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Abstract

Automatically identifying anomalous newswire events is a hard problem. We discuss the com-
plexity of the problem and introduce a novel technique to model events based on recursive neural
networks to represent events as composition of their semantic arguments. Our model learns to
differentiate between normal and anomalous events. We model anomaly detection as a binary
classification problem and show that the model learns useful features to classify anomaly. We
use headlines from the weird news category publicly available on newswire websites to extract
anomalous training examples and those from Gigaword as normal examples. We evaluate the
classifier on human annotated data and obtain an accuracy of 65.44%. We also show that our
model is at least as competent as the least competent human annotator in anomaly detection.

1 Introduction

Understanding events is a fundamental prerequisite for deeper semantic analysis of language. We intro-
duce the problem of automatic anomalous event detection in this paper and propose a novel event model
that can learn to differentiate between normal and anomalous events. We generally define anomalous
events as those that are unusual compared to the general state of affairs and might invoke surprise when
reported. For example, given the event mention in the following sentence

Man recovering after being shot by his dog.

one might think it is strange because dogs are not expected to shoot men. But the mentions

Man recovering after being shot by cops.

Man recovering after being bitten by a dog.

are not as unusual as the previous one. While all three sentences are equally valid syntactically, and it
is not unclear what any of them means, it is our knowledge about the role fillers —both individually
and specifically in combination— that enables us to differentiate between normal and anomalous events.
Hence we hypothesize that anomaly is a result of unexpected or unusual combination of semantic role
fillers. Given this idea, an automatic anomaly detection algorithm has to encode the goodness of semantic
role filler coherence.

It has to be noted that event level anomaly is not the same as semantic incoherence. An event con-
structed by randomly choosing words to form each of the semantic arguments is not anomalous since we
cannot argue whether the event is normal or anomalous when it is unclear what the event means. Hence,
we define anomalous events to be the sub class of those that are semantically coherent, but are unusual
only based on real world knowledge.

Automatic anomalous event detection is a hard problem since determining what a good combination
of role fillers requires deep semantic and pragmatic knowledge. Moreover, manual judgment of anomaly
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itself may be difficult and people often may not agree with each other in this regard. We describe the
difficulty in human judgment in greater detail in Section 4.4. Automatic detection of anomaly requires
encoding complex information, which has to be composed from the semantics of the individual words
in the sentence. A fundamental problem in doing so is the sparsity in semantic space due to the discrete
representations of meaning of words.

In this paper, we describe an attempt to model newswire events as a composition of the predicate with
its semantic arguments. Our approach is based on the recent models used for semantic composition using
recursive neural networks (RNN). It has been previously shown by Socher et al. (2010) and Socher et
al. (2013b) among others that RNN can effectively deal with sparsity in semantic space by represent-
ing meaning at a higher level of abstraction than the surface forms of words, and thus being able to
learn more general patterns. These models are very relevant to modeling event semantics because the
sparsity problem ranges from polysemy and synonymy at the lexical semantic level to entity and event
co-reference at the discourse level.

2 Background

2.1 Selectional Preference and Thematic Fit

Selectional preference, a notion introduced by Wilks (1973), refers to the phenomenon of the predicate
and the fillers of its arguments affecting the likelihood of fillers of other arguments. Thus the idea is that
predicate and the role fillers “prefer” some fillers for other roles. For example, given that the predicate is
writes, the agent author prefers the patient book, while the agent programmer prefers the patient code.
This idea is used by Elman (2009), and is very similar to the role-filler composition that we use for
anomaly detection.

Erk et al. (2010) also model selectional preferences using vector spaces. They measure the goodness
of the fit of a noun with a verb in terms of the similarity between the vector of the noun and some
“exemplar” nouns taken by the verb in the same argument role. Baroni and Lenci (2010) also measure
selectional preference similarly, but instead of exemplar nouns, they calculate a prototype vector for that
role based on the vectors of the most common nouns occurring in that role for the given verb. Lenci
(2011) builds on this work and models the phenomenon that the expectations of the verb or its role-fillers
change dynamically given other role fillers.

2.2 Recursive Neural Networks

Recursive Neural Networks (RNN), first introduced by Goller and Kuchler (1996), are multilayer neural
network models used for efficient processing of structured objects of arbitrary shape. These have been
successfully used for modeling semantics of sentences of arbitrary length by Socher et al. (2010), for
sentiment analysis by Socher et al. (2013b), for syntactic parsing by Socher et al. (2013a) and for learn-
ing morphologically aware word representations by Luong et al. (2013). RNN are attractive because they
can encode compositions of meaning guided by syntax or some other linguistic structure known a priori.
Moreover, they provide flexibility in terms of learning composition weights based on supervised or un-
supervised objectives. Consequently RNN learn feature representations depending on the task. Hence,
this is a good choice for modeling event composition.

In its simplest form, an RNN processes information backed by a Directed Acyclic Graph (DAG),
where each node represents a neural network with the same parameters. The output produced at each
intermediate step of encoding usually has the same dimensionality as each of the inputs, hence RNN
projects the representation of a structure of arbitrary length into the same space as the inputs. This
property is what makes RNN recursive. An example RNN with a binary DAG (tree) structure is shown
in Figure 1. The activation from each neural network node is

c = g(y1‖y2) = Sg(W (y1‖y2) + b)

where ‖ represents concatenation of vector representations of the inputs, y1, y2 ∈ Rn×1 are the inputs,
W ∈ Rn×2n is the composition weight matrix and b ∈ Rn×1 is the bias. Sg is a element wise sigmoid
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Figure 1: Example of a Recursive Neural Network backed by a binary tree

Figure 2: Example of an event tree

function. Apart from encoding the composition, RNN also produce a score of composition

s = Sᵀc

where S ∈ Rn×1 is a scoring operator and s is a score that shows how good the composition is. (Col-
lobert et al., 2011) take an unsupervised approach to training RNN for semantic composition based on
the contrastive estimation technique proposed by (Smith and Eisner, 2005) and assuming that any word
and its context is a positive example and a random word in the same context is a negative training ex-
ample. (Socher et al., 2013b) among others use a supervised objective that is based on the label error at
the topmost node in the RNN. The parameters of the simplest model are W , b and S. For representation
learning, the inputs xi are also made parameters. Goller and Kuchler (1996) propose Backpropagation
through structure (BPTS), that respects the underlying DAG structure during backpropagation of gradi-
ents.

3 Neural Event Model

We define an event as the pair (V,A), where V is the predicate or a semantic verb1, and A is the set of its
semantic arguments like agent, patient, time, location, so on. Our aim is to obtain a vector representation
of the event that is composed from representations of individual words, while explicitly guided by the
semantic role structure. This representation can be understood as an embedding of the event in an event
space.

Neural Event Model (NEM) is a kind of RNN that is guided by a tree representation of events like the
one shown in Figure 2. The edges connected to the root of the tree correspond to the predicate and its
semantic roles (arguments). All the other edges form binary sub-trees of arguments. NEM is a super-
vised model that learns to differentiate between anomalous and normal events by classifying the event
embeddings. The inputs to NEM are the semantic arguments, and the representations of words in each
argument. We recursively compose the words in each argument to obtain argument level representations,
which are then composed to obtain an event embedding.

Intra-argument composition (called argument composition henceforth) is unsupervised, and we use
contrastive estimation to learn the parameters. The structure of the binary tree backing argument compo-
sition is determined dynamically, composing at each stage the two nodes which give the best composition

1By semantic verb, we mean an action word whose syntactic category is not necessarily a verb. For example, in Terrorist
attacks on the World Trade Center.., attacks is not a verb but is still an action word.
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Figure 3: Neural Event Model: Encoding

score. Inter-argument composition (called event composition henceforth) is supervised and we use label
error to learn the parameters. Figure 3 shows how NEM encodes the event shown in Figure 2. The blue
boxes show argument composition and the red box shows event composition.

3.1 Training

NEM is trained in two phases. The first, argument composition, is unsupervised while the second, event
composition, is supervised.

3.1.1 Argument Composition
An argument composition node takes inputs of dimensionality 2n and produces an composed output
representation of dimensionality n and a composition score. Accordingly, we define the node in terms
of the parameters θarg = {Warg ∈ Rn×2n; barg, Sarg ∈ Rn×1;V } where Warg, barg and Sarg are the
composition weight, bias and the scoring operators respectively as described previously, and V is the set
of representations of all the words in the vocabulary. All nodes performing argument composition use
the same parameters. Training is done in contrastive estimation fashion and the objective is

arg min
θarg

Jarg = arg min
θarg

max(0, 1− s+ sc)

where s is the score of the composition of the entire argument produced by the root node of the argument,
and sc is the score produced by randomly replacing one of the words in the argument at a time. The
structure of the binary tree backing each argument is determined dynamically. This is done by starting
with leaf nodes in the tree for each of the words in the argument, comparing the composition scores of
every pair of adjacent leaf nodes, and actually composing the pair that gives the highest score, which
gives a new node. The process is repeated until we build a complete binary tree for each argument.

3.1.2 Event Composition
Event composition takes argument representations and produces the event representation and label in-
dicating whether the event is normal or anomalous. We define the event composition node in terms of
the parameters θevent = {Wevent ∈ Rn×kn; bevent, Levent ∈ Rn×1} where k is the number of semantic
arguments per event. Levent is the label operator. The objective of this phase is

arg min
θevent

Jevent = arg min
θevent

(−l log h(e) + (1− l) log(1− h(e)))

where l is the reference binary label indicating whether the event is normal or anomalous, e is the event
representation and h(e) is the output of the logistic function. Concretely,

h(e) =
1

1 + e−L
ᵀ
evente

We implement the functions and perform stochastic gradient descent using Theano (Bergstra et al., 2010).
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4 Experiments

4.1 Event Extraction
We extract events by running the Semantic Role Labeling (SRL) tool in SENNA (Collobert et al., 2011).
SENNA uses PropBank (Palmer et al., 2005) style semantic tags. We consider only the roles A0, A1,
AM-TMP and AM-LOC as the arguments of our events2. For example, the event in the tree shown in
Figure 2 is extracted from the sentence

Two Israeli helicopters killed 70 soldiers in Gaza strip.

and SENNA identifies the following as the semantic roles

verb:killed A0:Two Israeli helicopters A1:70 soldiers AM-LOC:in Gaza strip

4.2 Data
Since the second phase of training NEM is supervised, we need newswire events that are normal and
those that are anomalous. We crawl 3684 “weird news” headlines available publicly on the website of
NBC news3, such as the following:

• India weaponizes world’s hottest chili.

• Man recovering after being shot by his dog.

• Thai snake charmer puckers up to 19 cobras.

We assume that the events extracted from this source, called NBC Weird Events (NWE) henceforth, are
anomalous for training. NWE contains 4271 events extracted using SENNA’s SRL. We use 3771 of those
events as our negative training data, and the remaining for testing. Similarly, we extract events also from
headlines in the AFE section of Gigaword, called Gigaword Events (GWE) henceforth. We assume these
events are normal. To use as positive examples for training event composition, we sample roughly the
same number of events from GWE as our negative examples from NWE. It has to be noted that each
headline may contain multiple events and some may not contain events at all.

For argument composition, we use about 100k whole sentences from AFE headlines and the weird
news headlines from which NWE are extracted. Since we are training argument composition, we do not
use the event structure in the first phase. It has to be noted that all our training data are easily available
and do not require any human annotation.

We test the performance of NEM on 1003 events which are not part of the training dataset. These
events are sampled with equal probabilities from NWE and GWE and are human annotated for anomaly.
Section 4.4 has details of the annotation task.

4.3 Word Vector Initialization
We initialize the vector representations of the words in our vocabulary using the embeddings available in
SENNA 3.0 (Collobert et al., 2011) if available, and randomly if not. For event composition, if the event
does not have a specific role filler, we input a zero vector for the role.

4.4 Annotation
We post the annotation of the test set containing 1003 events as Human Intelligence Tasks (HIT) on
Amazon Mechanical Turk (AMT). We break the task into 20 HITs and ask the workers to select one
of the four options - highly unusual, strange, normal and cannot say for each event. We ask them to
select highly unusual when the event seems too strange to be true, strange if it seems unusual but still
plausible, and cannot say only if the information present in the event is not sufficient to make a decision.
We present each event along with the original headline and the semantic arguments. Along with marking

2These four types cover about 85% of all arguments in our training and test datasets.
3http://www.nbcnews.com/html/msnbc/3027113/3032524/4429950/4429950_1.html
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Total number of annotators 22
Normal annotations 56.3%
Strange annotations 28.6%

Highly unusual annotations 10.3%
Cannot Say annotations 4.8%

Avg. events annotated per worker 344
4-way Inter annotator agreement (α) 0.34
3-way Inter annotator agreement (α) 0.56

Table 1: Annotation Statistics

one of the four options above, if an event is strange or highly unusual, we ask the annotators to select the
parts of the headline that make it so. Since there can be multiple events in the headline, the annotators
decision regarding the parts of the sentence that cause anomaly help us identify which particular event in
the headline is anomalous.

Table 1 shows some statistics of the annotation task. We compute the Inter Annotator Agreement
(IAA) in terms of Kripendorff’s alpha (Krippendorff, 1980). The advantage of using this measure instead
of the more popular Kappa is that the former can deal with missing information, which is the case with
our task since annotators work on different overlapping subsets of the test set. The 4-way IAA shown
in the table corresponds to agreement over the original 4-way decision (including cannot say) while the
3-way IAA is measured after merging the highly unusual and strange decisions.

Additionally we use MACE (Hovy et al., 2013) to assess the quality of annotation. MACE models the
annotation task as a generative process of producing the observed labels conditioned on the true labels
and the competence of the annotators, and predicts both the latent variables. The average of competence
of annotators, a value that ranges from 0 to 1, for our task is 0.49 for the 4-way decision and 0.59 for the
3-way decision.

We generate true label predictions produced by MACE, discard the events for which the prediction
remains to be cannot say, and use the rest as reference for evaluating NEM, which is described in Sec-
tion 4.5. This leaves 949 events as our reference dataset, of which only 41% of the labels are strange or
highly unusual. It has to be noted that even though our test set has equal size samples from both NWE
and GWE, the true distribution is not uniform.

Language Model Separability Given the annotations, we test to see if the sentences corresponding
to anomalous events can be separated from normal events by simpler features. We build a n-gram lan-
guage model from the training data set used for argument composition and measure the perplexity of
the sentences in the test set. Figure 4 shows a comparison of the perplexity scores for different labels.
If the n-gram features are enough to separate different classes of sentences, one would expect the sen-
tences corresponding to strange and highly unusual labels to have higher perplexity ranges than normal
sentences, because the language model is built from a dataset that is expected to have a distribution of
sentences where majority of them contain normal events. As it can be seen in Figure 4, except for a few
outliers, most data points in all the categories are in similar perplexity ranges. Hence, sentences with
different labels cannot be separated based on an n-gram language model features.

4.5 Evaluation

We evaluate the performance of event composition by comparing the predicted labels from the classifier
against the ones given by MACE. We merge the two anomaly classes and calculate accuracy of the binary
classifier, and the precision and recall of anomaly detection.

Baseline We compare the performance of our model against a baseline that is based on how well
the semantic arguments in the event match the selectional preferences of the predicate. We measure
selectional preference using Point-wise Mutual Information (PMI) (Church and Hanks, 1990) of the head
words of each semantic argument with the predicate. The baseline model is built as follows. We perform
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Figure 4: Comparison of perplexity scores for different labels

NEM Baseline
Accuracy 65.44% 45.22%

Anomalous
Precision 56.55% 36.30%

Recall 48.22% 59.50%

Normal
Precision 64.62% 42.08%

Recall 77.66% 33.60 %

Table 2: Classification Performance and Comparison with Baseline

dependency parsing using MaltParser (Nivre et al., 2007) on the sentences in the training data used in
the first phase of training to obtain the head words of the semantic arguments. We then calculate the PMI
values of all the pairs < hA, p > where h is the head word of argument A and p is the predicate of the
event. For training our baseline classifier, we use the labeled training data from the event composition
phase. The features to this classifier are the PMI measures of the < hA, p > pairs estimated from the
larger dataset. The classifier thus trained to distinguish between anomalous and normal events is applied
to the test set.

Table 2 shows the results and a comparison with the PMI based baseline. The accuracy of the baseline
classifier is lower than 50%, which is the expected accuracy of a classifier that assigns labels randomly.
The precision of that random classifier in predicting anomalous events is expected to be 41%, since that is
the percentage of anomaly labels in our reference set as described in Section 4.4. The accuracy of NEM
is higher than the baseline model. One possible reason for the PMI based baseline having higher recall
in predicting anomaly and lower precision is that the statistics estimated from larger training data cannot
be generalized to the test set due to sparsity issues. This indicates the advantage of using continuous
representations at a higher level of abstraction as features for classification.

To further compare NEM with human annotators, we give to MACE, the binary labels produced by
NEM along with the annotations and measure the competence. For the sake of comparison, we also
give to MACE, a list of random binary labels as one of the annotations to measure the competence of a
hypothetical worker that made random choices. These results are reported in Table 3. It can be seen that
the performance of NEM is comparable at least to the least competent human.

5 Discussion and Future Work

The two evaluation experiments show that the neural network does learn to distinguish between normal
and anomalous events. Future improvements to this model will include better event extraction techniques.

Since the current approach is supervised, the training data size for learning event composition is lim-
ited. We plan to develop unsupervised approaches that can learn good models of normal events, and
detect anomalies based on how well new events fit in the model. One possible approach is to do learning
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Human average 0.59
Human highest 0.70
Human lowest 0.26

Random 0.02
NEM 0.26

Table 3: Anomaly Detection Competence

based on contrastive estimation in the second phase as well. The assumption behind taking this approach
for learning is that a randomly generated data point is likely to be a negative example, which is not neces-
sarily true for learning event composition. Generating malformed events that are syntactically valid but
anomalous without much human effort can greatly help in developing such an unsupervised algorithm.

One important aspect of anomaly that is currently not handled by NEM is the level of generality of the
concepts the events contain. Usually more general concepts cause events to be more normal since they
convey lesser information. For example, an American soldier shooting another American soldier may be
considered unusual, while a soldier shooting another soldier may not be as unusual, and at the highest
level of generalization, a person shooting another person is normal. This information of generality has
to be incorporated into the event model. This can be achieved by integrating real world knowledge
from knowledge bases like Wordnet (Miller, 1995) or from corpus statistics like the work by Lin (1998)
into the event model. Bordes et al. (2011) learn continuous representations of entities and relations in
knowledge bases. More recently, an alternative approach for doing the same was proposed by Chen et
al. (2013). These representations can greatly help modeling events.

Finally, the idea of modeling event composition can help processing event data in general and can be
applied to other tasks like finding co-referent events.

6 Conclusion

We introduced the problem of anomalous newswire event detection and illustrated its difficulty. Our
approach is similar to the ones successfully used for modeling semantic composition. We showed that
while our event composition model does learn to distinguish between normal and anomalous events,
there is scope for improved models that can effectively incorporate real world information and can be
trained in an unsupervised fashion. We note that in general event composition is more difficult than
traditional semantic composition since the former also deals with pragmatics. Consequently the set of
nonsensical events is different from the set of anomalous sentences, and while meaningless events and
well composed normal events are two ends of the semantic spectrum, semantically valid anomalous
events lie somewhere between them.
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