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Abstract

Sentiment classification aims to automatically predict sentiment polarity (e.g., positive or neg-
ative) of user-generated sentiment data (e.g., reviews, blogs). To obtain sentiment classifica-
tion with high accuracy, supervised techniques require a large amount of manually labeled data.
The labeling work can be time-consuming and expensive, which makes unsupervised (or semi-
supervised) sentiment analysis essential for this application. In this paper, we propose a novel
algorithm, called graph co-regularized non-negative matrix tri-factorization (GNMTF), from the
geometric perspective. GNMTF assumes that if two words (or documents) are sufficiently close
to each other, they tend to share the same sentiment polarity. To achieve this, we encode the
geometric information by constructing the nearest neighbor graphs, in conjunction with a non-
negative matrix tri-factorization framework. We derive an efficient algorithm for learning the
factorization, analyze its complexity, and provide proof of convergence. Our empirical study on
two open data sets validates that GNMTF can consistently improve the sentiment classification
accuracy in comparison to the state-of-the-art methods.

1 Introduction

Recently, sentiment classification has gained a wide interest in natural language processing (NLP) com-
munity. Methods for automatically classifying sentiments expressed in products and movie reviews can
roughly be divided into supervised and unsupervised (or semi-supervised) sentiment analysis. Super-
vised techniques have been proved promising and widely used in sentiment classification (Pang et al.,
2002; Pang and Lee, 2008; Liu, 2012). However, the performance of these methods relies on manually
labeled training data. In some cases, the labeling work may be time-consuming and expensive. This
motivates the problem of learning robust sentiment classification via unsupervised (or semi-supervised)
paradigm.

A traditional way to perform unsupervised sentiment analysis is the lexicon-based method (Turney,
2002; Taboada et al., 2011). Lexicon-based methods employ a sentiment lexicon to determine overall
sentiment orientation of a document. However, it is difficult to define a universally optimal sentiment
lexicon to cover all words from different domains (Lu et al., 2011a). Besides, most semi-automated
lexicon-based methods yield unsatisfactory lexicons, with either high coverage and low precision or
vice versa (Ng et al., 2006). Thus it is challenging for lexicon-based methods to accurately identify
the overall sentiment polarity of users generated sentiment data. Recently, Li et al. (2009) proposed a
constrained non-negative matrix tri-factorization (CNMTF) approach to sentiment classification, with
a domain-independent sentiment lexicon as prior knowledge. Experimental results show that CNMTF
achieves state-of-the-art performance.

From the geometric perspective, the data points (words or documents) may be sampled from a distribu-
tion supported by a low-dimensional manifold embedded in a high-dimensional space (Cai et al., 2011).
This geometric structure, meaning that two words (or documents) sufficiently close to each other tend to
share the same sentiment polarity, should be preserved during the matrix factorization. Research studies
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have shown that learning performance can be significantly enhanced in many real applications (e.g., text
mining, computer vision, etc.) if the geometric structure is exploited (Roweis and Saul, 2000; Tenen-
baum et al., 2000). However, CNMTF fails to exploit the geometric structure, it is not clear whether this
geometric information is useful for sentiment classification, which remains an under-explored area. This
paper is thus designed to fill the gap.

In this paper, we propose a novel algorithm, called graph co-regularized non-negative matrix tri-
factorization (GNMTF). We construct two affinity graphs to encode the geometric information under-
lying the word space and the document space, respectively. Intuitively, if two words or documents are
sufficiently close to each other, they tend to share the same sentiment polarity. Taking these two graphs
as co-regularization for the non-negative matrix tri-factorization, leading to the better sentiment polarity
prediction which respects to the geometric structures of the word space and document space. We also de-
rive an efficient algorithm for learning the tri-factorization, analyze its complexity, and provide proof of
convergence. Empirical study on two open data sets shows encouraging results of the proposed method
in comparison to state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 introduces the basic concept of matrix
tri-factorization. Section 3 describes our graph co-regularized non-negative matrix tri-factorization (GN-
MTF) for sentiment classification. Section 4 presents the experimental results. Section 5 introduces the
related work. In section 6, we conclude the paper and discuss future research directions.

2 Preliminaries

2.1 Non-negative Matrix Tri-factorization
Li et al. (2009) proposed a matrix factorization based framework for unsupervised (or semi-supervised)
sentiment analysis. The proposed framework is built on the orthogonal non-negative matrix tri-
factorization (NMTF) (Ding et al., 2006). In these models, a term-document matrix X = [x1, · · · ,xn] ∈
Rm×n is approximated by three factor matrices that specify cluster labels for words and documents by
solving the following optimization problem:

min
U,H,V≥0

O =
∥∥X−UHVT

∥∥2

F
+ σ1

∥∥UT U− I
∥∥2

F
+ σ2

∥∥VT V − I
∥∥2

F (1)

where σ1 and σ2 are the shrinkage regularization parameters, U = [u1, · · · ,uk] ∈ Rm×k
+ is the word-

sentiment matrix, V = [v1, · · · ,vn] ∈ Rn×k
+ is the document-sentiment matrix, and k is the number of

sentiment classes for documents. Our task is polarity sentiment classification (positive or negative), i.e.,
k = 2. For example, Vi1 = 1 (or Ui1 = 1) represents that the sentiment polarity of document i (or word
i) is positive, and Vi2 = 1 (or Ui2 = 1) represents that the sentiment polarity of document i (or word i)
is negative. Vi∗ = 0 (or Ui∗ = 0) represents unknown, i.e., the document i (or word i) is neither positive
or negative. H ∈ Rk×k

+ provides a condensed view of X; ∥ · ∥F is the Frobenius norm and I is a k × k
identity matrix with all entries equal to 1. Based on the shrinkage methodology, we can approximately
satisfy the orthogonality constraints for U and V by preventing the second and third terms from getting
too large.

2.2 Constrained NMTF
Lexical knowledge in the form of the polarity of words in the lexicon can be introduced in matrix tri-
factorization. By partially specifying word polarity via U, the lexicon influences the sentiment prediction
V over documents. Following the literature (Li et al., 2009), let U0 represent lexical prior knowledge
about sentiment words in the lexicon, e.g., if word i is positive (U0)i1 = 1 while if it is negative
(U0)i2 = 1, and if it does not exist in the lexicon (U0)i∗ = 0. Li et al. (2009) also investigated that we
had a few documents manually labeled for the purpose of capturing some domain-specific connotations.
Let V0 denote the manually labeled documents, if the document expresses positive sentiment (V0)ii = 1,
and (V0)i2 = 1 for negative sentiment. Therefore, the semi-supervised learning with lexical knowledge
can be written as:

min
U,H,V≥0

O + αTr
[
(U−U0)

T Cu(U−U0)
]
+ βTr

[
(V −V0)

T Cv(V −V0)
]

(2)
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where Tr(·) denotes the trace of a matrix, α > 0 and β > 0 are the parameters which control the
contribution of lexical prior knowledge and manually labeled documents. Cu ∈ {0, 1}m×m is a diagonal
matrix whose entry Cu

ii = 1 if the category of the i-th word is known and Cu
ii = 0 otherwise. Cv ∈

{0, 1}n×n is a diagonal matrix whose entry Cv
ii = 1 if the category of the i-th document is labeled and

Cv
ii = 0 otherwise.

3 Graph Co-regularized Non-negative Matrix Tri-factorization

In this section, we introduce our proposed graph co-regularized non-negative matrix tri-factorization
(GNMTF) algorithm which avoids this limitation by incorporating the geometrically based co-
regularization.

3.1 Model Formulation
Based on the manifold assumption (Belkin and Niyogi, 2001), if two documents xi and xj are sufficiently
close to each other in the intrinsic geometric of the documents distribution, then their sentiment polarity
vi and vj should be close. In order to model the geometric structure, we construct a document-document
graph Gv. In the graph, nodes represent documents in the corpus and edges represent the affinity between
the documents. The affinity matrix Wv ∈ Rn×n of the graph Gv is defined as

Wv
ij =

{
cos(xi,xj) if xi ∈ Np(xj) or xj ∈ Np(xi)
0 otherwise (3)

where Np(xi) represents the p-nearest neighbors of document xi. Many matrices, e.g., 0-1 weighting,
textual similarity and heat kernel weighting (Belkin and Niyogi, 2001), can be used to obtain nearest
neighbors of a document, and further define the affinity matrix. Since Wv

ij in our paper is only for
measuring the closeness, we only use the simple textual similarity and do not treat the different weighting
schemes separately due to the limited space. For further information, please refer to (Cai et al., 2011).

Preserving the geometric structure in the document space is reduced to minimizing the following loss
function:

Rv =
1

2

n∑
i,j=1

∥∥vi − vj

∥∥2

2
Wv

ij =

n∑
i=1

vT
i viD

v
ii −

n∑
i,j=1

vT
i vjW

v
ij

= Tr(VT DvV)− Tr(VT WvV) = Tr(VT LvV)

(4)

where Dv ∈ Rn×n is a diagonal matrix whose entries are column (or row, since Dv is symmetric) sums
of Wv, Dv

ii =
∑n

j=1 Wv
ij , and Lv = Dv−Wv is the Laplacian matrix (Chung, 1997) of the constructed

graph Gv.
Similarly to document-document geometric structure, if two words wi = [xi1, · · · ,xin] and wj =

[xj1, · · · ,xjn] are sufficiently close to each other in the intrinsic geometric of the words distribution,
then their sentiment polarity ui and uj should be close. In order to model the geometric structure in the
word space, we construct a word-word graph Gu. In the graph, nodes represent distinct words and edges
represent the affinity between words. The affinity matrix Wu ∈ Rm×m of the graph Gu is defined as

Wu
ij =

{
cos(wi,wj) if wi ∈ Np(wj) or wj ∈ Np(wi)
0 otherwise (5)

where Np(wj) represents the p-nearest neighbor of word wj . Here, we represent a term wj as a docu-
ment vector [xj1, · · · ,xjn]. To measure the closeness of two words, a common way is to calculate the
similarity of their vector representations. Although there are several ways (e.g., co-occurrence infor-
mation, semantic similarity computed by WordNet, Wikipedia, or search engine have been empirically
studied in NLP literature (Hu et al., 2009)) to define the affinity matrix Wu, we do not treat the different
ways separately and leave this investigation for future work.

Preserving the geometric structure in the word space is reduced to minimizing the following loss
function:

Ru =
1

2

m∑
i,j=1

∥∥ui − uj

∥∥2

2
Wu

ij = Tr(UT LuU) (6)
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where Lu = Du − Wu is the Laplacian matrix of the constructed graph Gu, and Du ∈ Rm×m is a
diagonal matrix whose entries are Du

ii =
∑m

j=1 Wu
ij .

Finally, we treat unsupervised (or semi-supervised) sentiment classification as a clustering problem,
employing lexical prior knowledge and partial manually labeled data to guide the learning process. More-
over, we introduce the geometric structures from both document and word sides as co-regularization.
Therefore, our proposed unsupervised (or semi-supervised) sentiment classification framework can be
mathematically formulated as solving the following optimization problem:

min
U,H,V≥0

L =
∥∥X−UHVT

∥∥2

F
+ σ1

∥∥UT U− I
∥∥2

F
+ σ2

∥∥VT V − I
∥∥2

F

+ αTr
[
(U−U0)

T Cu(U−U0)
]
+ γTr(UT LuU)

+ βTr
[
(V −V0)

T Cv(V −V0)
]
+ δTr(VT LvV)

(7)

where δ > 0 and γ > 0 are parameters which control the contributions of document space and word
space geometric information, respectively. With the optimization results, the sentiment polarity of a new
document xi can be easily inferred by f(xi) = arg maxj∈{p, n} Vij .

3.2 Learning Algorithm

We present the solution to the GNMTF optimization problem in equation (7) as the following theorem.
The theoretical aspects of the optimization are presented in the next subsection.

Theorem 3.1. Updating U, H and V using equations (8)∼(10) will monotonically decrease the objec-
tive function in equation (7) until convergence.

U← U ◦
[
XVHT + σ1U + αCuU0 + γWuU

][
UHVT VHT + σ1UUT U + αCuU + γDuU

] (8)

H← H ◦
[
UT XV

][
UT UHVT V

] (9)

V← V ◦
[
XT UH + σ2V + βCvV0 + δWvV

][
VHT UT UH + σ2VVT V + βCvV + δDvV

] (10)

where operator ◦ is element-wise product and [·]
[·] is element-wise division.

Based on Theorem 3.1, we note that the multiplicative update rules given by equations (8)∼(10) are
obtained by extending the updates of standard NMTF (Ding et al., 2006). A number of techniques can
be used here to optimize the objective function in equation (7), such as alternating least squares (Kim
and Park, 2008), the active set method (Kim and Park, 2008), and the projected gradients approach (Lin,
2007). Nonetheless, the multiplicative updates derived in this paper has reasonably fast convergence
behavior as shown empirically in the experiments.

3.3 Theoretical Analysis

In this subsection, we give the theoretical analysis of the optimization, convergence and computational
complexity. Without loss of generality, we only show the optimization of U and formulate the Lagrange
function with constraints as follows:

L(U) =
∥∥X−UHVT

∥∥2

F
+ σ1

∥∥UT U− I
∥∥2

F
+ αTr

[
(U−U0)

T Cu(U−U0)
]
+ Tr(ΨUT ) (11)

where Ψ is the Lagrange multiplier for the nonnegative constraint U ≥ 0.
The partial derivative of L(U) w.r.t. U is

▽UL(U) = −2XVHT + 2UHVT VHT + 2σ1UUT U− 2σ1U

+ 2αCuU− 2αCuU0 + 2γDuU− 2γWuU + Ψ
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Using the Karush-Kuhn-Tucker (KKT) (Boyd and Vandenberghe, 2004) condition Ψ◦U = 0, we can
obtain

▽UL(U) ◦U =
[
UHVT VHT + σ1UUT U + αCuU + γDuU

] ◦U
− [

XVHT + σ1U + αCuU0 + γWuU
] ◦U = 0

This leads to the update rule in equation (8). Following the similar derivations as shown above, we
can obtain the updating rules for all the other variables H and V in GNMTF optimization, as shown in
equations (9) and (10).

3.3.1 Convergence Analysis
In this subsection, we prove the convergence of multiplicative updates given by equations (8)∼(10). We
first introduce the definition of auxiliary function as follows.
Definition 3.1. F(Y,Y′) is an auxiliary function for L(Y) if L(Y) ≤ F(Y,Y′) and equality holds if
and only if L(Y) = F(Y,Y).
Lemma 3.1. (Lee and Seung, 2001) If F is an auxiliary function for L, L is non-increasing under the
update Y(t+1) = arg minY F(Y,Y(t))

Proof. By Definition 3.1, L(Y(t+1)) ≤ F(Y(t+1),Y(t)) ≤ F(Y(t),Y(t)) = L(Y(t))

Theorem 3.2. Let function

F(Uij ,U
(t)
ij ) = L(U

(t)
ij ) + L′

(U
(t)
ij )(Uij −U

(t)
ij )

+

[
UHVT VHT + σ1UUT U + αCuU + γDuU

]
ij

Uij

(
Uij −U

(t)
ij

) (12)

be a proper auxiliary function for L(Uij), where L′
(Uij) = [▽UL(U)]ij is the first-order derivatives

of L(Uij) with respect to Uij .

Theorem 3.2 can be proved similarly to (Ding et al., 2006). Due to limited space, we omit the details
of the validation. Based on Lemmas 3.1 and Theorem 3.2, the update rule for U can be obtained by
minimizing F(U(t+1)

ij ,U(t)
ij ). When setting ▽

U
(t+1)
ij

F(U(t+1)
ij ,U(t)

ij ), we can obtain

U
(t+1)
ij = U

(t)
ij

[
XVHT + σ1U + αCuU0 + γWuU

]
ij[

UHVT VHT + σ1UUT U + αCuU + γDuU
]
ij

By Lemma 3.1 and Theorem 3.2, we have L(U(0)) = F(U(0),U(0)) ≥ F(U(1),U(0)) ≥
F(U(1),U(1)) = L(U(1)) ≥ · · · ≥ L(U(Iter)), where Iter denotes the number of iteration number.
Therefore, U is monotonically decreasing. Since the objective function L is lower bounded by 0, the
correctness and convergence of Theorem 3.1 is validated.

3.3.2 Time Complexity Analysis
In this subsection, we discuss the time computational complexity of the proposed algorithm GNMTF.
Besides expressing the complexity of the algorithm using big O notation, we also count the number of
arithmetic operations to provide more details about running time. We show the results in Table 1, where
m ≫ k and n ≫ k.

Based on the updating rules summarized in Theorem 3.1, it it not hard to count the arithmetic operators
of each iteration in GNMTF. It is important to note that Cu is a diagonal matrix, the nonzero elements on
each row of Cu is 1. Thus, we only need zero addition and mk multiplications to compute CuU. Simi-
larly, for CuU0, CvV, CvV0, DuU and DvV, we also only need zero addition and mk multiplications
for each of them. Besides, we also note that Wu is a sparse matrix, if we use a p-nearest neighbor graph,
the average nonzero elements on each row of Wu is p. Thus, we only need mpk additions and mpk
multiplications to compute WuU. Similarly, for WvV, we need the same operation counts as WuU.
Suppose the multiplicative updates stop after Iter iterations, the time cost of multiplicative updates then
becomes O(Iter × mnk). Therefore, the overall running time of GNMTF is similar to the standard
NMTF and CNMTF.
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addition multiplication division overall
GNMTF: U 2k3 + (2m + n)k2 + m(n + p)k 2k3 + (2m + n)k2 + m(n + p + 7)k mk O(mnk)
GNMTF: H 2k3 + (m + n + 2)k2 + mnk 2k3 + (m + n + 1)k2 + mnk k2 O(mnk)
GNMTF: V 2k3 + (2n + m)k2 + n(m + p)k 2k3 + (2n + m)k2 + n(m + p + 7)k nk O(mnk)

Table 1: Computational operation counts for each iteration in GNMTF.

4 Experiments

4.1 Data Sets

Sentiment classification has been extensively studied in the literature. Among these, a large majority
proposed experiments performed on the benchmarks made of Movies Reviews (Pang et al., 2002) and
Amazon products (Blitzer et al., 2007).

Movies data This data set has been widely used for sentiment analysis in the literature (Pang et
al., 2002), which consists of 1000 positive and 1000 negative reviews drawn from the IMDB archive of
rec.arts.movies.reviews.newsgroups.

Amazon data This data set is heterogeneous, heavily unbalanced and large-scale, a smaller ver-
sion has been released. The reduced data set contains 4 product types: Kitchen, Books, DVDs, and
Electronics (Blitzer et al., 2007). There are 4000 positive and 4000 negative reviews.1

For these two data sets, we select 8000 words with highest document-frequency to generate the vo-
cabulary. Stopwords2 are removed and a normalized term-frequency representation is used. In order to
construct the lexical prior knowledge matrix U0, we use the sentiment lexicon generated by (Hu and Liu,
2004). It contains 2,006 positive words (e.g., “beautiful”) and 4,783 negative words (e.g., “upset”).

4.2 Unsupervised Sentiment Classification

Our first experiment is to explore the benefits of incorporating the geometric information in the unsu-
pervised paradigm (that is Cv = 0). Therefore, the third part in equation (7) will be ignored. For this
unsupervised paradigm of GNMTF, we empirically set α = δ = γ = 1, σ1 = σ2 = 1, Iter = 100 and
run GNMTF 10 repeated times to remove any randomness caused by the random initialization. Due to
limited space, we do not present the impacts of the parameters on the learning model. Now we compare
our proposed GNMTF with the following four categories of methods:

(1) Lexicon-Based Methods (LBM in short): Taboada et al. (2011) proposed to incorporate intensifi-
cation and negation to refine the sentiment score for each document. This is the state-of-the-art lexicon-
based method for unsupervised sentiment classification.

(2) Document Clustering Methods: We choose the most representative cluster methods, K-means,
NMTF, Information-Theoretic Co-clustering (ITCC) (Dhillon et al., 2003), and Euclidean Co-clustering
method (ECC) (Cho et al., 2004). We set the number of clusters as two in these methods. Note that all
these methods do not make use of the sentiment lexicon.

(3) Constrained NMTF (CNMTF in short): Li et al. (2009) incorporated the sentiment lexicon into
NMTF as a domain-independent prior constraint.

(4) Graph co-regularized Non-negative Matrix Tri-factorization (GNMTF in short): It is a new algo-
rithm proposed in this paper. We use cosine similarity for constructing the p-nearest neighbor graph for
its simplicity. The number of nearest neighbor p is set to 10 empirically both on document and word
spaces.

4.2.1 Sentiment Classification Results
The experimental results are reported in Table 2. We perform a significant test, i.e., a t-test with a default
significant level of 0.05. From Table 2, we can see that (1) Both CNMTF and GNMTF consider the
lexical prior knowledge from off-the-shelf sentiment lexicon and achieve better performance than NMTF.
This suggests the importance of the lexical prior knowledge in learning the sentiment classification (row

1The data set can be freely downloaded from http://www.cs.jhu.edu/ mdredze/datasets/sentiment/.
2http://truereader.com/manuals/onix/stopwords1.html
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# Methods Movies Amazon
1 LBM 0.632 0.580
2 K-means 0.543 (-8.9%) 0.535 (-4.5%)
3 NMTF 0.561 (-7.1%) 0.547 (-3.3%)
4 ECC 0.678 (+4.6%) 0.642 (+6.2%)
5 ITCC 0.714 (+8.2%) 0.655 (+7.5%)
6 CNMTF 0.695 (+6.3%) 0.658 (+7.8%)
7 GNMTF 0.736 (+10.4%) 0.705 (+12.5%)

Table 2: Sentiment classification accuracy of unsupervised paradigm on the data sets. Improvements of
K-means, NMTF, ITCC, ECC, CNMTF and GNMTF over baseline LBM are shown in parentheses.
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Figure 1: Convergence curves of GNMTF on both data sets.

3 vs. row 6 and row 7); (2) Regardless of the data sets, our GNMTF significantly outperforms state-of-
the-art CNMTF and achieves the best performance. This shows the superiority of geometric information
and graph co-regularization framework (row 4 vs. row 5, the improvements are statistically significant at
p < 0.05).

4.2.2 Convergence Behavior
In subsection 3.3.1, we have shown that the multiplicative updates given by equations (8)∼(10) are
convergent. Here, we empirically show the convergence behavior of GNMTF.

Figure 1 shows the convergence curves of GNMTF on Movies and Amazon data sets. From the figure,
y-axis is the value of objective function and x-axis denotes the iteration number. We can see that the
multiplicative updates for GNMTF converge very fast, usually within 50 iterations.

4.3 Semi-supervised Sentiment Classification
In this subsection, we describe our proposed GNMTF with a few labeled documents. For this semi-
supervised paradigm of GNMTF, we empirically set Iter = 100, σ1 = σ2 = 2, α = β = δ = γ = 1 and
p = 10 on document and word spaces and also run 10 repeated times to remove any randomness caused
by the random initialization. Due to limited space, we do not give an in-depth parameter analysis. For
CNMTF, we set α = β = 1 for fair comparison. We also compare our proposed GNMTF with some
representative semi-supervised approaches described in (Li et al., 2009): (1) Semi-supervised learning
with local and global consistency (Consistency Method in short) (Zhou et al., 2004); (2) Semi-supervised
learning using gaussian fields and harmonic functions (GFHF in short) (Zhu et al., 2003). Besides,
we also compare the results of our proposed GNMTF with the representative supervised classification
method: support vector machine (SVM), which has been widely used in sentiment classification (Pang
et al., 2002).

The results are presented in Figure 2. From the figure, we can see that GNMTF outperforms other
methods over the entire range of number of labeled documents on both data sets. By this observation,
we can conclude that taking the geometric information can still improve the sentiment classification
accuracy in semi-supervised paradigm.
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Figure 2: Sentiment classification accuracy vs. different percentage of labeled documents, where x-axis
denotes the number of documents labeled as a fraction of the original labeled documents.

5 Related Work

Sentiment classification has gained widely interest in NLP community, we point the readers to recent
books (Pang and Lee, 2008; Liu, 2012) for an in-depth survey of literature on sentiment analysis.

Methods for automatically classifying sentiments expressed in products and movie reviews can
roughly be divided into supervised and unsupervised (or semi-supervised) sentiment analysis. Super-
vised techniques have been proved promising and widely used in sentiment classification (Pang et al.,
2002; Pang and Lee, 2008; Liu, 2012). However, the performance of these methods relies on manually
labeled training data. In some cases, the labeling work may be time-consuming and expensive. This
motivates the problem of learning robust sentiment classification via unsupervised (or semi-supervised)
paradigm.

The most representative way to perform semi-supervised paradigm is to employ partial labeled data to
guide the sentiment classification (Goldberg and Zhu, 2006; Sindhwani and Melville, 2008; Wan, 2009;
Li et al., 2011). However, we do not have any labeled data at hand in many situations, which makes
the unsupervised paradigm possible. The most representative way to perform unsupervised paradigm
is to use a sentiment lexicon to guide the sentiment classification (Turney, 2002; Taboada et al., 2011)
or learn sentiment orientation via a matrix factorization clustering framework (Li et al., 2009; ?; Hu
et al., 2013). In contrast, we perform sentiment classification with the different model formulation and
learning algorithm, which considers both word-level and document-level sentiment-related contextual
information (e.g., the neighboring words or documents tend to share the same sentiment polarity) into
a unified framework. The proposed framework makes use of the valuable geometric information to
compensate the problem of lack of labeled data for sentiment classification. In addition, some researchers
also explored the matrix factorization techniques for other NLP tasks, such as relation extraction (Peng
and Park, 2013) and question answering (Zhou et al., 2013)

Besides, many studies address some other aspects of sentiment analysis, such as cross-domain senti-
ment classification (Blitzer et al., 2007; Pan et al., 2010; Hu et al., 2011; Bollegala et al., 2011; Glorot
et al., 2011), cross-lingual sentiment classification (Wan, 2009; Lu et al., 2011b; Meng et al., 2012) and
imbalanced sentiment classification (Li et al., 2011), which are out of scope of this paper.

6 Conclusion and Future Work

In this paper, we propose a novel algorithm, called graph co-regularized non-negative matrix tri-
factorization (GNMTF), from a geometric perspective. GNMTF assumes that if two words (or docu-
ments) are sufficiently close to each other, they tend to share the same sentiment polarity. To achieve
this, we encode the geometric information by constructing the nearest neighbor graphs, in conjunction
with a non-negative matrix tri-factorization framework. We derive an efficient algorithm for learning
the factorization, analyze its complexity, and provide proof of convergence. Our empirical study on two
open data sets validates that GNMTF can consistently improve the sentiment classification accuracy in
comparison to state-of-the-art methods.
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There are some ways in which this research could be continued. First, some other ways should be
considered to construct the graphs (e.g., hyperlinks between documents, synonyms or co-occurrences
between words). Second, we will try to extend the proposed framework for other aspects of sentiment
analysis, such as cross-domain or cross-lingual settings.
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