
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 1133–1143, Dublin, Ireland, August 23-29 2014.

A Structured Language Model for Incremental Tree-to-String Translation

Heng Yu1

1Institute of Computing Technology. CAS
University of Chinese Academy of Sciences

yuheng@ict.ac.cn

Haitao Mi
T.J. Watson Research Center

IBM
hmi@us.ibm.com

Liang Huang
Queens College & Grad. Center

City University of New York
huang@cs.qc.cuny.edu

Qun Liu 1,2

2Centre for Next Generation Localisation.
Faculty of Engineering and Computing

Dublin City University
qliu@computing.dcu.ie

Abstract

Tree-to-string systems have gained significant popularitythanks to their simplicity and efficien-
cy by exploring the source syntax information, but they lackin the target syntax to guarantee
the grammaticality of the output. Instead of using complex tree-to-tree models, we integrate
a structured language model, a left-to-right shift-reduceparser in specific, into an incremental
tree-to-string model, and introduce an efficient grouping and pruning mechanism for this integra-
tion. Large-scale experiments on various Chinese-Englishtest sets show that with a reasonable
speed our method gains an average improvement of 0.7 points in terms of (Ter-Bleu)/2 than a
state-of-the-art tree-to-string system.

1 Introduction

Tree-to-string models (Liu et al., 2006; Huang et al., 2006)have made promising progress and gained
significant popularity in recent years, as they run faster than string-to-tree counterparts (e.g. (Galley et
al., 2006)), and do not need binarized grammars. Especially, Huang and Mi (2010) make it much faster
by proposing an incremental tree-to-string model, which generates the target translation exactly in a left-
to-right manner. Although, tree-to-string models have made those progresses, they can not utilize the
target syntax information to guarantee the grammaticalityof the output, as they only generate strings on
the target side.

One direct approach to handle this problem is to extend tree-to-string models into complex tree-to-tree
models (e.g. (Quirk et al., 2005; Liu et al., 2009; Mi and Liu,2010)). However, tree-to-tree approaches
still significantly under-perform than tree-to-string systems due to the poor rule coverage (Liu et al.,
2009) and bi-parsing failures (Liu et al., 2009; Mi and Liu, 2010).

Another potential solution is to use structured language models (Slm) (Chelba and Jelinek, 2000; Char-
niak et al., 2003; Post and Gildea, 2008; Post and Gildea, 2009), as the monolingual Slm has achieved
better perplexity than the traditionaln-gram word sequence model. More importantly, the Slm is inde-
pendent of any translation model. Thus, integrating a Slm into a tree-to-string model will not face the
problems that tree-to-tree models have. However, integration is not easy, as the following two questions
arise. First, the search space grows significantly, as a partial translation has a lot of syntax structures.
Second, hypotheses in the same bin may not be comparable, since their syntactic structures may not be
comparable, and the future costs are hard to estimate. Hassan et al. (2009) skip those problems by only
keeping the best parsing structure for each hypothesis.

In this paper, we integrate a shift-reduce parser into an incremental tree-to-string model, and intro-
duce an efficient grouping and pruning method to handle the growing search space and incomparable
hypotheses problems. Large-scale experiments on various Chinese-English test sets show that with a rea-

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details:http://creativecommons.org/licenses/by/4.0/

1133



sonable speed our method gains an average improvement of 0.7 points in terms of (Ter-Bleu)/2 than a
state-of-the-art tree-to-string system.

2 Linear-time Shift-reduce Parsing

parsing

action
signature

dependency structure
s1 s0 q0

Bush S 0

sh Bush held S 1: Bush

sh Bush held a S 2: Bushheld

rex held

Bush

a S 3: Bushheld

sh held

Bush

a meeting S 4: Bushhelda

sh a meeting with S 5: Bushheldameeting

rex held

Bush

meeting

a

with S 6: Bushheldameeting

rey held

Bush meeting

with S 7: Bushhelda meeting

sh held

Bush meeting

with Sharon S 8: Bushhelda meetingwith

sh with Sharon S 9: Bushhelda meetingwith Sharon

rey held

Bush meeting

with

Sharon

S 10: Bushhelda meetingwith Sharon

rey held

Bush meeting with

S 11: Bushhelda meeting with Sharon

Figure 1: Linear-time left-to-right dependency parsing.

A shift-reduce parser performs a left-to-right scan of the input sentence, and at eachparsing step,
chooses one of twoparsing actions: either shift (sh) the current word onto the stack, orreduce (re)
the top two (or more) items at the end of the stack (Aho and Ullman, 1972). In the dependency parsing
scenario, the reduce action is further divided into two cases: left-reduce (rex) andright-reduce (rey),
depending on which one of the two items becomes the head afterreduction. Each parsing derivation can
be represented by a sequence of parsing actions.

1134



2.1 Shift-reduce Dependency Parsing

We will use the following sentence as the running example:

Bush held a meeting with Sharon

Given an input sentencee, whereei is theith token,ei...e j is the substring ofe from i to j, a shift-reduce
parser searches for a dependency tree with a sequence of shift-reduce moves (see Figure 1). Starting
from an initial structureS 0, we first shift (sh) a worde1, “Bush”, onto the parsing stacks0, and form a
structureS 1 with a singleton tree. Thene2, “held”, is shifted, and there are two or more structures in the
parsing stack, we can userex or rey step to combine the top two trees on the stack, replace them with
dependency structuree1 x e0 or e1 y e0 (shown asS 3), and add one more dependency edge between
e0 ande1.

Note that the shade nodes are exposed heads on whichrex or rey parsing actions can be performed.
The middle columns in Figure 1 are the parsing signatures:q0 (parsing queue),s0 ands1 (parsing stack),
where s0 and s1 only have one level dependency. Take the line ofS 11 for example, “a” is not in the
signature. As each action results in an update of cost, we canpick the best one (or few, with beam) after
each action. Costs are accumulated in each step by extracting contextual features from the structure and
the action. As the sentence gets longer, the number of partial structures generated at each steps grows
exponentially, which makes it impossible to search all of the hypothesis. In practice, we usually use beam
search instead.

(a) atomic features
s0.w s0.t
s1.w s1.t
s0.lc.t s0.rc.t
q0.w q0.t

(b) feature templates

unigram
s0.w s0.t s0.w ◦ s0.t
s1.w s1.t s1.w ◦ s1.t
q0.w q0.t q0.w ◦ q0.t

bigram

s0.w ◦ s1.w s0.t ◦ s1.t
s0.t ◦ q0.t s0.w ◦ s0.t ◦ s1.t
s0.w ◦ s1.w ◦ s1.t s0.t ◦ s1.w ◦ s1.t
s0.w ◦ s0.t ◦ s1.w

trigram
s0.t ◦ s1.t ◦ q0.t s1.t ◦ s0.t ◦ s0.lc.t
s1.t ◦ s0.t ◦ q0.t s1.t ◦ s0.t ◦ s0.rc.t

(c) ←− parsing stack parsing queue−→
. . . s1 s0

s0.lc · · · s0.rc

q0

Table 1: (a) atomic features, used for parsing signatures. (b): parsing feature templates, adapted from
Huang and Sagae (2010).x.w andx.t denotes the root word and POS tag of the partial dependencytree,
x.lc andx.rc denotex’s leftmost and rightmost child respectively. (c) the feature window.

2.2 Features

We view features as “abstractions” or (partial) observations of the current structure. Feature templatesf
are functions that draw information from the feature window, consisting of current partial tree and first
word to be processed. All Feature functions are listed in Table 1(b), which is a conjunction of atomic

1135



IP

NP

Bùshı́

VP

PP

P

yǔ

NP

Sh ālóng

VP

VV

jǔxı́ng

AS

le

NP

huı̀tán

Figure 2: A parse tree

features in Table 1(a). To decide which action is the best of the current structure, we perform a three-way
classification based onf, and conjoin these feature instances with each action:

[f ◦ (action=sh/rex/rey)]

We extract all the feature templates from training data, anduse the average perceptron algorithm and
early-update strategy (Collins and Roark, 2004; Huang et al., 2012) to train the model.

3 Incremental Tree-to-string Translation with Slm

The incremental tree-to-string decoding (Huang and Mi, 2010) performs translation in two separate steps:
parsing and decoding. A parser first parses the source language input into a 1-best tree in Figure 2, and
the linear incremental decoder then searches for the best derivation that generates a target-language string
in strictly left-to-right manner. Figure 3 works out the full running example, and we describe it in the
following section.

3.1 Decoding with Slm

Since the incremental tree-to-string model generates translation in strictly left-to-right fashion, and the
shift-reduce dependency parser also processes an input sentence in left-to-right order, it is intuitive to
combine them together. The last two columns in Figure 3 show the dependency structures for the corre-
sponding hypotheses. Start at the roottranslation stack with a dot� before the root node IP:

[� IP ],

we firstpredict (pr) with rule r1,

(r1) IP (x1:NP x2:VP)→ x1 x2,

and push its English-side to the translation stack, with variables replaced by matched tree nodes, here
x1 for NP andx2 for VP. Since thistranslation action does not generate any translation string, we don’t
perform any dependency parsing actions. So we have the following translation stack

[� IP ][� NP VP],

where the dot� indicates the next symbol to process in the English word-order. Since node NP is the next
symbol, we then predict with ruler2,

(r2) NP(Bùshı́)→ Bush,

and add it to the translation stack:
[� IP ] [� NP VP ] [� Bush]

Since the symbol right after the dot in the top rule is a word, wescan(sc) it, and append it to the current
translation, which results in the new translation stack

[� IP ] [� NP VP ] [Bush� ]

1136



translation parsing
stack string dependency structure Slm

[ � IP ] S 0

1 pr [ � IP ] [ � NP VP] S 0

2 pr [ � IP ] [� NP VP ] [ � Bush ] S 0

3 sc [ � IP ] [� NP VP] [Bush� ] Bush S 1: Bush P(Bush| S 0)

4 co [ � IP ] [NP � VP] S 1:

5 pr [ � IP ] [NP � VP] [� held NP with NP] S 1:

6 sc [ � IP ] [NP � VP] [held � NP with NP] held S 3: Bushheld P(held | S 1)

7 pr [� IP] [NP� VP] [held� NP with NP] [� a meeting] S 3

8 sc [� IP] [NP� VP] [held � NP with NP] [a meeting� ] a meetingS 7: Bushhelda meeting P(a meeting| S 3)

9 co [� IP ] [NP� VP] [held NP� with NP] S 7

10 sc [� IP] [NP� VP] [held NP with� NP] with S 8: Bushhelda meetingwith P(with | S 7)

S
′
8: Bushhelda meeting with P

′
(with | S 7)

11 pr [� IP] [NP� VP] [held NP with� NP] [� Sharon] S 8

S 8′

12 sc [� IP ] [NP � VP] [held NP with� NP] [Sharon� ] Sharon S 11: Bushhelda meeting with SharonP(Sharon| S 8)

S
′
11′ : Bushhelda meeting with SharonP

′
(Sharon| S ′8)

13 co [ � IP ] [NP � VP] [held NP with NP� ] S 11

14 co [ � IP ] [NP VP� ] S 11

15 co [ IP � ] S 11

Figure 3: Simulation of the integraton of an Slm into an incremental tree-to-string decoding. The first
column is the line number. The second column shows the translation actions: predict (pr), scan (sc), and
complete (co). S i denotes a dependency parsing structure. The shaded nodes are exposed roots ofS i.

Immediately after eachsc translation action, our shift-reduce parser is triggered.Here, our parser applies
the parsing actionsh, and shift “Bush” into a partial dependency structureS 1 as a root “Bush” (shaded
node) in Figure 3. Now the top rule on the translation stack has finished (dot is at the end), so wecomplete
(co) it, pop the top rule and advance the dot in the second-to-toprule, denoting that NP is completed:

[� IP ] [NP � VP].

Following this procedure, we have a dependency structureS 3 after we scan (sc) the word “held” and
take a shift (sh) and a left reduce (rex) parsing actions. The shaded node “held” means exposed roots,
that the shift-reduce parser takes actions on.

Following Huang and Mi (2010), the hypotheses with sametranslation step1 fall into the same bin.
Thus, only the prediction (pr) actions actually make a jump from a bin to another. Here line2 to 4 fall
into one bin (translation step= 4, as there are 4 nodes, IP, NP, VP and Bùshı́, in the source tree are
covered). Similarly, lines from 7 to 10 fall into another bin(translation step= 15).

1The step number is defined by the number of tree nodes covered in the source tree, and it is not equal to the number of
translation actions taken so far.

1137



Noted that as we number the bins by the translation step, onlypr actions make progress, thesc and
co actions are treated as ”closure” operators in practice. Thus we always do as manysc/co actions as
possible immediately after apr step until the symbol after the dot is another non-terminal.The total
number of bins is equal to the size of the parse tree, and each hypothesis has a constant number of
outgoing hyper-edges to predict, so the time complexity is linear in the sentence length.

After adding our Slm to this translation, an interesting branch occurs after we scan the word “with”,
we have two different partial dependency structuresS 8 and S

′
8 for the same translation. If we denote

N(S i) as the number ofre actions thatS i takes,N(S 8) is 3, whileN(S
′
8) is 4. HereN(S i) does not take

into account the number ofsh parsing actions, since all partial structures with same translations should
shift the same number of translations. Thus,N(S i) determines the score of dependency structures, and
only the hypotheses with sameN(S i) are comparable to each other. In this case, we should distinguish
S 8 with S

′
8, and if we make a prediction over the hypothesis ofS 8, we can reach the correct parsing state

S 11 (shown in the red dashed line in Figure 3).
So the key problem of our integration is that, after each translation step, we will apply different se-

quences of parsing actions, which result in different and incomparable dependency structures with the
same translation. In the following two Sections, we introduce three ways for this integration.

3.2 Näıve: Adding Parsing Signatures into Translation Signatures

One straightforward approach is to add the parsing signatures (in Figure 1) of each dependency structure
(in Figure 1 and Figure 3) to translation signatures. Here, we only take into account of thes0 and s1 in
the parsing stack, as theq0 is the future word that is not available in translation strings. For example, the
dependency structureS 8 has parsing signatures:

held

Bush meeting

with

We add those information to its translation signature, and only the hypothesis that have same translation
and parsing signatures can be recombined.

So, in each translation bin, different dependency structures with same translation stringsare treated as
different hypothesis, and all the hypothesis are sorted and ranked in the same way. For example,S 8 and
S
′
8 are compared in the bin, and we only keep topb (the beam size) hypothesis for each bin.
Obviously, this simple approach suffers from the incomparable problem for those hypothesis thathave

different number of parsing actions (e.g.S 8 and S
′
8). Moreover, it may result in very low translation

variance in each beam.

3.3 Best-parse: Keeping the Best Dependency Structure for Each Translation

Following Hassan et al. (2009), we only keep the best parsingtree for each translation. That means after
a consecutive translationsc actions, our shift-reduce parser applies all the possible parsing actions, and
generates a set of new partial dependency structures. Then we only choose the best one with the highest
Slm score, and only use this dependency structure for future predictions.

For example, for the translation in line 10 in Figure 3, we only keepS 8, if the parsing score ofS 8 is
higher thanS

′
8, although they are not comparable. Another complicate example is shown in Figure 4,

within the translation step 15, there are many alternativeswith different parsing structures for the same
translation (“a meeting with”) in the third column, but we can only choose the top one in the final.

3.4 Grouping: Regrouping Hypothesis byN(S ) in Each Bin

In order to do comparable sorting and pruning, our basic ideais to regroup those hypotheses in a same
bin into small groups byN(S ). For each translation, we first apply all the possible parsing actions,
and generate all dependency structures. Then we regroup allthe hypothesis with different dependency
structures based on the size ofN(S ).

1138



Bush held aBush held a Bush held a meetingBush held a meeting
sh

Bush held aBush held a

re

Bush held a meetingBush held a meeting

Bush held a meetingBush held a meeting

re

sh

Bush held a meetingBush held a meeting

re

Bush held a meeting withBush held a meeting with
sh

Bush held a meeting withBush held a meeting with

sh

sh

Bush held a meeting withBush held a meeting with

Bush held a meeting withBush held a meeting with
sh

re

re

Bush held a meeting withBush held a meeting with

Bush held a meeting with SharonBush held a meeting with Sharon
sh

Bush held a meeting with SharonBush held a meeting with Sharon

Bush held a meeting with SharonBush held a meeting with Sharon

re

sh

Bush held a meeting with SharonBush held a meeting with Sharon
sh

......

Bush held a meeting with SharonBush held a meeting with Sharon

sh

Bush held a meeting with SharonBush held a meeting with Sharon

re

Bush held a meeting with SharonBush held a meeting with Sharon
sh

Bush held a meeting with SharonBush held a meeting with Sharonsh

......

Bush held a meeting with SharonBush held a meeting with Sharon

re

Step 15 Step 16

G1: N(S)=1

......

Bush held a meeting withBush held a meeting with

G2: N(S)=2

G3: N(S)=3

G4: N(S)=4

Figure 4: Multi-beam structures of two bins with different translation steps (15 and 16). The first three
columns show the parsing movements in bin 15. Each dashed boxis a group based on the number of
reduce actions over the new translation strings (“a meetingwith” for bin 15, and “Sharon” for bin 16).
G2 means two reduce actions have been applied. After this regrouping, we perform the pruning in two
phases: 1) keep topb states in each group, and labeled each group with the state with the highest parsing
score in this group; 2) sort the different groups, and keep topg groups.

For example, Figure 4 shows two bins with two different translation steps (15 and 16). In bin 15, the
graph shows the parsing movements after we scan three new words (“a”, “meeting”, and “with”). The
parsingsh action happens from a parsing state in one column to another state in the next column, while
re happens from a state to another state in the same column. The third column in bin 15 lists some partial
dependency structures that have all new words parsed. Here each dashed box is a group of hypothesis
with a sameN(S ), e.g. theG2 contains all the dependency structures that have two reduceactions after
parsed all the new words. Then, we sort and prune each group bythe beam sizeb, and each group labeled
as the highest hypothesis in this group. Finally, we sort those groups and only keep topg groups for the
future predictions. Again, in Figure 4, we can keep the wholegroupG3 and partial group ofG2 if b = 2.
In our experiments, we set the group sizeg to 5.

3.5 Log-linear Model

We integrate our dependency parser into the log-linear model as an additional feature. So the decoder
searches for the best translatione∗ with a latent tree structure (evaluated by our Slm) according to the
following equation:

e∗ = argmax
e∈E

exp(Slm(e) · ws +
∑

i

fi · wi) (1)

where Slm(e) is the dependency parsing score calculated by our parser,ws is the weight of Slm(e), fi are
the features in the baseline model andwi are the weights.

1139



4 Experiments

4.1 Data Preparation

The training corpus consists of 1.5M sentence pairs with 38M/32M words of Chinese/English, respec-
tively. We use the NIST evaluation sets of MT06 as our development set, and MT03, 04, 05, and 08
(newswire portion) as our test sets. We word-aligned the training data using GIZA++ with refinement
option “grow-diag-and” (Koehn et al., 2003), and then parsed the Chinese sentences using the Berkeley
parser (Petrov and Klein, 2007). we applied the algorithm ofGalley et al. (2004) to extract tree-to-string
translation rules. Our trigram word language model was trained on the target side of the training corpus
using the SRILM toolkit (Stolcke, 2002) with modified Kneser-Ney smoothing. At decoding time, we
again parse the input sentences using the Berkeley parser, and convert them into translation forests using
rule pattern-matching (Mi et al., 2008).

Our baseline system is the incremental tree-to-string decoder of Huang and Mi (2010). We use the
same feature set shown in Huang and Mi (2010), and tune all theweights using minimum error-rate
training (Och, 2003) to maximize the Bleu score on the development set.

Our dependency parser is an implementation of the “arc-standard” shift-reduce parser (Nivre, 2004),
and it is trained on the standard split of English Penn Tree-bank (PTB): Sections 02-21 as the training
set, Section 22 as the held-out set, and Section 23 as the testset. Using the same features as Huang and
Sagae (2010), our dependency parser achieves a similar performance as Huang and Sagae (2010). We
add the structured language model as an additional feature into the baseline system.

We evaluate translation quality using case-insensitive IBM Bleu-4, calculated by the scrip-
t mteval-v13a.pl. We also report the Ter scores.

4.2 Complete Comparisons on MT08

To explore the soundness of our approach, we carry out some experiments in Table 2. With a beam size
100, the baseline decoder achieves a Bleu score of 21.06 with a speed of 1.7 seconds per sentence.

Since our dependency parser is trained on the English PTB, which is not included in the MT training
set, there is a chance that the gain of Bleu score is due to the increase of newn-grams in the PTB data.
In order to rule out this possibility, we use the tool SRILM totrain another tri-gram language model on
English PTB and use it as a secondary language model for the decoder. The Bleu score is 21.10, which
is similar to the baseline result. Thus we can conclude that any gain of the following+Slm experiments
is not because of the using of the additional English PTB.

Our second experiment re-ranks the 100-best translations of the baseline with our structured language
model trained on PTB. The improvement is less than 0.2 Bleu, which is not statistically significant, as
the search space for re-ranking is relatively small compared with the decoding space.

As shown in Section 3, we have three different ways to integrate an Slm to the baseline system:

• näıve: adding the parsing signature to the translation signature;

• best-parse: keeping the best dependency structure for each translation;

• grouping: regrouping the hypothesis byN(S ) in each bin.

The naı̈ve approach achieves a Bleu score of 19.12, which is significantly lower than the baseline. The
main reason is that adding parsing signatures leads to very restricted translation variance in each beam.
We also tried to increase the beam size to 1000, but we do not see any improvement.

The fourth line in Table 2 shows the result of the best-parse (Hassan et al., 2009). This approach only
slows the speed by a factor of two, but the improvement is not statistically significant. We manually
looked into some dependency trees this approach generates,and found this approach always introduce
local parsing errors.

The last line shows our efficient beam grouping scheme with a grouping size 5, it achieves a significant
improvement with an acceptable speed, which is about 6 timesslower than the baseline system.

1140



System Bleu Speed

baseline 21.06 1.7

+Slm

re-ranking 21.23 1.73
naı̈ve 19.12 2.6

best-parse 21.30 3.4
grouping (g=5) 21.64 10.6

Table 2: Results on MT08. The bold score is significantly better than the baseline result at levelp < 0.05.

System
MT03 MT04 MT05 MT08 Avg.

Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 (T-B)/2

baseline 19.94 10.73 22.03 18.63 19.92 11.45 21.06 10.37 12.80
+Slm 21.49 9.44 22.33 18.38 20.51 10.71 21.64 9.88 12.10

Table 3: Results on all test sets. Bold scores are significantly better than the baseline system (p < 0.5).

4.3 Final Results on All Test Sets

Table 3 shows our main results on all test sets. Our method gains an average improvement of 0.7 points
in terms of (T-B)/2. Results on NIST MT 03, 05, and 08 are statistically significant with p < 0.05, using
bootstrap re-sampling with 1000 samples (Koehn, 2004). Theaverage decoding speed is about 10 times
slower than the baseline.

5 Related Work

The work of Schwartz et al. (2011) is similar in spirit to ours. We are different in the following ways.
First, they integrate an Slm into a phrase-based system (Koehn et al., 2003), we pay more attention to
a syntax-based system. Second, their approach slowdowns the speed at near 2000 times, thus, they can
only tune their system on short sentences less than 20 words.Furthermore, their results are from a much
bigger beam (10 times larger than their baseline), so it is not clear which factor contributes more, the
larger beam size or the Slm. In contrast, our approach gains significant improvements over a state-of-the-
art tree-to-string baseline at a reasonable speed, about 6 times slower. And we answer some questions
beyond their work.

Hassan et al. (2009) incorporate a linear-time CCG parser into a DTM system, and achieve a significant
improvement. Different from their work, we pay more attention to the dependency parser, and we also
test this approach in our experiments. As they only keep 1-best parsing states during the decoding, they
are suffering from the local parsing errors.

Galley and Manning (2009) adapt the maximum spanning tree (MST) parser of McDonald et al. (2005)
to an incremental dependency parsing, and incorporate it into a phrase-based system. But this incremental
parser remains in quadratic time.

Besides, there are also some other efforts that are less closely related to ours. Shen et al. (2008)
and Mi and Liu (2010) develop a generative dependency language model for string-to-dependency and
tree-to-tree models. But they need parse the target side first, and encode target syntactic structures in
translation rules. Both papers integrate dependency structures into translation model, we instead model
the dependency structures with a monolingual parsing modelover translation strings.

6 Conclusion

In this paper, we presented an efficient algorithm to integrate a structured language model (an incremen-
tal shift-reduce parser in specific) into an incremental tree-to-string system. We calculate the structured
language model scores incrementally at the decoding step, rather than re-scoring a complete transla-
tion. Our experiments suggest that it is important to designefficient pruning strategies, which have been

1141



overlooked in previous work. Experimental results on large-scale data set show that our approach signif-
icantly improves the translation quality at a reasonable slower speed than a state-of-the-art tree-to-string
system.

The structured language model introduced in our work only takes into account the target string, and
ignores the reordering information in the source side. Thus, our future work seeks to incorporate more
source side syntax information to guide the parsing of the target side, and tune a structured language
model for both Bleu and paring accuracy. Another potential work lies in the moreefficient searching and
pruning algorithms for integration.

Acknowledgments

We thank the three anonymous reviewers for helpful suggestions, and Dan Gildea and Licheng Fang for
discussions. Yu and Liu were supported in part by CAS Action Plan for the Development of Western
China (No. KGZD-EW-501) and a grant from Huawei Noah’s Ark Lab, Hong Kong. Liu was partially
supported by the Science Foundation Ireland (Grant No. 07/CE/I1142) as part of the CNGL at Dublin C-
ity University. Huang was supported by DARPA FA8750-13-2-0041 (DEFT), a Google Faculty Research
Award, and a PSC-CUNY Award, and Mi by DARPA HR0011-12-C-0015. The views and findings in
this paper are those of the authors and are not endorsed by theUS or Chinese governments.

References

Alfred V. Aho and Jeffrey D. Ullman. 1972. Parsing of series in automatic computation. In The Theory of Parsing,
Translation, and Compiling, page Volume I.

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003. Syntax-based language models for statistical machine
translation. InProceedings of MT Summit IX. Intl. Assoc. for Machine Translation.

Ciprian Chelba and Frederick Jelinek. 2000. Structured language modeling. volume 14, pages 283 – 332.

Michael Collins and Brian Roark. 2004. Incremental parsingwith the perceptron algorithm. InProceedings of
ACL.

Michel Galley and Christopher D. Manning. 2009. Quadratic-time dependency parsing for machine translation.
In Proceedings of the Joint Conference of ACL 2009 and AFNLP, pages 773–781, Suntec, Singapore, August.
Association for Computational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004. What’s in a translation rule? InProceed-
ings of HLT-NAACL, pages 273–280.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer.
2006. Scalable inference and training of context-rich syntactic translation models. InProceedings of COLING-
ACL, pages 961–968.

Hany Hassan, Khalil Sima’an, and Andy Way. 2009. A syntactified direct translation model with linear-time de-
coding. InProceedings of EMNLP 2009, pages 1182–1191, Singapore, August. Association for Computational
Linguistics.

Liang Huang and Haitao Mi. 2010. Efficient incremental decoding for tree-to-string translation. In Proceedings
of EMNLP, pages 273–283.

Liang Huang and Kenji Sagae. 2010. Dynamic programming for linear-time incremental parsing. InProceedings
of ACL 2010, pages 1077–1086, Uppsala, Sweden, July. Association for Computational Linguistics.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Statistical syntax-directed translation with extended domain
of locality. In Proceedings of AMTA, pages 66–73.

Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. InProceedings
of NAACL 2012, Montreal, Quebec.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu. 2003. Statistical phrase-based translation. InProceedings
of NAACL, pages 127–133.

1142



Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. InProceedings of EMNLP,
pages 388–395.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string alignment template for statistical machine translation.
In Proceedings of COLING-ACL, pages 609–616.

Yang Liu, Yajuan Lü, and Qun Liu. 2009. Improving tree-to-tree translation with packed forests. InProceedings
of ACL/IJCNLP, pages 558–566, Suntec, Singapore, August.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-projective dependency parsing
using spanning tree algorithms. InProceedings of HLT-EMNLP, pages 523–530, Vancouver, British Columbia,
Canada, October.

Haitao Mi and Qun Liu. 2010. Constituency to dependency translation with forests. InProceedings of ACL, pages
1433–1442, Uppsala, Sweden, July.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-based translation. InProceedings of ACL: HLT, pages
192–199.

Joakim Nivre. 2004. Incrementality in deterministic dependency parsing. In Frank Keller, Stephen Clark, Matthew
Crocker, and Mark Steedman, editors,Proceedings of the ACL Workshop Incremental Parsing: Bringing Engi-
neering and Cognition Together, pages 50–57, Barcelona, Spain, July. Association for Computational Linguis-
tics.

Franz Joseph Och. 2003. Minimum error rate training in statistical machine translation. InProceedings of ACL,
pages 160–167.

Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. InProceedings of HLT-NAACL,
pages 404–411.

Matt Post and Daniel Gildea. 2008. Language modeling with tree substitution grammars. InProceedings of
AMTA.

Matt Post and Daniel Gildea. 2009. Language modeling with tree substitution grammars. InProceedings of NIPS
workshop on Grammar Induction, Representation of Language, and Language Learning.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. Dependency treelet translation: Syntactically informed
phrasal smt. InProceedings of the 43rd ACL, Ann Arbor, MI, June.

Lane Schwartz, Chris Callison-Burch, William Schuler, andStephen Wu. 2011. Incremental syntactic language
models for phrase-based translation. InProceedings of ACL 2011, pages 620–631, June.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A new string-to-dependency machine translation algorithm
with a target dependency language model. InProceedings of ACL-08: HLT, pages 577–585, Columbus, Ohio,
June. Association for Computational Linguistics.

Andreas Stolcke. 2002. SRILM – an extensible language modeling toolkit. In Proceedings of ICSLP, volume 30,
pages 901–904.

1143


