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Abstract

Target-polarity word (T-P) collocation extraction, a basic sentiment analysis task, relies primarily
on syntactic features to identify the relationships between targets and polarity words. A major
problem of current research is that this task focuses on customer reviews, which are natural or
spontaneous, thus posing a challenge to syntactic parsers. We address this problem by proposing
a framework of adding a sentiment sentence compression (Sent_Comp) step before performing
T-P collocation extraction. Sent_Comp seeks to remove the unnecessary information for senti-
ment analysis, thereby compressing a complicated sentence into one that is shorter and easier to
parse. We apply a discriminative conditional random field model, with some special sentiment-
related features, in order to automatically compress sentiment sentences. Experiments show that
Sent_Comp significantly improves the performance of T-P collocation extraction.

1 Introduction

Sentiment analysis deals with the computational treatment of opinion, sentiment and subjectivity in tex-
t (Pang and Lee, 2008), and has received considerable attention in recent years (Liu, 2012). Target-
Polarity word (T-P) collocation extraction, which aims to extract the collocation of a target and its cor-
responding polarity word in a sentiment sentence, is a basic task in sentiment analysis. For example,
in a sentiment sentence “XFAHWLIHE FrAM IS (The camera has a novel appearance), “NE”
(appearance) is the target, and “H1 1" (novel) is the polarity word that modifies “4ME” (appearance).
According, (#MNE, #181) ((appearance, novel)) is the T-P collocation. Generally, T-P collocation is a
basic and complete sentiment unit, thus is very useful for many sentiment analysis applications.
Features derived from syntactic parse trees are particularly useful for T-P collocation extraction (Ab-

basi et al., 2008; Duric and Song, 2012). For example, the syntactic relation “Adj 7~ Noun”, where the
ATT denotes an attributive syntactic relation, can be used as an important evidence to extract the T-P
collocation (4N, #1#l) ((appearance, novel)) in the above sentiment sentence (Bloom et al., 2007;
Qiu et al., 2011; Xu et al., 2013).

However, one major problem of these approaches is the “naturalness” of sentiment sentences, that is,
such sentences are more natural or spontaneous compared with normal sentences, thus posing a challenge
to syntactic parsers. Accordingly, many wrong syntactic features have been produced and these can
further result in the poor performance of T-P collocation extraction. Taking the sentence in Figure 1(a)
as an example, because the word “% 5 (fortunately) is so chatty,! the parsing result is wrong. Thus,
are unable to extract the T-P collocation ($#%L, &F) ({(keyboard, good)).

To solve the “naturalness” problem, we can train a parser on sentiment sentences. Unfortunately, an-
notating such data will cost us a lot of time and effort. Instead, in this paper we produce a sentence
compression model, Sent_Comp, which is designed especially to compress complicated sentiment sen-
tences into formal and easier to parse ones, further improving T-P collocation extraction.

*Correspondence author: tliu@ir.hit.edu.cn
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

'Note that, in Figure 1, the Chinese word “Z 5™ is chatty, although its translated English word “fortunately” is not. In this
paper, we focus on processing the Chinese data.
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Figure 1: Parse trees before and after compression.

This idea is motivated by the observation that, current syntactic parsers usually perform accurately
for short, simple and formal sentences, whereas error rates increase for longer, more complex or more
natural and spontaneous sentences (Finkel et al., 2008). Hence, the improvement in syntactic parsing
performance would have a ripple effect over T-P collocation extraction. For example, we can compress
the sentence in Figure 1(a) into a shortened sentence in Figure 1(b) by removing the chatty part “Z% 5
(fortunately). We can see that the shortened sentence is now well-formed (in Chinese) and its parse tree
is correct, making it easier to accurately extract T-P collocation.

Traditional sentence compression aims to obtain a shorter grammatical sentence by retaining impor-
tant information (usually important grammar structure) (Jing, 2000). For example, the sentence “Overall,
this is a great camera.” can be compressed into “This is a camera.” by removing the adverbial “overall”
and the modifier “great”. However, the modifier “great” is a polarity word and very important for sen-
timent analysis. Therefore, Sent_Comp model for sentiment sentences is different from the traditional
compression models, because it needs to retain the important sentiment information, such as the polarity
word. Hence, using Sent_Comp, the above sentence can be compressed into “This is a great camera.”

We regard Sent_Comp as a sequence labeling task, which can be solved by a conditional random
fields (CRF) model. Instead of seeking the manual rules on parse trees for compression, as in other
studies (Vickrey and Koller, 2008), this method is an automatic procedure. In this work, we introduce
some sentiment-related features to retain the sentiment information for Sent_Comp.

We apply Sent_Comp as the first step in the T-P collocation extraction task. First, we compress the
sentiment sentences into easier to parse ones using Sent_Comp, after which we employ the state-of-the-
art T-P collocation extraction approach on the compressed sentences. Experimental results on a Chinese
corpus of four product domains show the effectiveness of our approach.

The main contributions of this paper are as follows:

e We present a framework of using sentiment sentence compression preprocessing step to improve T-
P collocation extraction. This framework can better solve the “over-natural” problem of sentiment
sentences, which poses a challenge to syntactic parsers. More importantly, the idea of this frame-
work can be applied to some other sentiment analysis tasks that rely heavily on syntactic results.

e We develop a simple yet effective compression model Sent_Comp for sentiment sentences. To the
best of our knowledge, this is the first sentiment sentence compression model.

2 Background

For our baseline system, we used the state-of-the-art method to extract T-P collocations introduced by
Qiu et al. (2011), who proposed a double propagation method. This idea is based on the observation
that there is a natural syntactic relationship between polarity words and targets owing to the fact that
polarity words are used to modify targets. Furthermore, they also found that polarity words and targets
themselves have relations in some sentiment sentences (Qiu et al., 2011).

Based on this idea, in the double propagation method, we first used an initial seed polarity word lexicon
and the syntactic relations to extract the targets, which can fall into a new target lexicon. Then we used the
target lexicon and the same syntactic relations to extract the polarity words and to subsequently expand
the polarity word lexicon. This is an iterative procedure, because this method can iteratively produce the
new polarity words and targets back and forth using the syntactic relations.
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Figure 2: Example of syntactic structure rules for T-P collocation extraction. We showed five examples
from a total of nine syntactic structures. For each kind of syntactic structure (a) to (e), the target is
shown with a red box and the polarity word is shown with a green box. Syntactic structures (a) to (c)
describe the relations between targets and polarity words. Syntactic structure (d), which is extended
from (a), describes the relation between two targets. Syntactic structure (e), which is also extended from
(a), describes the relation between two polarity words. Similarly, we can summarize the other four rules
extended from (b) and (c) to describe the relations between two targets or two polarity words.

We can see that the syntactic relations are important for this method, and Qiu et al. (2011) proposed
eight rules to describe these relations. However, their work only focused on English sentences, whereas
the relations for Chinese sentences are different. Thus, in accordance with Chinese grammar, we pro-
posed nine syntactic structure rules between target ¢ and polarity word p in a Chinese T-P collocation
(t, p).> The three main rules are shown below and some example rules are illustrated in Figure 2.

Rule 1: ¢t ‘A p, the “subject-verb” structure between ¢ and p, such as the example in Figure 2(a).

Rule 2: p 7 t, that p is an attribute for ¢, such as the example in Figure 2(b).

Rule3: t ‘A o ~ p, the “subject-verb-object” structure between ¢ and p, such as the example in

Figure 2(c). The o denotes any word.

The other six rules can be extended from the three main rules by obtaining the coordination (COO)
relation of ¢ or p, such as ¢ o p in Figure 2(e). Note that the POS for ¢ should be noun and for p
should be adjective.

As described above, the T-P collocation extraction relies heavily on syntactic parsers. Hence, if we
can use the Sent_Comp model to improve the performance of parsers, the performance of T-P collocation
extraction can also be improved accordingly.

3 Sentiment Sentence Compression

3.1 Problem Analysis

First, we conducted an error analysis for the results of current T-P collocation extraction, from which we
observed that the “naturalness” of sentiment sentences is one of the main problems. For examples:

e Chatty form: some sentiment sentences are so chatty, that they bring many difficulties to the parser.
For example, in the sentence “Z% 5 ¥ £L 1T (fortunately the keyboard is good) shown in Figure 1,
the usage of the chatty word “Z %5 (fortunately) affects the accuracy of the syntactic parser.

2A Chinese natural language processing toolkit, Language Technology Platform (LTP) (Che et al., 2010), was used as our
dependency parser. More information about the syntactic relations can be found in their paper. The state-of-the-art graph-based
dependency parsing model, in the toolkit, was trained on Chinese Dependency Treebank 1.0 (LDC2012T05).
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Figure 3: “Naturalness” problem of sentiment sentences.

e Conjunction word usage: conjunction words are often used in sentiment sentences to show the dis-
course relations between two sentences. However, there are so many conjunction words in Chinese,
some of which can cause errors among parsers. For example, in Figure 3(a), the parse tree of sen-
tence “F&% T ¥ FEUT” (besides the photo is good) is wrong because of the usage of the conjunction
word “FR T (besides).

e Feeling words/phrase usage: in sentiment sentences, people often use some feeling words/phrase,
such as “5 AR (feel like) in Figure 3(b) or “[El LR (smell like). Given that the current
syntactic parser cannot handle the feeling words/phrases very well, the T-P collocation (5%, 1~
) ((screen, good)) in Figure 3(b) cannot be extracted correctly.

To address the “naturalness” problem, we compressed the sentiment sentences into one that are shorter
and easier to parse. Similar to the examples in Figure 1 and 3, the compressed sentences can be easily
and correctly parsed. The above analysis can be used as the criteria to guide us in compressing sentiment
sentences when annotating, and can also help us exploit more useful features for automatic sentiment
sentence compression.

3.2 Task Definition

We focus on studying the methods for extractive sentence compression.® Formally, extractive sentence
compression aims to shorten a sentence x = x1--- T, into a substring y = vy -- - Ym, Where y; €
{z1, - ,zn},m < n.

In this paper, similar to Nomoto (2007), we also treated the sentence compression as a sequence
labeling task which can be solved by a CRF model. We assigned a compression tag ¢; to each word x; in
an original sentence x, where t; =N if x; € y,elset; =Y.

A first-order linear-chain CRF is used which defines the following conditional probability:

Plt]x) = Z(lx)HMi(ti,ti_llx) ()

where x and t are the input and output sequences respectively, Z(x) is the partition function, and M; is
the clique potential for edge clique i. Here, we used the CRFsuite toolkit to train the CRF model.*

3.3 Features

The features for Sent_Comp are listed in Table 1. Aside from the basic word (w), POS tag (¢) and
their combination context features (01 — 04), we introduced some sentiment-related features (05 — 06)
and latent semantic features (07 — 08) to better handle sentiment analysis data and generalize word
features. Then we added the syntactic parse features (09), which are commonly used in traditional
sentence compression task.

One sentiment-related feature (feeling(-)) indicates whether a word is a feeling word, which is inspired
by the naturalness problem in Figure 3(b). As discussed above, the current parser often produces wrong
parse trees because of these feeling words. Therefore, the feeling words tend to be removed from a

3Generally, there are two kinds of sentence compression methods: extractive method and abstractive method. Because

abstractive method needs more resource and is more complicated, in this paper, we only focus on extractive approach.
“www.chokkan.org/software/crfsuite/

1363



Basic Features

01: wi+k;’71 S k S 1

02: Wit+k—1 © wi+k,0 S k S 1
03: tiyr, —2<k<2

04: ti+k—1 o tpr}c, -1 S k S 2
Sentiment-related Features

05: feeling(w;)

06: polarity(w;)

Latent Semantic Features

07: suffix(w;) if t(w;) == n else prefix(w;)
08: cluster(w;)

Syntactic Features

09: dependency(w;)

Table 1: Features of sentiment sentence compression

sentiment sentence for Sent_Comp. We can obtain a feeling word lexicon from HowNet,> a popular
Chinese sentiment thesaurus, where a feeling word is defined by DEF={perception|/Z%l1} tag. Finally,
we collected 38 feeling words, such as & . (realize), I (find), and I\ (think).

The other sentiment-related feature (polarity(-)) indicates whether a word is a polarity word. One
of the main differences between a sentiment sentence and a formal sentence is that the former often
contains polarity words. In contrast to the features of feeling(-), polarity words (e.g., “great” in the
sentence “Overall, this is a great camera”) tend to be retained, because they are important and special
to sentiment analysis. In this paper, we treat polarity words as important features, considering that they
are often tagged as modifiers and are easily removed by common sentence compression methods. We
can obtain the polarity feature (polarity(-)) from a polarity lexicon, which can also be obtained from
HowNet.

To generalize the words in sentiment sentences, we proposed two kinds of semantic features. The
first one is a suffix or prefix character feature (prefix(-) or suffix(-)). In contrast to English, the suffix
(for noun) or prefix (for non noun) characters of a Chinese word often carry that word’s core semantic
information. For example, HA1T% (bicycle), 1R % (car), and ‘K ZE (train) are all various kinds of %
(vehicle), which is also the suffix of the three words. Given that all of them may become targets, they
tend to be retained in compressed sentences. The verbs, /B and /%I, can be denoted by their prefix
feel (J&%), and can be removed from original sentences because they are feeling words.

We used word clustering features (cluster(-)) as the other latent semantic feature to further improve
the generalization over common words. Word clustering features contain some semantic information
and have been successfully used in several natural language processing tasks, including NER (Miller et
al., 2004; Che et al., 2013) and dependency parsing (Koo et al., 2008). For instance, the words AR,
and F£F (appearance) belong to the same word cluster, although they have a different suffix or prefix.
Both words are important for T-P collocation extraction and should be retained. We used the Brown
word clustering algorithm (Brown et al., 1992) to obtain the word clusters (Liang, 2005). Raw texts were
obtained from the fifth edition of Chinese Gigaword (LDC2011T13).

Finally, similar to McDonald (2006), we also added the dependency relation between a word and its
parent as the syntactic features. Intuitively, the dependency relations are helpful in carrying out sentence
compression. For example, the ROOT relation typically indicates that the word should not be removed
because it is the main verb of a sentence.

4 Experiments

4.1 Experimental Setup
4.1.1 Corpus

We conducted the experiments on a Chinese corpus of four product domains, which came from the Task3
of the Chinese Opinion Analysis Evaluation (COAE) (Zhao et al., 2008).% Table 2 describes the corpus,

Swww . keenage.com
Swww.ir-china.org.cn/coae2008.html
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[ Domain [ #reviews [ #sentences [ # collocations |

Camera 138 1,249 1,335
Car 161 1,172 1,312
Notebook 56 623 674
Phone 123 1,350 1,479
[ All [ 478 [ 4,394 [ 4,800 ]

Table 2: Corpus statistics for the Chinese corpus of four product domains.

where 4,394 sentiment sentences containing 4,800 T-P collocations are manually found and annotated
from 478 reviews.

We ask annotators to manually compress all the sentiment sentences. Specifically, the annotators
removed some words from a sentiment sentence according to two criteria stated as follows: (1) removing
the word should not change the essential content of the sentence, and (2) removing the word should
not change the sentiment orientation of the sentence. In order to assess the quality of the annotation,
we sampled 500 sentences from this corpus and asked two annotators to perform the annotation. The
resulting word-based Cohen’s kappa (Cohen, 1960) (i.e., a measure of inter-annotator agreement ranging
from zero to one) of 0.7 indicated a good strength of agreement.

4.1.2 Evaluation

Generally, compressions are evaluated using three criteria (McDonald, 2006), namely, grammaticality,
importance, and compression rate. Obviously, the former two are difficult to evaluate objectively. Previ-
ous works used human judgment, which entails a difficult and expensive process. In this paper, similar to
a common sequence labeling task, we simply used the F-score metric of removed words to roughly eval-
uate the performance of sentiment sentence compression. Of course, the final effectiveness of sentence
compression model can be reviewed by the derived T-P collocation extraction task.

For T-P collocation extraction, we applied the traditional P, R and F-score for the final evaluations.
Specially, a fuzzy matching evaluation is adopted for the T-P collocation extraction. That is to say,
given an extracted T-P collocation (¢, p), whose standard result is (ts, ps), if ¢ is the substring of ¢, and
meanwhile p is the substring of p,, we consider the extracted (¢, p) is a correct T-P collocation.

4.2 Sentiment Sentence Compression Results

[ Features [ P(%) [ R(%) [ F(%) ]
[ Basic (01-04) [ 764 [ 574 ] 655 ]
+ feeling (05) | 759 | 57.6 | 65.5

+ polarity (06) | 76.6 | 57.6 | 65.7

+ suffix or prefix (07) | 78.4 569 | 66.0
+ cluster (08) | 749 | 589 | 65.9

+ dependency (09) | 75.3 572 | 65.0

All (01-08) | 77.3 | 59.1 | 67.0
All - feeling (05) | 77.1 589 | 66.8

Table 3: The results of sentiment sentence compression with different features.

Results of Sent_Comp with different features are shown in Table 3. All results are reported using five-
fold cross validation. We can see that the performance is improved when we added feeling” and polarity
features (05 — 06) respectively, indicating that the sentiment-related features are useful for sentiment
sentence compression. In addition, the latent semantic features (07 — 08) are also helpful, especially the
suffix or prefix features, which show better performance than the four other kinds of features.

Nonetheless, the dependency features (09) have a negative on compression performance due to the
specificity of compression for sentiment sentences. That is because the lower dependency parsing per-
formance on sentiment sentences introduces many wrong dependency relations, which counteract the

"In Table 3, although the performance of adding feeling is comparative to the basic system (Basic (01-04)), the system

without feeling (All - feeling (05), the last line) is worse than the system using all the features (All (01-08)). This can illustrate
the effectiveness of the feeling feature.
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[ Domain | Method [ P(%) [ R(%) | F(%) |
no_Comp 747 | 584 | 65.6
Camera | manual_Comp | 834 | 62.7 | 71.6
auto_Comp 80.4 | 62.1 70.1
no_Comp 68.2 | 53.1 59.7
Car manual_Comp | 763 | 57.7 | 65.7
auto_Comp 72.3 | 56.1 63.2
no_Comp 74.1 56.8 | 64.3
Notebook | manual Comp | 82.7 | 64.5 | 72.5
auto_Comp 79.7 | 62.8 70.2
no_Comp 773 | 60.9 | 68.1
Phone manual_ Comp | 82.7 | 65.7 73.2
auto_Comp 80.3 | 633 | 70.8
no_Comp 73.7 | 575 | 64.6

All manual_Comp | 81.2 | 62.5 | 70.6
auto_Comp 78.1 | 609 | 68.4

Table 4: Results on T-P collocation extraction for four product domains.

contribution of the dependency relation features. This is also the reason why we need to compress sen-
timent sentences as the first step for T-P collocation extraction. Finally, when we combine all of useful
features (01 — 08), the performance achieves the highest score.

It is worth noting that sentiment sentence compression is a new task proposed in this paper. For
simplicity, this paper aims to attempt a simple yet effective sentiment sentence compression model. We
will polish the Sent_Comp model in the future work.

4.3 Sent_Comp for T-P Collocation Extraction

We designed three comparative systems to demonstrate the effectiveness of Sent_Comp for T-P collo-
cation extraction. Note that, Sent_Comp is the first step to process the corpus before T-P collocation
extraction. The method for T-P collocation extraction was based on the state-of-the-art method proposed
by Qiu et al. (2011) as described in Section 2.

no_Comp - This refers to the system that only uses the T-P collocation extraction method and does not
perform sentence compression as the first step.

manual_Comp - This system manually compresses the corpus into a new one as the first step, and then
applies the T-P collocation extraction method on the new compressed corpus.

auto_Comp - This system uses Sent_Comp as the first step to automatically compress the corpus into a
new one, and then applies the T-P collocation extraction method on the new corpus.

From the descriptions above, we can draw a conclusion that the performance of manual_Comp can be
considered as the upper bound for the sentiment sentence compression based T-P collocation extraction
task.

Table 4 shows the experimental results of the three systems on T-P collocation extraction for four prod-
uct domains. Here, manual_Comp can significantly (p < 0.01) improved the F-score by approximately
6%,% compared with no_Comp. This illustrates that the idea of sentiment sentence compression is use-
ful for T-P collocation extraction. Specifically, the proposed method can transform some over-natural
sentences into normal ones, further influencing their final syntactic parsers. Evidently, because the T-P
collocation extraction relies heavily on syntactic features, the more correct syntactic parse trees derived
from the compressed sentences can help to increase the performance of this task.

Compared with no_Comp, the auto_Comp system also yielded a significantly better results (p < 0.01)
that indicated an improvement of 3.8% in the F-score, despite the fact that the automatic sentence com-
pression model Sent_Comp may wrongly compress some sentences. This demonstrates the usefulness
of sentiment sentence compression step in the T-P collocation extraction task and further proves the
effectiveness of our proposed model.

8We use paired bootstrap resampling significance test (Efron and Tibshirani, 1993).
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Moreover, we can observe that the idea of sentence compression and our Sent_Comp are useful for
all the four product domains on T-P collocation extraction task, indicating that Sent_Comp is domain
adaptive. However, we can find a small gap between auto_Comp and manual_Comp, which indicates
that the Sent_Comp model can still be improved further. In the future, we will explore more effective
sentence compression algorithms to bridge the gap between the two systems.

5 Related Works

5.1 Sentiment Analysis

T-P collocation extraction is a basic task in sentiment analysis. In order to solve this task, most methods
focused on identifying relationships between targets and polarity words. In early studies, researcher-
s recognized the target first, and then chose its polarity word within a window of size k (Hu and Liu,
2004). However, considering that this kind of method is too heuristic, the performance proved to be very
limited. To tackle this problem, many researchers found syntactic patterns that can better describe the
relationships between targets and polarity words. For example, Bloom et al. (2007) constructed a link-
age specification lexicon containing 31 patterns, while Qiu et al. (2011) proposed a double propagation
method that introduced eight heuristic syntactic patterns to extract the collocations. Xu et al. (2013) used
the syntactic patterns to extract the collocation candidates in their two-stage framework.

Based on the above, we can conclude that syntactic features are very important for T-P collocation
extraction. However, the “naturalness” problem can still seriously affect the performance of syntactic
parser. Once our sentiment sentence compression method can improve the quality of parsing, the perfor-
mance of T-P collocation extraction task can be improved as well. Note that, to date, there is no previous
work using a sentence compression model to improve this task.

5.2 Sentence Compression

Sentence compression is a paraphrasing task aimed at generating sentences shorter than the given ones,
while preserving the essential content (Jing, 2000). There are many applications that can benefit from
a robust compression system, such as summarization systems (Li et al., 2013), semantic role label-
ing (Vickrey and Koller, 2008), relation extraction (Miwa et al., 2010) and so on.

Commonly used to compress sentences, tree-based approaches (Knight and Marcu, 2002; Turner and
Charniak, 2005; Galley and McKeown, 2007; Cohn and Lapata, 2009; Galanis and Androutsopoulos,
2010; Woodsend and Lapata, 2011; Thadani and McKeown, 2013) compress a sentence by editing the
syntactic tree of the original sentence. However, the automatic parsing results may not be correct; thus,
the compressed tree (after removing constituents from a bad parse) may not produce a good compressed
sentence. McDonald (2006), Nomoto (2007), and Clarke and Lapata (2008) tried to solve the problem
by using discriminative models.

Aside from above extractive sentence compression approaches, there is another research line, namely,
abstractive approach, which compresses an original sentence by reordering, substituting, and inserting,
as well as removing (Cohn and Lapata, 2013). This method needs more resource and is more complicat-
ed. Therefore, in this paper, we only focus on extractive approach.

At present, the current sentence compression methods all focus on formal sentences, and few meth-
ods are being proposed to study sentiment sentences. As discussed in the above sections, the current
compression models cannot be directly utilized to T-P collocation extraction owing to the specificity of
sentiment sentences. Therefore, a new compression model for sentiment sentences should be established.

6 Conclusion and Future Work

In this work, we presented a framework that adopted a CRF based sentiment sentence compression mod-
el Sent_Comp, as a preprocessing step, to improve the T-P collocation extraction task. Different from
the existing sentence compression models used for formal sentences, Sent_Comp incorporated some
sentiment-related features to retain the sentiment information. Experimental results showed that the sys-
tem with the sentence compression step performed better than that without this step, thus demonstrating
the effectiveness of the framework and the compression model Sent_Comp.
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Generally, the idea of this framework maybe useful for many sentiment analysis tasks that rely heavily
on syntactic results. Thus in the future, we will try to apply the Sent_Comp model for these tasks. Besides,
the simplicity and effectiveness of this framework motivates us to pursue the study further. For example,
we will polish the Sent_Comp model by exploring more sentiment-related features and exploring other
types of compression models.
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