words and
semantic classes can be factorized as

K
p(w,c) =[] pr(ck | exypo(wr | cx),

k=1
where the variable cp = 0 represents the root of the tree. The initial class probability distribution
pr(ck | co = 0) is parameterized by the probability vector q, while the transition probability distribution
between classes pr(c, | c¢r(x)) and the emission probability distribution po(wy, | ¢x) are parameterized
by the stochastic matrices T and O (i.e., matrices with non-negative elements and unit-sum columns).
This model is a hidden Markov model on a tree (instead of a chain). See Fig. 1 for an example of a
sentence and its corresponding graphical model.

3.2 Corpus and learning

We train the generative model of sentences on the ukWac corpus (Baroni et al., 2009). This corpus, which
contains approximately 1.9 billions tokens, was POS-tagged and lemmatized using TreeTagger (Schmid,
1994) and parsed using MaltParser (Nivre et al., 2007). Each word of our vocabulary is a pair of lemma
and its part-of-speech. We perform smoothing by only keeping the V' most frequent pairs, the infrequent
ones being replaced by a common token. The parameters § = (g, T, O) of the model are learned
using the algorithm described by Grave et al. (2013). The number of latent states C' and the number of
lemma/POS pairs V' were set using the development set of Bruni et al. (2012).

"We recall that the semantic classes corresponding to words are represented by integers between 1 and C.
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Figure 2: Comparison of out-of-context (black) and in-context (red) word representations. The two-
dimensional visualization is obtained by using multidimensional scaling (Borg, 2005). See text for de-
tails.

4 Word representations

Given a trained hidden Markov model, we now describe how to obtain word representations, for both in-
context and out-of-context words. In both cases, words will be represented as a probability distribution
over the latent semantic classes.

In-context word representation. Obtaining a representation of a word in the context of a sentence is
very natural using the model introduced in the previous section: we start by parsing the sentence in order
to obtain the syntactic dependency tree. We then compute the posterior distribution of semantic classes ¢
for that word, and use this probability distribution to represent the word. More formally, given a sentence
w = (w1, ..., wk ), the kth word of the sentence is represented by the vector u* € R¢ defined by

ubf =P(Cr=i| W =w).

The vector u” is the posterior distribution of latent classes corresponding to the kth word of the sentence,
and thus, sums to one. It is efficiently computed using the message passing algorithm (a.k.a. forward-
backward algorithm for HMM).

Out-of-context representation. In order to obtain word representations that are independent of the
context, we compute the previously introduced in-context representations on a very large corpus, and for
each word type, we average all the in-context representations for all the occurrences of that word type
in the corpus. More formally, given a large set of pairs of tokens and their in-context representations
(wy,u*) € N x RRC, the representation of the word type a is the vector v® € R, defined by

v = S Z u”

Zq ’
k:wr=a

where Z, is the number of occurrences of the word type a. The vector v is thus the posterior distribution
of semantic classes averaged over all the occurrences of word type a.

Comparing in-context and out-of-context representations. Since in-context and out-of-context
word representations are defined on the same space (the simplex of dimension C') it is possible to com-
pare in-context and out-of-context representations easily. As an example, we have plotted in Figure 2
the out-of-context representation for the words head, president, chief, chairman, director, executive, eye,
face, shoulder, hand, leg, etc. and the in-context representations for the word head in the context of the
two following sentences:

1. The nurse stuck her head in the room to announce that Dr. Reitz was on the phone.

2. A well-known Wall Street figure may join the Cabinet as head of the Treasury Department.
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Distance RG65 WS353 Distance SIM. REL.

Cosine 0.68 0.50 Cosine 0.68 0.34
Kullback-Leibler 0.69 0.47 Kullback-Leibler 0.64 0.31
Jensen-Shannon 0.72 0.50 Jensen-Shannon 0.69 0.33
Hellinger 0.73 0.51 Hellinger 0.70 0.34
Agirre et al. (BoW)  0.81 0.65 Agirre et al. (BoW) 0.70 0.62

Table 1: Left: Spearman’s rank correlation coefficient p between human and distributional similarity, on
the RG65 and WORDSIM353 datasets. Right: Spearman’s rank correlation coefficient p between human
and distributional similarity on two subsets (similarity v.s. relatedness) of the WORDSIM353 dataset.

The two-dimensional visualization is obtained by using multidimensional scaling (Borg, 2005). First of
all, we observe that the words are clustered in two groups, one containing words belonging to the body
part class, the other containing words belonging to the leader class, and the word head, appears between
those two groups. Second, we observe that the in-context representations are shifted toward the cluster
corresponding to the disambiguated sense of the ambiguous word head.

5 Out-of-context evaluation

In this section, we evaluate out-of-context word representations on a similarity prediction task and deter-
mine what kind of semantic relations are favored by our approach.

5.1 Similarity judgements prediction

In word similarity prediction tasks, pairs of words are presented to human subjects who are asked to
rate the relatedness between those two words. These human similarity scores are then compared to
distributional similarity scores induced by our models, by computing the correlation between them.

Methodology. We use the RG65 dataset, introduced by Rubenstein and Goodenough (1965) and the
WORDSIM353 dataset, collected by Finkelstein et al. (2001). These datasets comprise 65 and 353 word
pairs respectively. Human subjects rated the relatedness of those word pairs. We use the Spearman’s
rank correlation coefficient p to compare human and distributional score distributions.

Comparison of similarity measures. Since words are represented by posterior distributions over la-
tent semantic classes, we have considered distances (or divergences) that are adapted to probability dis-
tributions to compute the similarity between word representations: the symmetrised Kullback-Leibler
divergence, the Jensen-Shannon divergence, and the Hellinger distance. We use the opposite of these
dissimilarity measures in order to obtain similarity scores. We also included the cosine similarity mea-
sure as a baseline, as it is widely used in the field of distributional semantics.

We report results on both datasets in Table 1. Unsurprisingly, we observe that the dissimilarity mea-
sures giving the best results are the one tailored for probability distribution, namely the Jensen-Shannon
divergence and the Hellinger distance. The Kullback-Leibler divergence is too sensitive to fluctuations
of small probabilities and thus does not perform as well as other similarity measures between probability
distributions. In the following, we will use the Hellinger distance. It should be noted that the results
reported by Agirre et al. (2009) were obtained using a corpus containing 1.6 terawords, making it 1,000
times larger than ours. They also report results for various corpus sizes, and when using a corpus whose
size is comparable to ours, their result on WORDSIM353 drops to 0.55.

Relatedness v.s. similarity. As noted by Agirre et al. (2009), words might be rated as related for
different reasons since different kinds of semantic relations exist between word senses. Some words,
such as telephone and communication might even be rated as related because they belong to the same
semantic field. Thus, they proposed to split the WORDSIM353 dataset into two subsets: the first one
comprising words that are similar, i.e., synonyms, antonyms and hyperonym-hyponym and the second
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Figure 3: Similarity score distributions for various semantic relations on the BLESS dataset, without
using the transition matrix (left) and with using the transition matrix (right) for comparing adjectives and
verbs with nouns.

one comprising words that are related, i.e., meronym-holonym and topically related words. We report
results on these two subsets in Table 1. We observe that our model capture similarity (p = 0.70) much
better than relatedness (p = 0.34). This is not very surprising since our model takes the syntax into
account.

5.2 Semantic relations captured by our word representations

As we saw in the previous section, different semantic relations between words are not equally captured
by our word representations. In this section, we thus investigate which kind of semantic relations are
favored by our approach.

The BLESS dataset. The BLESS dataset (Baroni and Lenci, 2011) comprises 200 concrete concepts
and eight relations. For each pair of concept-relation, a list of related words, referred to as relatum, is
given. Five semantic relations are considered: co-hyponymy, hypernymy, meronymy, attribute and event.
The attribute relation means that the relatum is an adjective expressing an attribute of the concept, while
the event relation means that the relatum is a verb designing an activity or an event in which the concept
is involved. The dataset also contains three random relations (randn, randj ans randv), obtained by the
association of a random relatum, for different POS: noun, adjective and verb.

Methodology. We follow the evaluation proposed by the authors: for each pair of concept-relation, we
keep the score of the most similar relatum associated to that pair of concept-relation. Thus, for each
concept, we have eight scores, one for each relation. We normalize these eight scores (mean: 0, std: 1),
in order to reduce concept-specific effects. We then report the score distributions for each relation as box
plots in Figure 3 (left).

Results. We observe that the co-hyponymy relation is the best captured relation by a large margin.
It is followed by the hypernymy and meronymy relations. The random noun relation is prefered over
the attribute and the event relations. This happens because words with different part-of-speeches tend
to appear in different semantic classes. It is thus impossible to compare words with different parts-of-
speeches and thus to capture relation such as the event or the attribute relation as defined in the BLESS
dataset. It is however possible to make a more principled use of the model to overcome this issue.

Comparing adjectives with nouns and nouns with verbs. In syntactic relations between nouns and
adjectives, the noun is the head word and the adjective is the dependent. Similarly, in syntactic relations
between nouns and verbs, most often the verb is the head and the noun is the dependent. Given a vector
v, representing an adjective and a vector v,, representing a noun, it is thus natural to left multiply them by
the transition matrix of the model to obtain a vector u,, comparable to nouns and a vector u,, comparable
to verbs:

u, = TTvn.

u, = TTva and
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Figure 4: Graphical models used to compute in-context word representations for the compositional tasks.

We report in Figure 3 (right) the new score distributions obtained when adjective and noun representa-
tions are transformed before being compared to nouns and verbs. We observe that, when using these
transformations, the attribute and event relations are better captured than the random relations. This
demonstrates that the transition matrix T captures selectional preferences.

6 Compositional semantics

So far, we have only evaluated how well our representations are able to capture the meaning of words
taken as individual and independent units. However, natural languages are highly compositional, and it
is reasonable to assume that the meaning of a sentence or a phrase can be deduced from the meanings of
its parts and the syntactic relations between them. This assumption is known as the principle of semantic
compositionality.

In this section, we thus evaluate our representations on semantic composition tasks. More precisely, we
determine if using in-context word representations helps to compute the similarity between short phrases
such as adjective-noun, verb-object, compound-noun or subject-verb-object phrases. We use two datasets
of human similarity scores, introduced respectively by Mitchell and Lapata (2010) and Grefenstette and
Sadrzadeh (2011).

6.1 Methodology

We compare different ways to obtain a representation of a short phrase given our model. First, as a
baseline, we represent a phrase by the out-of-context representation of its head word. In that case, there
is no composition at all. Second, following Mitchell and Lapata (2008), we represent a phrase by the
sum of the out-of-context representations of the words forming that phrase. Third, we represent a phrase
by the in-context representation of its head word. Finally, we represent a phrase by the sum of the two
in-context representations of the words forming that phrase. The graphical models used to compute in-
context word representations are represented in Fig 4. The probability distribution p(c;) of the head’s
semantic class is set to the uniform distribution (and not to the initial class distribution pr(c | ¢o = 0)).

6.2 Datasets

The first dataset we consider was introduced by Mitchell and Lapata (2010), and is composed of pairs of
adjective-noun, compound-noun and verb-object phrases, whose similarities were evaluated by human
subjects on a 1 — 7 scale. We compare our results with the one reported by (Mitchell and Lapata, 2010).
The second dataset we consider was introduced by Grefenstette and Sadrzadeh (2011). Each example of
this dataset consists in a triple of subject-verb-object, forming a small transitive sentence, and a landmark
verb. Human subjects were asked to evaluate the similarity between the verb and its landmark in the
context of the small sentence. Following Van de Cruys et al. (2013), we compare the contextualized verb
with the non-contextualized landmark, meaning that the landmark is always represented by its out-of-
context representation. We do so because it is believed to better capture the compositional ability of our
model and it works better in practice. We compare our results with the one reported by Van de Cruys et
al. (2013).
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AN NN VN SVO

head (out-of-context) 044 026 041 head (out-of-context) 0.25
add (out-of-context) 050 045 042 add (out-of-context)  0.25
head (in-context) 049 042 043 head (in-context) 0.41
add (in-context) 0.51 046 041 add (in-context) 0.40
M&L (vector space model) 0.46  0.49 0.38 Van de Cruys et al. 0.37
Humans 0.52 049 0.55 Humans 0.62

Table 2: Spearman’s rank correlation coefficients between human similarity judgements and similarity
computed by our models on the Mitchell and Lapata (2010) dataset (left) and on the Grefenstette and
Sadrzadeh (2011) dataset (right). AN stands for adjective-noun, NN stands for compoundnoun and VN
stands for verb-object.

6.3 Discussion

Before discussing the results, it is interesting to note that our approach provides a way to evaluate the
importance of disambiguation for compositional semantics. Indeed, the in-context representations pro-
posed in this paper are a way to disambiguate their out-of-context equivalents. It was previously noted by
Reddy et al. (2011) that disambiguating the vectorial representations of words improve the performance
on compositional tasks.

Mitchell and Lapata (2010) dataset. We report results on the Mitchell and Lapata (2010) dataset in
Table 2 (left). Overall, in-context representations achieves better performance than out-of-context ones.
For the adjective-noun pairs and the verb-noun pairs, using only the in-context representation of the head
word works almost as well (AN) or even better (VN) than adding the representations of the two words
forming a pair. This means that for those particular tasks, disambiguation plays an important role. On
the other hand, this is not the case for the noun-noun pairs. On that task, most improvement over the
baseline comes from the add operation.

Grefenstette and Sadrzadeh (2011) dataset. We report results in Table 2 (right). First, we observe
that in-context representations clearly outperform out-of-context ones. Second, we note that adding the
subject, object and verb representations does not improve the result over only using the representation of
the verb. These two conclusions are not really surprising since this task is mainly a disambiguation task,
and disambiguation is achieved by using the in-context representations. We also note that our approach
yields better results than those obtained by Van de Cruys et al. (2013), while their method was specifically
designed to model subject-verb-object triples.

7 Conclusion and future work

In this article, we introduced a new approach to distributional semantics, based on a generative model
of sentences. This model is somehow to latent Dirichlet allocation as structured vector space models are
to latent semantic analysis. Indeed, our approach is based on a probabilistic model of sentences, which
takes the syntax into account by using dependency trees. Similarly to LDA, our model can be viewed
as a topic model, the main difference being that the topics are generated using a Markov process on a
syntactic dependency tree instead of using a Dirichlet process.

The approach we propose seems quite competitive with other distributional models of semantics. In
particular, we match or outperform state-of-the-art methods on semantic compositionality tasks. Thanks
to its probabilistic nature, it is very easy to derive word representations for various tasks: the same model
can be used to compute in-context word representations for adjective-noun phrases, subject-verb-object
triples or even full sentences, which is not the case of the tensor based approach proposed by Van de
Cruys et al. (2013).
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Currently, the model of sentences does not use the dependency labels, which is the most significant
limitation that we would like to address in future work. We also plan to explore spectral methods (Anand-
kumar et al., 2012) to provide better initialization for learning the parameters of the model. Indeed, we
believe this could speed up learning and yields better results, since the expectation-maximization al-
gorithm is quite sensitive to bad initialization. Finally, the code corresponding to this article will be
available on the first author webpage.
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