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Abstract

Latent models for opinion classification are studied. Training a probabilistic model with a number
of latent variables is found unstable in some cases; thus this paper presents how to construct a
stable model for opinion classification by constraining classification transitions. The baseline
model is a CREF classification model with plural latent variables, dynamically constructed from
the dependency parsed tree. The aim of the baseline model is to have each latent variable convey
a partial sentiment of the input sentence which is not explicitly given in the training data, and
the complete sentiment of the sentence is computed by summing up such partial sentiment where
those latent variables hold. Since such a conventional model has many degeneracies in principle,
a model with a category transition constraint is proposed, which is expressed by a novel penalty
term in the objective function for training the model. The constraint is such that the sentiment
of a partial sentence more likely propagates to the same sentiment of the complete sentence,
rather than to another sentiment. The effectiveness and the robustness of the proposed model are
confirmed by the experiments on binary as well as multi-class opinion classification task.

1 Introduction

Opinion classification is a task to classify sentences into given categories, according to sentiment, evalu-
ation, or some opinion-related points of view. A practical implementation of opinion classification would
be very useful for managing customer relationships at contact centers, etc. The classification problem
may be binary or sometimes multi-class.

One of the simplest modeling process is to use explicit bag features, such as word surfaces, polarity
information from the sentiment dictionary, etc. Thanks to the good behavior of the Maximum Entropy
or the Conditional Random Field (CRF) model, the maximum likelihood training is straight-forward,
because the local optimum is always the global optimum.

A challenge is to introduce into the model latent variables, which are not explicitly observable. The
implicit modeling here is supposed to express ambiguities of natural language; the partial sentiment of
the sentence is not determined until the end of the sentence. This paper presents in detail a probabilistic
model with latent variables. The baseline model is a CRF model which is constructed dynamically
according to the dependency parsed tree and which contains latent variables on the nodes that correspond
to the chunked expressions (Nakagawa et al., 2010). The latent variables in the model are expected to
convey a partial sentiment of the sentence, such as the sentiment of the dependency-parsed-subtree itself,
which is not explicitly observable.

Although this idea is attractive, it actually suffers from numerical instability. Our aim here is to find
a way to deal with this problem. We tried using a global optimizer and investigated the behavior of the
model, to ensure that this lack of stability comes from the degeneracy of the model.

Our contribution to remedy this problem is as follows: We propose a model with a penalty on category
transitions and compare several optimizers to train the model. We also confirm the stability of the model
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by applying it to the multi-class classification problem. We also investigate the origin of the degeneracy
and how regularizer works for this type of classification model, to see the robustness of the model.

2 Related Work

Studies on opinion classification have more than a decade of history, including the pioneer work (Turney,
2002; Pang et al., 2002), followed by (Takamura et al., 2005; Brun, 2012). Our baseline model treats
the sentiment of a partial sentence (Nakagawa et al., 2010); CRF with latent variables are constructed
dynamically by the dependency structure tree of the input sentence.

CRF model was first used in sequence labeling tasks (Lafferty, 2001). The model does not suffer
from the label-bias problem as does the Maximum Entropy model, and its parameter estimation is well
behaved with the help of a convex loss function. However, the convexity of the loss function of the CRF
model does not hold anymore when there are unobserved data or latent variables (Sutton and McCallum,
2007).

Latent variables were first used with CRF for the purpose of noun coreference (McCallum and Well-
ner, 2005), and object recognition (Quattoni et al., 2005). Latent variables have been used to construct
meaning representations in a process called grounded language acquisition (Liang et al., 2009). An-
other approach with hidden variables has been used an recursive auto-encoder to reduce the reliance on
sentiment dictionaries (Socher et al., 2011).

Machine learning, used for training such models, is largely based on the concept of numerical opti-
mization. A general discussion of convex optimization can be found in (Boyd and Vandenberghe, 2004);
it can be proven that the 1og—sum—-exp type of a convex function is still a convex function. This is
the situation with the CRF model without latent variables. Since convexity holds, the best solution to
the problem would be a numerical local optimization. A general discussion of local optimization can be
found in the textbook (Nocedal and Wright, 2006), who is one of the authors of the Limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimizer program. Many NLP application programs use
probabilistic models, including this optimizer or its derived work. As the long name of the BFGS algo-
rithm shows, the state-of-the-art local optimizer has a long history. Another textbook (Press et al., 2007)
covers a global optimization algorithm, Simulated Annealing, originating from (Kirkpatrick et al., 1983).
The main idea comes from the statistical physics of equilibrium; when a material is warm, its energy is
distributed in excited states, whereas when it is cooled, it is very probable that the system will end in the
ground state, which corresponds to the global minimum point of the energy.

Previous studies on CRF with latent variables were trained either by setting the initial parameters
randomly (Nakagawa et al., 2010), or by online training (McCallum and Wellner, 2005). As far as the
author knows, this is the first study to impose a penalty between latent variables in CRF model, and to
compare several optimization algorithms.

3 The Model

The model studied is a CRF model, which has set of conditional probabilities whose log is a linear
combination of model parameters associated with features given by (Lafferty, 2001):

logp, (Y1%) o< > pegr(0,¥10,X) + > Arfile,yle,x), )
veVk ecE .k

where x is an input vector and y is an output label sequence, and y|, and y|. are the vertex v and the
edge e related to the component of y, respectively. The model parameter vector A is estimated from the
training data, whose components are the sum of the two sets: a vertex feature set (u1, i2,...) and an
edge feature set (A1, A2, ... ). The complete set of features are supposed to be enumerated and fixed, so
that each feature can be indicated by an index k in a rather relaxed way. g and fy, are so-called feature
functions, to indicate whether the feature in the argument appears in the input, or not.

Nakagawa et al. (2010) proposed a CRF model with latent variables that uses a dependency parsed
structure, where the latent variables are expected to convey the sentiment classifying the part underneath
the parsed tree. We choose this model as a baseline and continue the same kind of treatment of the latent
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variables. Section 3.1 and 3.2 briefly review this baseline model, then the proposed model follows in
Section 3.3.

3.1 Sentence Classification Model with Latent Variables

To classify sentence x into a given set of a class, say C, the classification problem is formulated as:

argmax p, (so|x), 2
soeC

where sg is a class label of the complete sentence and x is a given sentence such that
pA(So‘X) = ZpA(507S|X>7 (3)
S

where s is the latent variables to be summed up, and A is the set of all parameters in the model. Each
element of s takes one of these class labels, corresponding to the partial sentiment of the sentence, and is
to be summed up to construct the complete sentiment of the sentence. A partial sentiment of a sentence
is sometimes ambiguous, so it is treated as such an unobserved variable. The model parameters A are
estimated from the training data; the sentiment label is only available for a whole sentence, not for a part
of the sentence.

3.2 Dependency Structure as a Graphical Model

The given sentence x is parsed into a dependency structure of phrase chunks:

Dependency Parsing
X —mM

G(x) = {V(x), E(x)}, 4)

where V' (x) are the set of chunks and E(x) is the set of dependency arcs. The dependency structure is
regarded as a graphical model, an example of which is shown in Figure 1. The words are chunked up
into phrases, and the dependencies between those chunks are determined by dependency parsing. Each
chunk corresponds to a variable that is supposed to convey a sentiment.

not satisfied

edge
surf: satisfied S

polr: positive N
reverse: ¢

complete meaning of tree

target vertex
observed: positive

surf: satisfied
polr: positive
reverse: g

v3

was impressed

sub-tree

. unobserved:
vl Tsubj V2 pp vl positive/negative

Dependency Structure Graphical Model
eg. I was impressed by the film.

L2 wnopservea: | reverse: .  eeeteeen.
[y~ unobserved: o - TEVErSE: .. = _LeemtTTTmTeel

1 n n

~-..not" reverse: --'
source vertex Sl

surf: story Dictionaries

Figure 1: Correspondence between dependency eg. not satisfied with the story

structure and graphical representation of the

model Figure 2: Features attached to vertices and edges
Vertex features Edge features
word surface unigrams word surface unigrams of the parent vertex
succeeding word surface bigrams word surface unigrams of the child vertex
sentiment information from a dictionary  sentiment information from a dictionary
negation expression from a dictionary negation expression from a dictionary

meaning label of functional expression = meaning label of functional expression of the parent vertex
meaning label of functional expression of the child vertex

Table 1: Summary of features adopted in the model
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Every feature belongs to one of two types: vertex features or edge features. Vertex features are those
locally related to a vertex, and edge features are those that affect both sides of vertices of the dependency.
The specific features adopted in the model are summarized in Table 1.

A symbol p as a notation for model parameters related to vertex features. It has two indices since they
are related to a vertex feature and a classification category. As for the vertex feature f, related part, the
log probability that the vertex v has the category s is:

logpfv (S) = Mf1)7$. (5)

A symbol )\ as a notation for model parameters related to edge features. It has three indices since they
are related to an edge feature and classification categories of both sides of vertices of the edge.

As for the edge feature f. related part, the log conditional probability that the target vertex takes the
category So is:

logpfe(52|51) = )\fe,sz,sla (6)

given the category of the source vertex is sj.
Multiple features can be attached either on a vertex or on a edge. So, the whole vertex or edge
probability is constructed as follows:

logps(s) = > logp ()= Y. g (7

fU€F<Ve"ex)(’l}) fv EF(vertex)(v)
logpe(salst) = Y logpr(salsi) = D Apsss (8)
fe€EF(Cdge) () fe€F () ()

where F('®0) (1) is a set of features attached to a vertex v, and where F©129(¢) is those attached to an
edge e.
Finally, the probability of a given sentence x is constructed as a log-linear model:

logp(s0,51%) = 3 logpo(s?) - 3 log pe(see) | stsourcetc)) ©)
veV (x) e€E(x)

where the set of vertices and edges are dynamically constructed from the dependency parsed tree of the
sentence, i.e. eq. (4), and the notation source(e) and target(e) are the source and target vertex of the edge
e, respectively (Figure 2.)

Care is necessary when assigning values to the latent variables in eq. (9). Because each latent variable
which is assigned on a vertex and the connecting edges, share the same values, the latent variables must
be summed up in such way; The summations can be done efficiently by using dynamic programming
(a.k.a. the factor graph in graphical model terminology.) The tables of probabilities are constructed for
each vertex, and the tree is constructed in a bottom up manner.

The sets! of all the vertex and edge features appearing in the training data D are denoted as V() and
ED) respectively:

V(D Z Z F(vertex) 5(D Z Z F(edge) (10)

x€DveV (x) x€D ecE(x)

so that the complete set of parameters is:
A= {/,Lv7c|7) € V(D)7C € C} + {)‘6701762|€ € E(D)v C1,C2 € C}7

where the number of parameters is V(P) x €'+ £®) x C x C.

"Note that the following equations up to eq. (11) are in the terminology of set theory; the addition is done with the elimination
of duplicated elements, and a product means a direct product, and a n-th power is an abbreviation of n direct products of the
set.
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The log likelihood of the training data is given by

L(A;D) =Y log [ Y palsoslx) |, (11)

x€D scClV(x)]

where |V (x)| is the number of vertices in a given sentence x, and where s is the correct classification
label for x, and where s is the set of latent variables whose number is as many as |V (x)].

3.3 Category Transition Penalty

We found that the classification accuracy of the trained model remained low, because little number of
parameters for edge features moved away from initial non-contributing values during the training. The
following form of regularizer? is used for the training:

2

1
R(A) = Cregularizer A— E -1 (12)

The constant Cregularizer 18 the strength of the regularizer, and no matter how strong, the classification
accuracy did not improve in our preliminary experiments. This phenomenon seems to be because of the
degeneracies the model has in principle.

Degeneracy is a notion to explain the same probabilities of different configurations. If the two different
configurations are preferably distinguished, an asymmetric treatment of them is required.

In order to avoid such extra degeneracies, we introduce a novel constraint between latent variables
expressed by the following penalty term:

P(A> = CYpenalty Z Z (logpfe (S2|51) — log Cfsame)2 + Z (1ngfe (32|51) —log Cdif‘ferent>2 s

fe&(D) \s1=52 S1#£S2

(13)
to satisfy
Csame + (n - 1)Cdif‘ferent =1, (14)

where Chpenairy is the weight of this penalty, and where Cgyme and Clifferent are constant probabilities for
the following two cases; that is the categories connected to the other side of the edge should be the same
or different, respectively. This term is incorporated into the objective function for training the model, to
form a soft constraint that diminishes the change in the classification category.

3.4 Model Training

The maximum likelihood training of a probabilistic model is a constrained optimization problem. A
probabilistic interpretation is possible if and only if 1) all probabilities are non-negative, and 2) the sum
of the probabilities are one (or renormalizable to one).

Using log probabilities almost automatically satisfies the first condition: Real number in log space
corresponds to positive number in anti-log space, so that the only consideration needed is zero probability
(which corresponds to negative infinity in the log space.) In the experiments, overflow is checked that
none occurred in the final results. The model parameter to express zero probability could be finite but
reasonably small, instead of zero.

As for the second condition, instead of the strict constraint, we adopted a quadratic penalty in log
space:

2

2
C(A) = Cprob | D <logprv<s)> + > > (g > prlsals) | |, (19

FfoeV(P) seC fee&(P) s1€C soeC

The offset % -1 in the regularizer is so as to avoid singularity around zero probabilities in real space, which causes negative
infinity in log space calculation.
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where the strictly normalized probabilities lead to zero penalty; otherwise, a quadratic penalty is given
according to the amount away from strictly normalized probabilities. The weight of the penalty Cpyop, is
chosen to be heavy enough for the sum of the model probability to be adequately normalized.

Finally, we adopted the probability calculation in the log space, with the quadratic penalty for normal-
ization during the training. The objective function for training the model is:

O(A;D) =L(A; D) —R(A) —P(A) — C(A). (16)
4 Experiments

Experiments are conducted to evaluate the effect of the proposed penalty term expressed by eq. (13).

4.1 Test Sets

Two kinds of test set in Japanese were used: Opinions in the Kyoto University and NTT Blog (KNB)
Corpus’and Comments on an TV cultural program. Both sets are balanced in the numbers sentence
categories. The characteristics of each test set are shown in Table 2.

The first test set, the KNB Corpus, is a collection of opinion sentences about Kyoto sightseeing spots,
cellular phones, gourmet food, and sports. The sentences are categorized in terms of many aspects, and
we used the sentences labeled with Evaluation+ or Evaluation—. “Evaluation” is a category of subjective
but non-emotional opinions.

The second test set is used for non-binary classification. To make this set, viewers were asked to
comment (in Japanese natural language) on a certain TV program. The comments are classified into
categories, i.e. evaluations, impressions, requirements and questions. The following four categories are
used: positive and negative evaluations, and impressions of what the viewers learned from the program,
and what they thought after watching the program.

Name of Test Set # of Sentences Categories
Opinions in KNB Corpus 328 2(Evaluation +/-)
Comments on TV cultural program 432 4(positive/negative evaluations,

what viewers learned/think)

Table 2: Characteristics of Test Set

4.2 NLP Resources

The input sentence was processed by a morphological analyzer to split it into words, since Japanese is
an agglutinative language. The words were then chunked and the dependencies between those chunks
were determined. Functional multi-word expressions were also detected by the analyzer we developed.
We used a dictionary of sentiment expressions, and one of negation expressions, both of which were
distributed with the KNB Corpus.

We did not prepare any special sentiment dictionary for the second test set because preparing such a
dictionary is too costly. Furthermore, robustness can be estimated without a domain-adapted dictionary.
The parameter values for training the models were tuned for the first test set, and the tuned values were
used without any extra tuning for the second test set. In this situation, the first test set can be regarded as
the development test set, and the second as the evaluation test set.

4.3 Latent Dynamic Model with Category Transition Constraint

Experiments on classifying opinions using the KNB Corpus are shown in Table 3. The rightmost column
is a trivial baseline, where the classification category is decided by the majority occurrence of sentiment

3The corpus is publicly available from http://nlp.ist.i.kyoto-u.ac.jp/kuntt/\#ga739fe2, and the de-
tails of corpus are explained at http://alaginrc.nict.go. jp/opinion/index_e.html. We excluded short sen-
tences, made up of a few words, that were exclamations rather than natural complete sentences. They do not form tree structures,
which are not aimed to this study. Accuracy of experiments conducted below are different from that by (Nakagawa et al., 2010)
in that only the subset of the test set that satisfy the condition is used.
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words in the sentence. This method needs no training, so only one figure is indicated. The other columns
are figures for trained CRF; closed tests are the case where all the training data is used for the evaluation
as well, shown in the upper row, while 10-folds open test are the case is 1:9 split of data for evaluation
and training and the evaluation is done cyclically 10 times, shown in the lower row. The leftmost column
is CRF without latent variables. The 2nd left is a model with latent variables but without penalty, which
is the model in (Nakagawa et al., 2010). The 3rd left is a model with latent variables that has a category
transition penalty, which is the proposed model. The proposed model performs the best accuracy among
all the models.

Experiments on classifying opinions using the Comments on the TV cultural Program are shown in
Table 4. Majority voting is not possible because a suitable dictionary that has the same class polarity as
this classification problem does not exist.

Trained CRF (no training)
without latent variables with latent variables Majority
non-penalized ‘ penalized Voting
closed test 95.12 95.73 95.73
10-fold open test 61.59 ‘ 63.72 ‘ 65.55 H 64.79

Table 3: Effect of Latent Variables and Penalized Model (Opinions in KNB Corpus)

Trained CRF (no training)
without latent variables with latent variables Majority
non-penalized | penalized Voting
closed test 99.54 99.77 99.31
10-fold open test 60.42 ‘ 60.42 ‘ 64.81 H N/A

Table 4: Effect of Penalized Latent Dynamic Model (Comments on TV cultural program)

4.4 Comparison of Optimizers

Three optimization algorithms for model training were compared, two of which are local optimizers
(BFGS and Steepest Descent), and one of which is a global optimizer (Simulated Annealing).

BFGS was used as batch training where all of the training data were used during the training iteration.
Two types of initial parameter configurations were tried for BFGS; initial parameters have the same fixed
values, or were chosen randomly. Steepest Descent (SD) was used as online training where some portion
(i.e. chunk) of the training data were used during an iteration. Two types of chunk selection scheme were
tried for Steepest Descent; chunks were fixed during the training, or chunks were randomly shuffled after
every complete loop of the whole training data.

Simulated Annealing was adopted as a global optimizer. We implemented feature level granularity for
acceptance or rejection: Every parameter corresponding to a feature was randomly moved, and decided
probabilistically whether or not to accept according to the Boltzmann distribution under scheduled cool-
ing down. Although all of these methods utilize random variables, they were used in different ways. The
accuracy ranges of ten trials are shown in Table 5 and 6.

The results show that the proposed model trained by a global optimizer outperforms models trained by
the other local optimizers (Steepest Descent and BFGS); The penalty in the proposed model works well
because the degeneracies in the penalized model seem to decrease, and the computation is noteworthy
stable.

5 Discussion

The degeneracy in the model is illustrated in Figure 3 and 4.
Firstly, convergence for penalized model is quicker, as shown in Figure 3; The horizontal axis is the
number of iterations, and the left vertical axis is the acceptance ratio, where the lower is well converged.
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Batch Training (BFGS) | Online Training (SD) Simulated

parameter initialization | chunked data selection | Annealing
random ‘ fixed shuffled ‘ fixed

89.33-82.32 | 87.80 | 76.83-72.56 | 76.83 | 95.73-95.73

62.80-58.54 ‘ 59.15 ‘ 66.46-65.55 ‘ 65.55 ‘ 65.55-64.63

closed test
10-fold open test

Table 5: Comparison of Optimizers (Opinions in KNB Corpus)

Batch Training (BFGS) | Online Training (SD) Simulated

parameter initialization | chunked data selection | Annealing
random ‘ fixed shuffled ‘ fixed

85.65-35.65 ‘ 88.19 ‘ 47.69-45.37 ‘ 45.60 ‘ 99.31-99.31

closed test

10-fold open test | 58.56-34.72 | 59.95 38.89-36.81 | 37.50 | 64.81-64.58

Table 6: Comparison of Optimizers (Comments on TV cultural program)

The acceptance ratio remains high for the non-penalized model, while the penalized model quickly de-
scends. The dash line indicates the log likelihood of the training data, for penalized and non-penalized
models, which are almost identical.

Secondly, in order to split degeneracy, only a small penalty is adequate, as illustrated in Figure 4; how
less the penalty is, as long as it exists, the improvement remains. The horizontal axis is the strength of
the proposed penalty, Cpenairy in €q.(13). The vertical axis is the classification accuracy. The dash line is
a line fit for the accuracy by non-zero penalty. In general, such an extra constraint term for the original
model may change the model itself, so, the less it is the better. That is the reason for decreasing accuracy
when large penalty is used. The significant jump in the accuracy between zero and non-zero penalty
strongly suggests the existence of degeneracies in the original model: Infinitesimally small penalty can
lead to break those degeneracies.

Local optima usually do not matter when regularizers are used in training. However, according to our
experiments in this type of models, the conventional regularizers are not able to avoid such local optima
no matter how strong they are. The reason the introduced penalty works well for this model is considered
that the term works for excessive latent variables, which are not controlled by the ordinary regularizers.
The ordinary regularizers only works for excessive number of explicitly observed parameters (i.e. fea-
tures). If only a few latent variables are used, such a penalty is not necessary, just as a regularizer is not
necessary for a small number of features. When the model is constructed dynamically and the number of
latent variables grows, there appear a number of latent variables having excessive freedom, which need
to be controlled.

—— 66
— finite penalty — +
~~
R Q zero penalty X
IS 188 penalized model —=— 3500 = 1 65.5
3 80 non-penalized model -4000 < L4 <
g 7 -4500 3 les &
; 60 -5000 '8 + »»+ + 9
g % | 5500 S + g
S 40 = 1645 2
a2 30k -6000 5 8
3 ¢ -6500 < <
g % o + 164
s 10 7000 &0
0 100 200 300 400 500 600 700 800 900 1000 =) X
number of iterations 15 1e3 01 1o 63.5

Category Transit Penalty Cpenaity
Figure 3: Transition of the Acceptance Ratio

Figure 4: Effect of Weak Penalty
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6 Conclusion

A latent dynamic model with a category transition constraint is proposed for opinion classification task.
The constraint is such that the sentiment of a partial sentence tends to propagate toward the complete
sentiment of the whole sentence, which is realized, in the objective function, by our novel term that
penalizes, diminishing the change in the classification category.

According to our experiments, the penalized latent dynamic model outperforms the conventional
model, not only in binary but also in multi-class opinion classification.

The comparison of optimizers strongly suggests that the degeneracies in the conventional model dete-
riorate the performance, and the proposed model solves such a defect. The numerical stability of training
the proposed model is also confirmed.
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