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Abstract

In this paper, we study the task of product record linkage across multiple e-commerce web-
sites. We solve this task via a semi-supervised approach and adopt the self-training algorithm for
learning with little labeled data. In previous self-training algorithms, the learner tries to convert
the most confidently predicted unlabeled examples of each class into labeled training examples.
However, they evaluate the confidence of an instance only based on the individual evidence from
the instance. The correlation among data instances is rarely considered.

To address it, we develop a novel variant of the self-training algorithm by leveraging the data
characteristics for the task of product record linkage. We joint consider a candidate linked pair
and its corresponding correlated pairs as a group at the selection of pseudo labeled data. We
propose a novel confidence evaluation method for a group of instances, and incorporate it as a
re-ranking step in the self-training algorithm. We evaluate the novel self-training algorithm on
two large datasets constructed based on real e-commerce Websites. We adopt several competitive
methods as comparisons and perform extensive experiments. The results show that our method
outperforms these baselines that do not consider data correlation.

1 Introduction

Recent years have witnessed the rapid development of online e-commerce business, e.g. Amazon and
eBay, which raises the need for better storing, organizing and analyzing the large amount of product
records. An important task is how to effectively link product records across multiple databases or web-
sites. This task serves as a fundamental step for many applications. For example, it will be useful to
provide entity-oriented search and product comparison analysis in eBay, where record linkage can help
to unify the corresponding records (i.e. records from different sellers) given a product. Record linkage has
been shown to be important in many fields, including biology (Needleman and Wunsch, 1970), database
(Neiling, 2006) and text mining (Goiser and Christen, 2006; Bilenko and Mooney, 2003). In this paper,
we mainly focus on the task of product record linkage for online e-commerce websites, but our method
is easy to be extended to other data sources and tasks.

Early studies on record linkage were mainly based on the classical probabilistic approach develope-
d by Fellegi and Sunter (1969), furthermore it was improved by the application of the expectation-
maximization (EM) algorithm (Winkler, 1988) and the use of approximate string comparison algorithms
(Christen, 2006; Winkler, 2006). The early work was not flexible to incorporate rich information. The
development of machine learning techniques in the late 1990s provides a new approach for record link-
age, and it has become the mainstream methodology for this task. The task of record linkage is usually
re-casted as the record pair classification problem, i.e. whether a record pair refers to the same entity or
not (Elfeky et al., 2002; Neiling, 2006; Tejada et al., 2002; Nahm et al., 2002). Supervised methods can
also be used to learn distance measures for approximate string comparisons (Bilenko and Mooney, 2003;
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Cohen et al., 2003). Although supervised techniques often achieve good linkage quality, they are largely
limited by the availability of the training data.

To address this problem, semi-supervised learning approaches aim to make good use of a small portion
of labeled and a large amount of unlabeled data to build a better classifier (Yarowsky, 1995). Self-training
is a commonly used algorithm for semi-supervised learning, where in each iteration the learner converts
the most confidently predicted unlabeled examples of each class into labeled training examples. It has
been successfully applied to many tasks, such as sentiment analysis (He and Zhou, 2011; Riloff et al.,
2003) and object detection from images (Rosenberg et al., 2005).

In this paper, we solve the task of product record linkage via a semi-supervised approach and adopt
the flexible self-training framework for learning with little labeled data. We propose a novel variant of
the self-training algorithm by incorporating the correlation existing in the data instances, which is rarely
studied in previous studies. To introduce our idea, we first present an illustrative example in Figure 1.
There are two databases D and D′, and we have three records r1, r2, r3 ∈ D and another three records
r′1, r′2, r′3 ∈ D′. Furthermore, we assume r1 and r′1 refer to the same product. We can see that r1 is
involved in three candidate pairs, i.e. (r1, r

′
1), (r1, r

′
2) and (r1, r

′
3). Similarly, r′1 is involved in three

candidate pairs, i.e. (r′1, r1), (r′1, r2) and (r′1, r3). Usually, each individual database does not contain
duplicate records, once we know r1 is linked to r′1, we can infer the rest candidate pairs should not be
linked. In other words, only if we are confident that no pair in the set {(r1, r

′
2), (r1, r

′
3), (r2, r

′
1), (r3, r

′
1)}

is not linked, r1 is likely to be linked with r′1.

Figure 1: An illustrative example for correlation among record pairs. The real line denotes the real linkage
relation and the dash line denotes the candidate linkage relation.

For the task of record linkage, the number of positive instances (i.e. linked record pairs) are usually
much less than that of negative instances. We mainly consider the confidence evaluation of the candidate
positive instance. By following the above idea, given a candidate linked pair, we treat all the correlated
record pairs together as a group and evaluate the linkage confidence based on the evidence of all record
pairs in this group, i.e. group confidence evaluation. We incorporate the group confidence evaluation
into the self-training algorithm as a re-ranking step. Interestingly, once we have identified a linked pair,
the rest correlated record pairs can be naturally judged as negative instances. We evaluate the novel
self-training algorithm on two large datasets constructed based on real e-commerce Websites. We adopt
several competitive methods as comparisons and perform extensive experiments. The results show that
our method outperforms these baselines that do not consider data correlation.

2 Related Work

We have briefly described the supervised approaches for record linkage in the introduction. Now we
discuss other related studies, including unsupervised clustering techniques, genetic programming based
approaches and linking based on more complex constraints.

Unsupervised clustering techniques have been investigated both for improved blocking (Cohen and
Richman, 2002; McCallum et al., 2000) and for automatic record pair classification (Elfeky et al., 2002).
Usually, such techniques do not perform not as well as supervised approaches.

Most recently, genetic programming (GP) (Koza et al., 1999) has also been utilized to the task of
record linkage. GenLink (Isele and Bizer, 2012) is a GP-based supervised learning algorithm in order
to learn linkage rules from a set of existing reference links, which also suffers from the problem of
lack of labeled data. Ngomo and Lyko (2013) evaluated linear and boolean classifiers against classifiers
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computed by using genetic programming for the record linkage problem. Their experiments showed that
both approaches did not perform well on real data.

Some other studies exploit more complex constraints that include relationships between different entity
types to link all types of entities in coordination (Bhattacharya and Getoor, 2007; Dong et al., 2005; On
et al., 2007). The usage of such constraints can indeed help to get better linkage results, but is in many
cases domain-dependent. We try to develop an approach which can be applicable across domains.

In order to address the problem of limited labeled data, we mainly consider the semi-supervised ap-
proaches. There are rarely semi-supervised approaches specially for the record linkage problem. Some
studies on improving self-training algorithms are related to our work. Self-training with editing (Li and
Zhou, 2005) can help to reduce mislabeled pseudo training examples, and reserved self-training (Guan
and Yang, 2013) is designed for handling imbalanced data. We have very different focus with theirs, i.e.
incorporating the instance correlations into learning algorithms, which can applied to other self-training
variants.

3 Problem Definition

In this section, we first introduce the preliminary related to our task. Then we formally define our studied
task.
Product record. A product record r is characterized by a referred product entity e and a set of attribute
values V = {(vi)}i, where vi denotes the value of the ith attribute in r. We use r.e and r.V to index
the product entity and attribute value set of the record r respectively. A product record corresponds to a
unique product entity but a product entity can map to multiple product records across multiple databases.
Attribute values are represented as strings, i.e. a sequence of characters. An attribute of a product might
correspond to different descriptive text across websites.
Product record linkage. The task of product record linkage is to judge whether two product records refer
to the same product entity. Given two product records r and r′, we aim to judge whether r.e is the same
to r′.e. Usually, r and r′ come from different product databases. Although different product databases
can have different attributes for the same product and different attribute names for the same attribute, we
make an assumption about the task: candidate record pairs share the same set of attributes. It is relatively
easy to automatically identify common attributes and align attributes (Härder et al., 1999; Rundensteiner,
1999; Hassanzadeh et al., 2013), which is not our focus in this paper. We mainly study product record
linkage under the same set of attributes, and this assumption makes our study more focused. If r and r′

refer to the same product entity, denoted by r ∼ r′; otherwise, we denote it by r �∼ r′.

4 A General Machine Learning based Approach

Given a product type, as we mentioned above, we assume that it corresponds to a specific set of attributes,
and all the product records share the same set of attributes but possibly with different descriptive text for
attribute values. In this section, we further present a general supervised approach with similarity features.

4.1 Defining the similarity function

Given two product records r and r′, we can obtain the similarity between their descriptive text of an at-
tribute by using a similarity function. The major intuition is that if two records refer to the same product,
they should have similar text for the same attribute, i.e. the similarity function should return a large sim-
ilarity value. Let f(·, ·) denote a similarity function, which takes two text strings and returns a similarity
value within the interval [0, 1] for these two strings. As revealed in (Bilenko and Mooney, 2003), differ-
ent attributes or fields may need different similarity functions to achieve best similarity evaluation. Thus,
instead of fixing a single similarity function, we consider using the following widely used similarity
functions: 1) Exact match; 2) Cosine similarity; 3) Jaccard coefficient; 4) K-Gram similarity (Kondrak,
2005); 5) Levenshtein similarity (Levenshtein, 1966); 6) Affine Gap similarity (Needleman and Wunsch,
1970).
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4.2 The learning framework

Based on these similarity functions, we propose a general learning framework for product record linkage
by using similarity values of different fields as features.

Given a product type, we assume that there are A attributes and K similarity functions. For two records
r and r′, we can obtain a similarity feature vector x = [xa,k]Ai=1,

K
k=1, which is indexed by an attribute and

a similarity function: xa,k denotes the similarity of the ath attribute between r and r′ by using the kth
similarity function. Furthermore, each feature vector x will correspond to a unique binary label y which
indicates that r and r′ refer to the same product entity. Given a set of record pairs and their linkage labels
{(x, y)}, we can learn a classifier which is able to predict the linkage label given the similarity feature
vector of two records. To this end, we have reformulated the task of product record linkage as a binary
classification problem. Any classifiers can be used for this task. In what follows, we will use instances
and candidate pairs alternatively.

5 Group based Self-Training

In the above, we have presented a supervised learning approach for product record linkage. The approach
is easy to apply in practice, however, the performance is largely limited by the availability of training
data. For our current task, i.e. product record linkage, the generation of labeled data becomes even much
harder: there are usually many product types and it is infeasible to create a large amount of labeled data
for each type. Although it is difficult to obtain labeled data, we can easily obtain sufficient unlabeled data.
Thus, in this paper, we study the task of product record linkage in a semi-supervised setting by leveraging
both the learning ability of the classifiers and the usefulness of the large amount of unlabeled data. We
propose a novel group based self-training algorithm for product record linkage. Before introducing our
method, we first introduce the general self-training algorithm.

5.1 The general self-training algorithm

Self-training is a semi-supervised learning algorithm. It starts training on labeled data only, after each
iteration, the most confidently predicted unlabeled samples would be incorporated as new labeled data,
i.e. pseudo labeled data, decided by confidence scores from the classifier. After several iterations, it is
expected to get a better classifier trained with both labeled data and pseudo labeled data. The general
procedure of self-training algorithm is summarized in Algorithm 1.

Algorithm 1: The general procedure of the self-training algorithm.
1 Input: labeled dataset L, unlabeled dataset U , the classifier C.
2 U ′ ← S randomly selected examples from U , S is usually set to 0.5 × |U|;
3 repeat
4 Training the classifier: Use L to train C, and label the examples in U ′;
5 Selecting pseudo labeled data: Select T most confidently classified examples from U ′ and add them to L;
6 Filling unlabeled data: Refill U ′ with examples from U , to keep U ′ at a constant size of S examples.
7 until I iterations or U = ∅;
8 return The extended labeled dataset L and the trained classifier C.

We can see that self-training is a wrapper algorithm by taking a classifier as the learning component,
and it has three major steps in an iteration: 1) training classifier; 2) selecting pseudo labeled data; and
3) filling unlabeled data. Among the three steps, the most important step is the pseudo labeled data
selection. Previously, the most commonly used method is to select the top confident instances of the
classifier, and it is easy to see that the performance of self-training relies on the learning ability of the
embedded classifier.

5.2 Group confidence evaluation

Recall that each instance is a pair of product records (r, r′) and their label indicates whether they should
be linked or not. Let PL(r, r′) denote the confidence that r and r′ refer to the same product entity (linked

1314



confidence), and PN (r, r′) denote the confidence that r and r′ refer to different product entities (non-
linked confidence). PL(r, r′) and PN (r, r′) can be estimated by the confidence scores from the classifier.
In the task of product record linkage, there are usually more negative instances, i.e. the number of non-
linked pairs is much more than that of linked pairs. Thus, we mainly study the confidence of a candidate
positive instance. The standard self-training algorithm selects top ranked positive instances according
to the confidence scores estimated by the classifier, i.e. we select the instances with large linked con-
fidence PL(·, ·). However, when applied to product record linkage, it ignores important characteristics
underlying the data, which will be potentially helpful to the task.

Let us examine the illustrative example in Figure 1. Recall that r1 and r′1 refer to the same product,
i.e. r1 ∼ r′1. We can see that r1 is involved in three candidate pairs, i.e. (r1, r

′
1), (r1, r

′
2) and (r1, r

′
3).

Similarly, r′1 is involved in three candidate pairs, i.e. (r′1, r1), (r′1, r2) and (r′1, r3). We totally have a set
of five candidate pairs, i.e. {(r1, r

′
1), (r1, r

′
2), (r1, r

′
3), (r2, r

′
1), (r3, r

′
1)}. Here we follow the assumption

of the one-to-one mapping, i.e. given two databases, a product record can link to at most one record in
the other database. By leveraging the correlation among candidate pairs, with r1 ∼ r′1, we can infer the
rest four candidate pairs must not be linked, i.e. r1 �∼ r′2, r1 �∼ r′3, r2 �∼ r′1, r3 �∼ r′1. Next, we formally
characterize the above idea and present the algorithm. Given two databases D and D′, let C ⊂ D × D′

denote the candidate pair set where two product records in a pair come from D and D′ respectively.
Consider a candidate pair (r, r′) ∈ C, where r ∈ D, r′ ∈ D′. We consider the following two sets:
Sr = {(r, b)|(r, b) ∈ C, b ∈ D′ and b �= r′} and Sr′ = {(a, r′)|(a, r′) ∈ C, a ∈ D and a �= r}.
Intuitively, if we know r ∼ r′, then all the pairs in both Sr and Sr′ must not be linked. Thus, we define
the conflicting set of pair (r, r′) as Sr,r′

cfl = Sr ∪ Sr′ .
With the definition of the conflicting set, let us reconsider the pseudo labeled data selection. The

straightforward way is to evaluate each instance with their linked confidence PL() from the classifier.
However, it oversimplifies the data dependence and does not make use of the correlated characteristics.
Consider an instance, which is a record pair (r, r′), we can have the following two properties:

• If r ∼ r′, then ∀(a, b) ∈ Sr,r′
cfl , we have a �∼ b;

• If ∃(a, b) ∈ Sr,r′
cfl and a ∼ b, then we have r �∼ r′.

The above properties suggest that it should be helpful to consider the correlation among instances
when evaluating the confidence of a positive instance, i.e. a candidate linked record pair. Intuitively, if
two records refer to the same product entity, they should have large linked confidence and their conflicting
pairs should have large non-linked confidence. We propose to use the following method to evaluate the
linkage confidence between r and r′

Conf(r, r′) = PL(r, r′)
( ∏

(a,b)∈Sr,r′
cfl

PN (a, b)
)1/M

, (1)

where M = |Sr,r′
cfl |, PL(·, ·) and PN (·, ·) are positive and negative confidence scores estimated by

the classifier respectively. Note that we take the geometric mean of the non-linked confidence of these
conflicting pairs, which is to reduce the affect of large outlier values and the varying size of the conflict
sets. We treat a candidate linked pair and all the candidate pairs in its conflicting set as a group. The group
confidence evaluation consists of two intuitions: 1) the confidence that two records should be linked; 2)
the confidence that any pair of records in the conflicting set must not be linked. We have taken these two
aspects into a unified evaluation score.

5.3 The proposed self-training algorithm
In this part, we present the novel self-training algorithm based on the group confidence evaluation. We
have the similar steps with the general self-training algorithm in Algorithm 1. The major focus is to mod-
ify the step of pseudo labeled data selection. As mentioned above, we mainly consider the confidence
evaluation of positive instances. Our method for pseudo labeled data selection is three-step process:
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• Select top T ′ most confidently classified positive examples by the classifier;

• Rerank these T ′ examples by the group confidence scores defined in Equation 1;

• Select top T examples from the reranked T ′ examples (T ≤ T ′) as pseudo positive instances and
their corresponding conflicting instances in the conflicting sets as pseudo negative instances.

We select positive instances not only based on the instance itself but also their corresponding conflict-
ing instances: if we have high confidence about a positive instance, then the confidence of their conflict-
ing instances being negative should be high, too. Next, we present the detailed group based self-training
algorithm in Algorithm 2.

Algorithm 2: The procedure of the group based self-training algorithm.
1 Input: labeled dataset L, unlabeled dataset U , the classifier C.
2 U ′ ← S randomly selected examples from U ;
3 repeat
4 Training the classifier: Use L to train C, and label the examples in U ′;
5 Selecting pseudo labeled data selection:

• Select T ′ most confident positive examples from U ′ and add them to L;

• Calculate the group confidence scores for the T ′ examples according to Equation 1.

• Rerank these T ′ examples by their group confidence scores and add top T examples to L as the pseudo positive
instances.

• For each of the T examples, add their conflicting instances to L into as the pseudo negative instances.

Filling unlabeled data: Refill U ′ with examples from U , to keep U ′ at a constant size of S examples.
6 until I iterations or U = ∅;
7 return The extended labeled dataset L and the trained classifier C.

On one hand, our group based self-training algorithm naturally exploits the correlation among data
instances and evaluate the confidence scores in a broader view, which avoids the decision conflicts caused
by the data dependence. On the other hand, we focus on evaluating the confidence of being a positive
instance, which further reduces the bias from imbalanced data distribution. Thus, it is expected to achieve
better performance in the task of product record linkage.

Most classifiers can provide the estimated confidence scores PL() (i.e. for a positive instance) and
PN () (i.e. for a negative instance): Maximum-Entropy models output the conditional probabilities of an
instance for each class (Berger et al., 1996); the Decision Tree C4.5 algorithm is also able to compute
the probability distribution over different classes for each instance (Quinlan, 1993).

6 Experiments

6.1 Construction of the test collection
We test our method on two real e-commerce datasets respectively from Jingdong1 and eTao2. Jingdong is
the largest B2C e-commerce company and eTao is one of the largest product search portals in China. Due
to the extremely large product databases, it is infeasible to generate training data on each product type
for these two product databases. We consider two popular kinds of products: laptop and camera. These
two kinds of products cover a considerable amount of brands and models, especially suitable for the test
of record linkage. Both Jindong and eTao have set up specific categories for these two kinds of products
respectively, thus we can easily crawl the product records under the corresponding category label. To
generate linked record datasets, we first manually align attributes (i.e. fields) for these two kinds between
Jindong and eTao. We summarize the numbers of aligned fields and some example fields in Table 1. Not
all the records contain the information for all the fields, we set the value of the empty field to a “NULL”
string.

1http://www.jd.com
2http://www.etao.com
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We adopt a blocking approach (Baxter et al., 2003) to automatically generate a set of candidate pairs,
i.e. a record in Jindong is to be linked with a record in eTao. This approach consider all pairwise links
between Jindong records and eTao records for the same kind of product. If there exists at least one com-
mon word in the field of brand or model between a record pair, we consider it to be a candidate pair. The
automatic method generates 20,094 candidate pairs and 12,157 candidate pairs respectively for LAPTOP
and CAMERA. Then we invite professional workers from an e-commerce company to link records across
these two product databases. Instead of examining all the candidate pairs, the labeling process adopts a
product-oriented way to generate the gold standard. Given a product record of a database, the annotator
first identifies the product entity that the record refers to, then she looks for the corresponding record in
another database. In the annotation process, Web access is available all the time. Annotators can make
use of the search engines of Jindong and eTao to accelerate the product lookup. A linked record pair is
treated as a positive instance. Finally, we identify 501 linkable products (i.e. 501 positive instances) in
LAPTOP dataset, and 478 linkable products (i.e. 478 positive instances) in CAMERA dataset. All the
other candidate pairs are automatically labeled as negative. We present the the data statistics in Table 1.

Dataset
# positive # negative

# fields Example fields
instances instances

LAPTOP 501 19593 10 OS, screen size, CPU type, ram size
CAMERA 478 11679 11 lens type, sensor type, focal length, aperture size

Table 1: Basic statistics of datasets.

6.2 Experimental setup
For each kind of product, we divide the dataset into two parts, i.e. a training set and a test set. In order
to examine different methods in a semi-supervised setting, we keep a small amount of instances in the
training set, and we assume all the methods can use of the data (without labels) in the test set. There are
more negative instances, we mainly consider the amount of positive instances, and the number of positive
instances is called as the number of seeds. We randomly generate the training set with the given number
of seeds. Once we add one positive instance into the training set, we add all the its conflicting instances
into the training set. This is to reduce the correlation between training instances and testing instances for
a fair comparison. In later experiments, given the seed number, we will generate ten random training sets
and take the average of ten runs as the final performance. In later experiments, we do not explicitly report
the number of negative instances unless needed.

We adopt three widely used evaluation metrics for the classification task: Precision, Recall and the
F-measure 3.

We compare the following methods for the task of product record linkage:

• Supervised Classifier (SC): the standard supervised classifier, which does not consider the unlabeled
data at all.

• Traditional Self-Training (t-ST): the traditional self-training method in Algorithm 1 which adds an
equal amount of samples of each class in pseudo labeled selection at each iteration.

• Proportional Self-Training (p-ST): the traditional self-training method in Algorithm 1 but add sam-
ples according to the class distribution at each iteration.

• Simple Group Based Self-Training (s-ST): a simplified version of our approach without the group
confidence valuation, which directly selects samples of high confidence scores estimated from the
classifier together with their conflicting pairs as negative samples at each iteration.

• Group Based Self-Training (g-ST): the proposed group based self-training algorithm in Algorithm 2,
which uses the group confidence evaluation method to select pseudo positive instances.

3http:/en.wikipedia.org/wiki/Precision and recall
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Recall all the methods rely on the wrapped classifier. We select two classic but very different classi-
fiers: the Maximum Entropy model (MaxEnt) and the Decision Tree C4.5 (Tree). We implement these
two classifiers using the machine learning toolkit Weka4. We use the six similarity functions to obtain
similarity values between two records on each field as features. All the self-training based methods run
ten iterations and at each iteration they add the same number of positive instances, i.e. 30. Differen-
t methods select pseudo negative instances differently. t-ST does not consider the correlation between
data instances, and it adds top 30 confident negative instances. p-ST adds top 30 × #negative instances

#positive instances con-
fident negative instances. Both p-ST and g-ST take all the conflicting instances of the selected pseudo
positive instances as the negative instances. We present the average numbers of pseudo negative instances
at an iteration in Table 2. As will be revealed later, although p-ST adds more negative instances, g-ST
performs much better than p-ST, which indicates simply adding more negative instances might not lead
to better performance. We do not perform specific preprocessing steps to make the data balanced (e.g.
under-sampling or over-sampling), and we find the data distribution does not significantly affect the
performance of the classifiers on our dataset.

Dataset t-ST p-ST s-ST g-ST
LAPTOP 30 950 845 854

CAMERA 30 655 569 584

Table 2: Average numbers of pseudo negative instances selected at each iteration.

6.3 Results and analysis
Overall performance comparison. To test the performance under weak supervision, we first set the
seed number to 30, which nearly takes up a proportion of 5% of the labeled data. We present the results
of different methods in Table 3 and Table 4. We first examine the performance of the baselines. We can
see that semi-supervised learning is very effective to improve over the the supervised classifier when the
amount of training data is small. It is interesting to see that s-ST performs best among all the baselines.
Recall that the major difference between s-ST and other baselines is that it select the conflicting pairs
of the pseudo positive instances as the negative instances. It indicates that it is important to consider the
correlation among the data instances. In addition, Decision Tree seems to be more competitive than Max-
imum Entropy Model for product record linkage. Then we take our group based self-training algorithm
into comparison. In terms of F1 measure, we can see that it is consistently better than all the baselines
on two datasets respectively by using two different classifiers. It is worth looking into the performance
comparison on precision and recall. We can see that (1) s-ST and g-ST yield better results in terms of
precision while the other baselines yield better results in terms of recall; (2) our method g-ST largely
improves over the best baseline s-ST. It is not surprising to have these observations since that our group
evaluation method is more careful at the selection of pseudo positive instance: it considers the evidence
from the conflicting instances.

Methods MaxEnt Decision Tree
P R F1 P R F1

SC 0.246 0.910 0.382 0.301 0.931 0.454
t-ST 0.264 0.925 0.411 0.328 0.921 0.484
p-ST 0.350 0.831 0.487 0.412 0.887 0.539
s-ST 0.979 0.632 0.767 0.909 0.754 0.823
g-ST 0.936 0.742 0.826 0.912 0.843 0.876

Table 3: Results on LAPTOP dataset.

Parameter tuning. In the above, we have shown the results of different methods with 30 positive in-
stances. The number of seeds is particularly important for self-training algorithms, and we want to ex-

4http://www.cs.waikato.ac.nz/ml/weka
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Methods MaxEnt Decision Tree
P R F1 P R F1

SC 0.387 0.891 0.540 0.493 0.965 0.652
t-ST 0.352 0.892 0.504 0.537 0.963 0.677
p-ST 0.501 0.871 0.626 0.573 0.942 0.700
s-ST 0.931 0.479 0.632 0.962 0.570 0.716
g-ST 0.917 0.574 0.706 0.965 0.588 0.731

Table 4: Results on CAMERA dataset.

amine how it affects the performance of these methods. By varying the number of seeds from 10 to 50
with a step of 10, we present the F1 results in Figure 2 on two datasets by using two classifiers. We can
see that our method is consistently better than baselines with the varying of the seed number. Especially,
our method still works well when there is little labeled data, i.e. #seeds = 10. With a weaker classifier,
i.e. MaxEnt, our method yields more improvement than that with Tree. Besides the seed number, there
are another two factors which potentially affect the performance: (1) the iteration number and (2) the
number of pseudo positive instances selected at each iteration. We also examine the tuning results of
these two parameters and find our method is consistently better than s-ST with the varying of these two
factors. These results show that our method is very effective and it is of high stability and practicability.
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Figure 2: Performance comparison with varying seed numbers (i.e. # of positive instances).
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7 Conclusion
In this paper, we develop a novel variant of the self-training algorithm by leveraging the data characteris-
tic for the task of product record linkage. We joint consider a candidate linked pair and its corresponding
correlated pairs as a group, at the selection of pseudo labeled data. We propose a confidence evaluation
method for a group of instances, and incorporate it as a re-ranking step in the self-training algorithm. We
evaluate the novel self-training algorithm on two large datasets constructed based on real e-commerce
Websites. We adopt several competitive methods as comparisons and perform extensive experiments.
The results show that our method outperforms these baselines that do not consider data correlation. We
also carefully examine the affects of various parameters, and the tuning results indicate the stability and
robustness of our method.

The major contribution and novelty of this paper is the novel group confidence evaluation to model
the correlation existing in data. Although we develop the idea in the setting of self-training algorithms,
it will be promising to be applied in other learning algorithms, i.e. active learning.
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