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Abstract

Morfessor is a family of methods for learning morphological segmentations of words based
on unannotated data. We introduce a new variant of Morfessor, FlatCat, that applies a hid-
den Markov model structure. It builds on previous work on Morfessor, sharing model compo-
nents with the popular Morfessor Baseline and Categories-MAP variants. Our experiments show
that while unsupervised FlatCat does not reach the accuracy of Categories-MAP, with semi-
supervised learning it provides state-of-the-art results in the Morpho Challenge 2010 tasks for
English, Finnish, and Turkish.

1 Introduction

Morphological analysis is essential for automatic processing of compounding and highly-inflecting lan-
guages, for which the number of unique word forms may be very large. Apart from rule-based analyzers,
the task has been approached by machine learning methodology. Especially unsupervised methods that
require no linguistic resources have been studied widely (Hammarström and Borin, 2011). Typically
these methods focus on morphological segmentation, i.e., finding morphs, the surface forms of the mor-
phemes.

For language processing applications, unsupervised learning of morphology can provide decent-
quality analyses without resources produced by human experts. However, while morphological ana-
lyzers and large annotated corpora may be expensive to obtain, a small amount of linguistic expertise is
more easily available. A well-informed native speaker of a language can often identify the different pre-
fixes, stems, and suffixes of words. Then the question is how many annotated words makes a difference.
One answer was provided by Kohonen et al. (2010), who showed that already one hundred manually
segmented words provide significant improvements to the quality of the output when comparing to a
linguistic gold standard.

The semi-supervised approach by Kohonen et al. (2010) was based on Morfessor Baseline, the sim-
plest of the Morfessor methods by Creutz and Lagus (2002; 2007). The statistical model of Morfessor
Baseline is simply a categorical distribution of morphs—a unigram model in the terms of statistical lan-
guage modeling. As the semi-supervised Morfessor Baseline outperformed all unsupervised and semi-
supervised methods evaluated in the Morpho Challenge competitions (Kurimo et al., 2010a) so far, the
next question is how the approach works for more complex models.

Another popular variant of Morfessor, Categories-MAP (CatMAP) (Creutz and Lagus, 2005), models
word formation using a hidden Markov model (HMM). The context-sensitivity of the model improves
the precision of the segmentation. For example, it can prevent splitting a single s, a common English
suffix, from the beginning of a word. Moreover, it can disambiguate between identical morphs that are
actually surface forms of different morphemes. Finally, separation of stems and affixes in the output
makes it simple to use the method as a stemmer.

In contrast to Morfessor Baseline, the lexicon of CatMAP is hierarchical: a morph that is already in
the lexicon may be used to encode the forms of other morphs. This has both advantages and drawbacks.
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One downside is that it mixes the prior and likelihood components of the cost function, so that the semi-
supervised approach presented by Kohonen et al. (2010) is not usable.

1.1 Hierarchical versus flat lexicons
From the viewpoint of data compression and following the two-part Minimum Description Length prin-
ciple (Rissanen, 1978), Morfessor tries to minimize the number of bits needed to encode both the model
parameters and the training data. Equivalently, the cost function L can be derived from the Maximum a
Posteriori (MAP) estimate:

θ̂ = arg max
θ

P(θ |D) = arg min
θ

(− log P(θ)− log P(D | θ)) = arg min
θ

L(θ, D), (1)

where θ are the model parameters, D is the training corpus, P(θ) is the prior of the parameters and
P(D | θ) is the data likelihood.

In context-independent models such as Morfessor Baseline, the parameters include only the forms and
probabilities of the morphs in the lexicon of the model. Morfessor Baseline and Categories-ML (CatML)
(Creutz and Lagus, 2004) use a flat lexicon, in which the forms of the morphs are encoded directly as
strings: each letter requires a certain number of bits to encode. Thus longer morphs are more expensive.
Encoding a long morph is worthwhile only if the morph is referred to frequently enough from the words
in the training data. If a certain string, let us say segmentation, is common enough in the training data, it
is cost-effective to have it as a whole in the lexicon. Splitting it into two items, segment and ation, would
double the number of pointers from the data, even if those morphs were already in the lexicon. The
undersegmentation of frequent words becomes evident especially if the training data is a corpus instead
of a list of unique word forms.

In contrast, Morfessor CatMAP applies a hierarchical lexicon, which makes use of the morphs that
are already in the lexicon. Instead of encoding the form of segmentation by its 12 letters, we could just
encode the form with two references to the forms of the morphs segment and ation. This may also cause
errors, for example encoding station with st and ation.

The lexicon of Morfessor CatMAP allows but does not force hierarchical encoding for the forms:
each morph has an extra parameter that indicates whether it has a hierarchical representation or not. The
problem of oversegmentation, as in st + ation, is solved using the morph categories. The categories,
which are states of the HMM, include stem, prefix, suffix, and a special non-morpheme category. The
non-morpheme category is intended to catch segments that do not fit well into the three proper morph
categories because they are fragments of a larger morph. In our example, the morph st cannot be a suffix
as it starts the word, it is unlikely to be a prefix as it directly precedes a common suffix ation, and it is
unlikely to be a stem as it is very short. Thus the algorithm is likely to use the non-morpheme state. The
hierarchy is expanded only up to the level in which there are no non-morphemes, so the final analysis is
still station. Without the hierarchy, the non-morphemes have to be removed heuristically, as in CatML
(Creutz and Lagus, 2004).

A hierarchical lexicon presents some challenges to model training. For a standard unigram or HMM
model, if you know the state and emission sequence of the training data, you can directly derive the
maximum likelihood (ML) parameters of the model: a probability of a morph is proportional to the
number of times it is referred to, conditional on the state in the HMM. But if the lexicon is partly
hierarchical, also the references within the lexicon add to the reference counts, and there is no direct way
to find the ML parameters even if the encoding of the training data is known. Similarly, semi-supervised
learning cannot be accomplished simply by adding the counts from an annotated data set, as it is not
clear when to use hierarchy instead of segmenting a word directly in the data.

Moreover, for a flat lexicon, the cost function divides into two parts that have opposing optima: the
cost of the data (likelihood) is optimal when there is minimal splitting and the lexicon consists of the
words in the training data, whereas the cost of the model (prior) is optimal when the lexicon is minimal
and consists only of the letters. In consequence, the balance of precision and recall of the segmentation
boundaries can be directly controlled by setting a weight for the data likelihood. Tuning this hyper-
parameter is a very simple form of supervision, but it has drastic effects on the segmentation results

1178



(Kohonen et al., 2010). A direct control of the balance may also be useful for some applications: Virpioja
et al. (2011) found that the performance of the segmentation algorithms in machine translation correlates
more with the precision than the recall. The weighting approach does not work for hierarchical lexicons,
for which changing the weight does not directly affect the decision whether to encode the morph with
hierarchy or not.

1.2 Morfessor FlatCat
In this paper, we introduce a new member to the Morfessor family, Morfessor FlatCat. As indicated by its
name, FlatCat uses a flat lexicon. Our hypothesis is that enabling semi-supervised learning is effective in
compensating for the undersegmentation caused by the lack of hierarchy. In particular, semi-supervised
learning can improve modeling of suffixation. In the examined languages, suffixes tend to serve syntactic
purposes, such as marking case, tense, person or number. Examples are the suffix s marking tense and
person in she writes and number in stations. Thus the suffix class is closed and has only a small number
of morphemes compared to the prefix and stem categories. As a consequence, a large coverage of suffixes
can be achieved already with a relatively small annotated data set.

The basic model of morphotactics in FlatCat is the same as in the CatML and CatMAP variants: a
hidden Markov model with states that correspond to a word boundary and four morph categories: stem,
prefix, suffix, and non-morpheme. As in CatML, we apply heuristics for removal of non-morphemes
from the final segmentation. However, because FlatCat uses MAP estimation of the parameters, these
heuristics are not necessary during the training for controlling the model complexity, but merely used as
a post-processing step to get meaningful categories.

Modeling of morphotactics improves the segmentation of compound words, by allowing the overall
level of segmentation to be increased without increasing the number of correct morphs used in incorrect
positions. As the benefits of semi-supervised learning and improved morphotactics are likely to com-
plement each other, we can expect improved performance over the semi-supervised Morfessor Baseline
method. By experimental comparison to the previous Morfessor variants, we are able to shed more light
on the effects of using an HMM versus unigram model for morphotactics, using a hierarchical versus flat
lexicon, and exploiting small amounts of annotated training data.

2 FlatCat model and algorithms

Morfessor FlatCat uses components from the older Morfessor variants. Instead of going through all the
details, we refer to the previous work and highlight only the differences. Common components between
Morfessor methods are summarized in Table 1.

As a generative model, Morfessor FlatCat describes the joint distribution P(A, W | θ) of words and
their analyses. The words W are observed, but their analyses, A, is a latent variable in the model. An
analysis of a word contains its morphs and morph categories: prefix, stem, suffix, and non-morpheme.

As marginalizing over all possible analyses is generally infeasible, point estimates are used during the
training. The likelihood conditioned on the current analyses is

P(D |A, θ) =
|D|∏
j=1

P(Aj | θ). (2)

If mi are the morphs in Aj , ci are the hidden states of the HMM corresponding to the categories of the
morphs, and # is the word boundary, P(Aj | θ) is

P(c1 |#)
|Aj |∏
i=1

[
P(mi | ci) P(ci+1 | ci)

]
P(# | c|Aj |). (3)

Morfessor FlatCat applies an MDL-derived prior designed to control the number of non-zero param-
eters. The prior is otherwise the same as in Morfessor Baseline, but it includes the usage properties
from Morfessor CatMAP: the length of the morph and its right and left perplexity. The perplexity mea-
sures describe the predictability of the contexts in which the morph occurs. The emission probability of
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Morfessor method

Component Baseline CatMAP CatML FlatCat

Lexicon type Flat Hierarchy Flat Flat
Morphotactics Unigram HMM HMM HMM
Estimation MAP MAP ML MAP
Semi-supervised Implemented Not implemented Not implemented Implemented

Table 1: Overview of similarities and differences between Morfessor methods.

a morph conditioned on the morph category, P(m | c), is calculated from the properties of the morphs
similarly as in CatMAP.

2.1 Training algorithms
The parameters are optimized using a local search. Only a part of the parameters are optimized in each
step: the parameters that are used in calculating the likelihood of a certain part, unit, of the corpus. Units
vary in complexity, from all occurrences of a certain morph to the occurrences of a morph bigram whose
context fits to certain criteria.

The algorithm tries to simultaneously find the optimal segmentation for the unit and the optimal pa-
rameters consistent with that segmentation:

(A, θ) = arg min
OP(A,θ)

{
L(θ, A, D)

}
. (4)

The training operators OP define the units changed by the local search and the alternative segmentations
tried for each unit. There are three training operators: split, join and resegment, analogous to the similarly
named stages in CatMAP.

The split operator is applied first. It targets all occurrences of a specific morph in the corpus simultane-
ously, attempting to split it into two parts. The whole corpus is processed by sorting the current morphs
by length from shortest to longest.

The second operator attempts to join morph bigrams, grouped by the position of the bigram in the
word. The position grouped bigram counts are sorted by frequency, from most to least common.

Finally, resegmenting uses the generalized Viterbi algorithm to find the currently optimal segmentation
for one whole word at a time. This operator targets each corpus word in increasing order of frequency.

The heuristics used in FlatCat to remove non-morphemes from the final segmentation are the fol-
lowing: All consequent non-morphemes are joined together. If the resulting morph is longer than 4
characters, it is accepted as a stem. All non-morphemes preceded by a suffix and followed by only suf-
fixes or other non-morphemes are recategorized as suffixes without joining with their neighbors. If any
short non-morphemes remain, they are joined either to the preceding or following morphs (the latter only
for those in the initial position).

2.2 Semi-supervised learning
Kohonen et al. (2010) found that semi-supervised learning of Morfessor models was not effective by
only fixing the values of the analysis A for the annotated samples DA. Their solution was to introduce
corpus likelihood weights α and β, one for the unannotated data set and one for the annotated data set.
Thus, instead of optimizing the MAP estimate, Kohonen et al. (2010) minimize the cost

L(θ, A, D, DA) = − log P(θ)− α log P(D |A, θ)− β log P(DA |A, θ). (5)

The weights can be tuned on a development set. We use the same scheme for FlatCat.
The likelihood of the annotated data is calculated using the same HMM that is used for the unannotated

data. The morph properties are estimated only from the unannotated data. To ensure that the morphs
required for the annotated data can be emitted, a copy of each word in the annotations is added to the
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(a) English.

Method α β Pre Rec F

U Baseline 1.0 – .88 .59 .71
U CatMAP – – .89 .51 .65
U FlatCat 1.0 – .90 .57 .69

W Baseline 0.7 – .83 .62 .71
W FlatCat 0.5 – .84 .60 .70

SS Baseline 1.0 3000 .83 .77 .80
SS FlatCat 0.9 2000 .86 .76 .81
SS CRF+FlatCat 0.9 2000 .87 .77 .82

S CRF – – .92 .73 .81

(b) Finnish.

Method α β Pre Rec F

U Baseline 1.0 – .84 .38 .53
U CatMAP – – .76 .51 .61
U FlatCat 1.0 – .84 .38 .52

W Baseline .02 – .62 .54 .58
W FlatCat .015 – .66 .52 .58

SS Baseline .1 15000 .75 .72 .73
SS FlatCat .2 1500 .79 .71 .75
SS CRF+FlatCat .2 2500 .82 .76 .79

S CRF – – .88 .74 .80

Table 2: Boundary Precision and Recall results in comparison to gold standard segmentation. Abbrevi-
ations have been used for Unsupervised (U), likelihood weighted (W), semi-supervised (SS) and fully
supervised (S) methods. Best results for each measure have been hilighted using boldface.

unannotated data. This unannotated copy is loosely linked to the annotated word: operations that would
result in the removal of a morph required for the annotations from the lexicon cannot be selected, as such
an operation would have infinite cost.

3 Experiments

We compare Morfessor FlatCat1 to two previous Morfessor methods and a fully supervised discrimi-
native segmentation method. The Morfessor methods used as references are the CatMAP2 and Base-
line3 implementations by Creutz and Lagus (2005) and Virpioja et al. (2013), respectively. Virpioja et
al. (2013) implements the semi-supervised method described by Kohonen et al. (2010). For a super-
vised discriminative model, we use a character-level conditional random field (CRF) implementation by
Ruokolainen et al. (2013)4.

We use the English, Finnish and Turkish data sets from Morpho Challenge 2010 (Kurimo et al.,
2010b). They include large unannotated word lists, one thousand annotated words for training, 700–
800 annotated words for parameter tuning, and 10× 1000 annotated words for testing.

For evalution, we use the BPR score by Virpioja et al. (2011). The score calculates the precision (Pre),
recall (Rec), and F1-score (F) of the predicted morph boundaries compared to a linguistic gold standard.
In the presence of alternative gold standard analyses, we weight each alternative equally.

We also report the mean average precision from the English and Finnish information retrieval (IR)
tasks of the Morpho Challenge. The Lemur Toolkit (Ogilvie and Callan, 2001) with Okapi BM25 rank-
ing was used. The Finnish data consists of 55K documents, 50 test queries and 23K binary relevance
assessments. The English data consists of 170K documents, 50 test queries and 20K binary relevance as-
sessments. The domain of both data sets is short newspaper articles. All word forms in both the corpora
and the queries were replaced by the morphological segmentation to be evaluated.

Morfessor FlatCat is a pipeline method that refines an initial segmentation given as input. We try two
different initializations for the semi-supervised setting: initializing with the segmentation produced by
semi-supervised Morfessor Baseline, and initializing with the CRF segmentation. All unsupervised and
likelihood-weighted results are initialized with the corresponding Baseline output.

All methods were trained using word types. The weight and perplexity threshold parameters were
optimized separately for each method, using a grid search with the held-out data set. The supervised
CRF method was trained using the one thousand word annotated training data set.

1Available at https://github.com/aalto-speech/flatcat
2Available at http://www.cis.hut.fi/projects/morpho/morfessorcatmap.shtml
3Available at https://github.com/aalto-speech/morfessor
4Available at http://users.ics.aalto.fi/tpruokol/
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Method α β Pre Rec F

U Baseline 1.0 – .85 .36 .51
U CatMAP – – .83 .50 .62
U FlatCat 1.0 – .87 .36 .51

W Baseline 0.1 – .71 .41 .52
W FlatCat 0.3 – .88 .38 .53

SS Baseline 0.4 2000 .86 .60 .71
SS FlatCat 0.8 2666 .87 .59 .70
SS CRF+FlatCat 1.0 3000 .87 .61 .72

S CRF – – .89 .58 .70

Table 3: Boundary Precision and Recall results in comparison to gold standard segmentation for Turkish.
Abbreviations have been used for Unsupervised (U), likelihood weighted (W), semi-supervised (SS) and
fully supervised (S) methods. Best results for each measure have been hilighted using boldface.

3.1 Comparison to linguistic gold standards

The results of the BPR evaluations are shown in Tables 2 (English, Finnish) and 3 (Turkish). Semi-
supervised FlatCat initialized using CRF achieves the highest F-score for both the English and Turkish
data sets. The difference between the highest and second-highest scoring methods is statistically signifi-
cant for Finnish and Turkish, but not for English (Wilcoxon signed-rank test, p < 0.01).

Table 4 shows BPR for subsets of words consisting of different morph category patterns. Each subset
consists of 500 words from the English or Finnish gold standard, with one of five selected morph patterns
as the only valid analysis. The subsets consist of words with the following morph patterns: words that
should not be segmented (STM), compound words consisting of exactly two stems (STM + STM), a
prefix followed by a stem (PRE + STM), a stem followed by a single suffix (STM + SUF) and a stem
and exactly two suffixes (STM + SUF + SUF). For the STM pattern only precision is reported, as recall
is not defined for an empty set of true boundaries.

The fact that semi-supervised FlatCat compares well against CatMAP in recall, for all morph patterns
and for the test set as a whole, indicates that supervision indeed is effective in compensating for the
undersegmentation caused by the lack of hierarchy in the lexicon. The benefit of modeling morphotactics
can be seen in improved precision for the STM + STM (for English and Finnish) and PRE + STM (for
Finnish) patterns when comparing against semi-supervised Baseline. The more aggressive segmentation
of Baseline gives better results for the English PRE + STM subset than for Finnish due to the shortness
of the English prefixes (on average 3.6 letters for the English and 5.3 for the Finnish subset). While
not directly observable in Table 4, a large part of the improvement over semi-supervised Baseline is
explained by that FlatCat does not use suffix-like morphs in incorrect positions.

Initializing the FlatCat model with CRF segmentation improves the F-scores in all subsets compared
to the initialization with Morfessor Baseline. While FlatCat cannot keep the accuracy of the suffix
boundaries at as high level as CRF, it clearly improves the stem splitting.

3.2 Information retrieval

Stemming has been shown to improve IR results (Kurimo et al., 2009), by removing inflection that is
often not relevant to the query. The morph categories make it possible to simulate stemming by removing
morphs categorized as prefixes or suffixes. As longer affixes are more likely to be meaningful, we limited
the affix removal to morphs of at most 3 letters. For methods that use morph categories, we report two
IR results: the first using all the data and the second with short affix removal (SAR) applied.

In the IR results, we include the topline methods from Morpho Challenge: Snowball Porter stemmer
(Porter, 1980) for English and “TWOL first” for Finnish. The latter selects the lemma from the first
of the possible analyses given by the morphological analyzer FINTWOL (Lingsoft, Inc.) based on the
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(a) English.

STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP .90 .94 .63 .75 .91 .64 .75 .87 .45 .59 .90 .51 .65
SS Baseline .64 .93 .77 .84 .82 .74 .77 .83 .86 .84 .91 .79 .85
SS FlatCat .68 .94 .65 .77 .78 .62 .69 .86 .88 .87 .94 .79 .86
SS CRF+FlatCat .68 .95 .78 .86 .78 .66 .72 .87 .89 .88 .94 .80 .87
S CRF .78 .94 .72 .81 .85 .59 .69 .92 .91 .91 .95 .82 .88

(b) Finnish.

STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP .77 .90 .97 .94 .88 .96 .92 .67 .46 .54 .68 .38 .49
SS Baseline .50 .82 .88 .85 .73 .83 .78 .64 .85 .73 .76 .78 .77
SS FlatCat .49 .91 .95 .93 .80 .89 .85 .67 .84 .75 .77 .75 .76
SS CRF+FlatCat .53 .91 .96 .94 .84 .94 .88 .71 .88 .79 .80 .79 .79
S CRF .68 .88 .91 .89 .90 .91 .91 .83 .91 .87 .91 .85 .88

Table 4: Results of BPR experiments with different morph category patterns. Best results for each
measure have been hilighted using boldface.

two-level model by Koskenniemi (1983). As baseline results we also include unsegmented word forms
and truncating each word after the first five letters (First 5).

The results of the IR experiment are shown in Table 5. FlatCat provides the highest score for Finnish.
The English scores are similar to those of the semi-supervised Baseline. FlatCat performs better than
CRF for both languages. This is explained by the higher level of consistency in the segmentations
produced by FlatCat, which makes the resulting morphs more useful as query terms. The number of
morphs in the lexicons of FlatCat initialized using CRF are 108 391 (English), 46 123 (Finnish) and
74 193 (Turkish), which is much smaller than the respective morph lexicon sizes counted from the CRF
segmentation: 339 682 (English), 396 869 (Finnish) and 182 356 (Turkish). This decrease in lexicon
size indicates a more structured segmentation.

The IR performance of semi-supervised FlatCat benefits from the removal of short affixes for English
when initialized by CRF, and Finnish for both initializations. It also improves the results of unsupervised
FlatCat and CatMAP for Finnish, but lowers the precision for English. A possible explanation is that the
unsupervised methods do not analyze the suffixes with a high enough accuracy.

4 Conclusions

We have introduced a new variant of the Morfessor method, Morfessor FlatCat. It predicts both morphs
and their categories based on unannotated data, but also annotated training data can be provided. It was
shown to outperform earlier Morfessor methods in the semi-supervised learning task for English, Finnish
and Turkish.

The purely supervised CRF-based segmentation method proposed by Ruokolainen et al. (2013) outper-
forms FlatCat for Finnish and reaches the same level for English. However, we show that a discriminative
model such as CRF gives inconsistent segmentations that do not work as well in a practical application:
In English and Finnish information retrieval tasks, FlatCat clearly outperformed the CRF-based segmen-
tation.

We see two major directions for future work. Currently Morfessor FlatCat, like most Morfessor meth-
ods, assumes that words in a sentence occur independently. Making use of the sentence context in which
words occur would, however, allow making Part-Of-Speech -like distinctions. These distinctions could
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(a) English.

Rank Method SAR MAP

1 – Snowball Porter – 0.4092
2 SS Baseline – 0.3855
3 SS FlatCat No 0.3837
4 SS FlatCat Yes 0.3821
5 SS CRF+FlatCat Yes 0.3810
6 SS CRF+FlatCat No 0.3788
7 S CRF – 0.3771
8 W Baseline – 0.3761
9 U Baseline – 0.3695
10 U CatMAP No 0.3682
11 U CatMAP Yes 0.3653
12 W FlatCat No 0.3651
13 – (First 5) – 0.3648
14 W FlatCat Yes 0.3606
15 U FlatCat No 0.3486
16 U FlatCat Yes 0.3451
17 – (Words) – 0.3303

(b) Finnish.

Rank Method SAR MAP

1 W FlatCat No 0.5057
2 W FlatCat Yes 0.5029
3 SS FlatCat Yes 0.4987
4 – TWOL first – 0.4973
5 SS CRF+FlatCat Yes 0.4912
6 U CatMAP Yes 0.4884
7 U CatMAP No 0.4865
8 SS CRF+FlatCat No 0.4826
9 SS FlatCat No 0.4821
10 – (First 5) – 0.4757
11 SS Baseline – 0.4722
12 S CRF – 0.4660
13 W Baseline – 0.4582
14 U Baseline – 0.4378
15 U FlatCat Yes 0.4349
16 U FlatCat No 0.4334
17 – (Words) – 0.3483

Table 5: Information Retrieval results. Results of the method presented in this paper are hilighted using
boldface. Mean Average Precision is abbreviated as MAP. Short affix removal is abbreviated as SAR.

help disambiguate inflections of different lexemes that have the same surface form but should be analyzed
differently (Can and Manandhar, 2013).

The second direction is removal of the assumption that a morphology consists only of concatenative
processes. Introducing transformations to model allomorphy in a similar manner as Kohonen et al.
(2009) would allow finding the shared abstract morphemes underlying different allomorphs. This could
be especially beneficial in information retrieval and machine translation applications.
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