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Abstract

Tree-to-string systems have gained significant populéniyks to their simplicity andficien-

cy by exploring the source syntax information, but they latkhe target syntax to guarantee
the grammaticality of the output. Instead of using compleeto-tree models, we integrate
a structured language model, a left-to-right shift-redpaeser in specific, into an incremental
tree-to-string model, and introduce dti@ent grouping and pruning mechanism for this integra-
tion. Large-scale experiments on various Chinese-Engdishsets show that with a reasonable
speed our method gains an average improvement7op@ints in terms of (T -B  )/2 than a
state-of-the-art tree-to-string system.

1 Introduction

Tree-to-string models (Liu et al., 2006; Huang et al., 2008Je made promising progress and gained
significant popularity in recent years, as they run fastantstring-to-tree counterparts (e.g. (Galley et
al., 2006)), and do not need binarized grammars. Espediéligng and Mi (2010) make it much faster
by proposing an incremental tree-to-string model, whiahegates the target translation exactly in a left-
to-right manner. Although, tree-to-string models have entitbse progresses, they can not utilize the
target syntax information to guarantee the grammaticalityre output, as they only generate strings on
the target side.

One direct approach to handle this problem is to extendttrextring models into complex tree-to-tree
models (e.g. (Quirk et al., 2005; Liu et al., 2009; Mi and L20,10)). However, tree-to-tree approaches
still significantly under-perform than tree-to-string ®mms due to the poor rule coverage (Liu et al.,
2009) and bi-parsing failures (Liu et al., 2009; Mi and Li01D).

Another potential solution is to use structured languagdetso(S ) (Chelba and Jelinek, 2000; Char-
niak et al., 2003; Post and Gildea, 2008; Post and Gilde&9)2@8 the monolingual S has achieved
better perplexity than the traditionalgram word sequence model. More importantly, the & inde-
pendent of any translation model. Thus, integrating a f&to a tree-to-string model will not face the
problems that tree-to-tree models have. However, integrag not easy, as the following two questions
arise. First, the search space grows significantly, as &padnslation has a lot of syntax structures.
Second, hypotheses in the same bin may not be comparahie,thigir syntactic structures may not be
comparable, and the future costs are hard to estimate. hassh (2009) skip those problems by only
keeping the best parsing structure for each hypothesis.

In this paper, we integrate a shift-reduce parser into aremental tree-to-string model, and intro-
duce an #icient grouping and pruning method to handle the growingcbeapace and incomparable
hypotheses problems. Large-scale experiments on variounese-English test sets show that with a rea-
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sonable speed our method gains an average improvemer pbibits in terms of (T -B  )/2 than a
state-of-the-art tree-to-string system.

2 Linear-time Shift-reduce Parsing
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action signature dependency structure
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Figure 1: Linear-time left-to-right dependency parsing.

A shift-reduce parser performs a left-to-right scan of theui sentence, and at eaparsing step,
chooses one of twparsing actions: either shift (sh) the current word onto the stack, mrduce (re)
the top two (or more) items at the end of the stack (Aho and &Miyri972). In the dependency parsing
scenario, the reduce action is further divided into two sasft-reduce (re,.) andright-reduce (re~ ),
depending on which one of the two items becomes the headraftection. Each parsing derivation can
be represented by a sequence of parsing actions.
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2.1 Shift-reduce Dependency Parsing
We will use the following sentence as the running example:

Bush held a meeting with Sharon

Given an input sentenag wheres is theith token,g...g; is the substring oé fromi to j, a shift-reduce
parser searches for a dependency tree with a sequence tafeshi€e moves (see Figure 1). Starting
from an initial structureSg, we first shift h) a worde;, “Bush”, onto the parsing stacl, and form a
structureS; with a singleton tree. Thes, “held”, is shifted, and there are two or more structuresian t
parsing stack, we can use, or re, step to combine the top two trees on the stack, replace thém wi
dependency structuey « ey or e1 ~ € (shown asS3), and add one more dependency edge between
e andey.

Note that the shade nodes are exposed heads on veyichr re, parsing actions can be performed.
The middle columns in Figure 1 are the parsing signatugg&arsing queue)sp ands; (parsing stack),
where sy and s; only have one level dependency. Take the lineéSef for example, “a” is not in the
signature. As each action results in an update of cost, weiclrthe best one (or few, with beam) after
each action. Costs are accumulated in each step by exggactiiextual features from the structure and
the action. As the sentence gets longer, the number of patttiectures generated at each steps grows
exponentially, which makes it impossible to search all efttlgpothesis. In practice, we usually use beam
search instead.

(a) | atomic features
So-W So-t
S1.W st
..t syre.t
Qo-W Qo-t
(b) | feature templates
W So.t S.Wo .t
unigram| sg.w - Syt S1.W o Sp.t
QoW (Qo.t Co-W o (p.t
S.Wo S§.W s.to 5.t
bigram So.to Qo.t So-Wo Sp.to st
SHWo S.Wo Si.t Sp.to s .wo st
S-Wo S.tos.w
. So.to s.toqo.t si.to s.to sp.lc.t
mgram | ¢ o gtoqet  Suto Spto Sprcit
(© «— parsing stack parsing queue—
S1 S do

S.dc -+ sprc

Table 1: (a) atomic features, used for parsing signatul®spgrsing feature templates, adapted from
Huang and Sagae (201w andx.t denotes the root word and POS tag of the partial dependesey
x.Ic andx.rc denotex’s leftmost and rightmost child respectively. (c) the featwindow.

2.2 Features

We view features as “abstractions” or (partial) observetiof the current structure. Feature templdtes
are functions that draw information from the feature windownsisting of current partial tree and first
word to be processed. All Feature functions are listed ideTafb), which is a conjunction of atomic
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Figure 2: A parse tree

features in Table 1(a). To decide which action is the best@turrent structure, we perform a three-way
classification based dinand conjoin these feature instances with each action:

[f o (action=sh/re ~/re )]

We extract all the feature templates from training data, @s®lthe average perceptron algorithm and
early-update strategy (Collins and Roark, 2004; Huang.e2@12) to train the model.

3 Incremental Tree-to-string Translation with S

The incremental tree-to-string decoding (Huang and MiQ@&rforms translation in two separate steps:
parsing and decoding. A parser first parses the source lgagoput into a 1-best tree in Figure 2, and
the linear incremental decoder then searches for the beghtilen that generates a target-language string
in strictly left-to-right manner. Figure 3 works out the [fainning example, and we describe it in the
following section.

3.1 Decoding with S

Since the incremental tree-to-string model generateslation in strictly left-to-right fashion, and the
shift-reduce dependency parser also processes an ingaheerin left-to-right order, it is intuitive to
combine them together. The last two columns in Figure 3 sthh@xependency structures for the corre-
sponding hypotheses. Start at the rivahdation stack with a dot. before the root node IP:

[.1P],
we firstpredict (pr) with rulery,
(r]_) P (X]_ZNP X21VP)—> X1 X2,

and push its English-side to the translation stack, witliatées replaced by matched tree nodes, here
x1 for NP andx, for VP. Since thigrandation action does not generate any translation string, we don't
perform any dependency parsing actions. So we have thevialictranslation stack

[. IP][. NP VP]

where the dotindicates the next symbol to process in the English wor@oigince node NP is the next
symbol, we then predict with rule,

(r2) NP(Bushi)— Bush,

and add it to the translation stack:
[.1IP][. NP VP][. Bush]

Since the symbol right after the dot in the top rule is a wordsean(sc) it, and append it to the current
translation, which results in the new translation stack

[.IP][. NP VP][Bush. ]

1136



translation parsing
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Figure 3: Simulation of the integraton of an Sinto an incremental tree-to-string decoding. The first
column is the line number. The second column shows the aoislactions: predictpf), scan §c), and
complete €o). S; denotes a dependency parsing structure. The shaded nedegiased roots ;.

Immediately after eackc translation action, our shift-reduce parser is triggekéete, our parser applies
the parsing actiosh, and shift “Bush” into a partial dependency struct@eas a root Busli (shaded
node) in Figure 3. Now the top rule on the translation stagfimished (dot is at the end), so wemplete
(co) it, pop the top rule and advance the dot in the second-tatti®y denoting that NP is completed:

[.IP][NP. VP].

Following this procedure, we have a dependency struc®grafter we scangc) the word “held” and
take a shift ¢h) and a left reduceré..) parsing actions. The shaded noteld’ means exposed roots,
that the shift-reduce parser takes actions on.

Following Huang and Mi (2010), the hypotheses with saraaslation step® fall into the same bin.
Thus, only the predictionpf) actions actually make a jump from a bin to another. Here 2ite 4 fall
into one bin (translation step 4, as there are 4 nodes, IP, NP, VP and Bushi, in the soureeate
covered). Similarly, lines from 7 to 10 fall into another Iftranslation step- 15).

1The step number is defined by the number of tree nodes covertba isource tree, and it is not equal to the number of
translation actions taken so far.

1137



Noted that as we number the bins by the translation step, mraéigtions make progress, tke and
co actions are treated as "closure” operators in practices Ml always do as marsc/co actions as
possible immediately after pr step until the symbol after the dot is another non-termifiale total
number of bins is equal to the size of the parse tree, and egubthesis has a constant nhumber of
outgoing hyper-edges to predict, so the time complexitinisdr in the sentence length.

After adding our S to this translation, an interesting branch occurs after easm ¢he word “with”,
we have two dterent partial dependency structui®g and S'8 for the same translation. If we denote
N(S;) as the number afe actions thatS; takes,N(Sg) is 3, while N(Sg) is 4. HereN(S;) does not take
into account the number ah parsing actions, since all partial structures with samestedions should
shift the same number of translations. Thhi$S;) determines the score of dependency structures, and
only the hypotheses with sanM(S;) are comparable to each other. In this case, we should glissin
Sg with Sé, and if we make a prediction over the hypothesiSgfwe can reach the correct parsing state
Si11 (shown in the red dashed line in Figure 3).

So the key problem of our integration is that, after eachstegion step, we will apply dierent se-
quences of parsing actions, which result iffelient and incomparable dependency structures with the
same translation. In the following two Sections, we introglthree ways for this integration.

3.2 Nave: Adding Parsing Signatures into Translation Signatures

One straightforward approach is to add the parsing sigeatiim Figure 1) of each dependency structure
(in Figure 1 and Figure 3) to translation signatures. Herepwy take into account of thg ands; in

the parsing stack, as tlyg is the future word that is not available in translation giginFor example, the
dependency structui®g has parsing signatures:

held with

N

Bush meeting

We add those information to its translation signature, amiy the hypothesis that have same translation
and parsing signatures can be recombined.

So, in each translation bin,firent dependency structures with same translation stairggseated as
different hypothesis, and all the hypothesis are sorted an@ddankhe same way. For exampfs and
8;3 are compared in the bin, and we only keep liqjthe beam size) hypothesis for each bin.

Obviously, this simple approachféers from the incomparable problem for those hypothesishiinas
different number of parsing actions (eSp and 8;3). Moreover, it may result in very low translation
variance in each beam.

3.3 Best-parse: Keeping the Best Dependency Structure fordeh Translation

Following Hassan et al. (2009), we only keep the best patsagfor each translation. That means after
a consecutive translatiat actions, our shift-reduce parser applies all the possiatsipg actions, and
generates a set of new partial dependency structures. To@mhy choose the best one with the highest
S score, and only use this dependency structure for futurdigiiens.

For example, for the translation in line 10 in Figure 3, weydtgepSg, if the parsing score dbg is
higher thanSé, although they are not comparable. Another complicate elaiis shown in Figure 4,
within the translation step 15, there are many alternativieis different parsing structures for the same
translation (“a meeting with”) in the third column, but wencanly choose the top one in the final.

3.4 Grouping: Regrouping Hypothesis byN(S) in Each Bin

In order to do comparable sorting and pruning, our basic isléa regroup those hypotheses in a same
bin into small groups byN(S). For each translation, we first apply all the possible parsctions,
and generate all dependency structures. Then we regrotipediypothesis with dierent dependency
structures based on the sizeNfS).
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Figure 4: Multi-beam structures of two bins withffidirent translation steps (15 and 16). The first three
columns show the parsing movements in bin 15. Each dashedskagroup based on the number of
reduce actions over the new translation strings (“a meetiitiy’ for bin 15, and “Sharon” for bin 16).
G, means two reduce actions have been applied. After thisupgrg, we perform the pruning in two
phases: 1) keep tdpstates in each group, and labeled each group with the stdtehei highest parsing
score in this group; 2) sort theftkrent groups, and keep tggroups.

For example, Figure 4 shows two bins with twdfdrent translation steps (15 and 16). In bin 15, the
graph shows the parsing movements after we scan three neatg \{far’, “meeting”, and “with”). The
parsingsh action happens from a parsing state in one column to anadteria the next column, while
re happens from a state to another state in the same columnhiféhedlumn in bin 15 lists some partial
dependency structures that have all new words parsed. lderedashed box is a group of hypothesis
with a sameN(S), e.g. theG, contains all the dependency structures that have two realttgens after
parsed all the new words. Then, we sort and prune each grothiebeam sizb, and each group labeled
as the highest hypothesis in this group. Finally, we sorséhgroups and only keep tgpgroups for the
future predictions. Again, in Figure 4, we can keep the wignteipGs and partial group o6, if b = 2.

In our experiments, we set the group sig® 5.

3.5 Log-linear Model

We integrate our dependency parser into the log-linear reglan additional feature. So the decoder
searches for the best translatienwith a latent tree structure (evaluated by our Baccording to the
following equation:

e = argergaxexp(s (e) - ws+ Z fi - wi) @

where S (e) is the dependency parsing score calculated by our pavséesthe weight of S (e), f; are
the features in the baseline model amdare the weights.
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4 Experiments

4.1 Data Preparation

The training corpus consists of 1.5M sentence pairs with /32M words of Chines&nglish, respec-
tively. We use the NIST evaluation sets of MT06 as our develapt set, and MT03, 04, 05, and 08
(newswire portion) as our test sets. We word-aligned thieitrg data using GIZA+ with refinement
option “grow-diag-and” (Koehn et al., 2003), and then pdrge Chinese sentences using the Berkeley
parser (Petrov and Klein, 2007). we applied the algorithr@alley et al. (2004) to extract tree-to-string
translation rules. Our trigram word language model wasi¢@ion the target side of the training corpus
using the SRILM toolkit (Stolcke, 2002) with modified Knesdéey smoothing. At decoding time, we
again parse the input sentences using the Berkeley panskecpavert them into translation forests using
rule pattern-matching (Mi et al., 2008).

Our baseline system is the incremental tree-to-string diercof Huang and Mi (2010). We use the
same feature set shown in Huang and Mi (2010), and tune allvdights using minimum error-rate
training (Och, 2003) to maximize the B score on the development set.

Our dependency parser is an implementation of the “ardatali shift-reduce parser (Nivre, 2004),
and it is trained on the standard split of English Penn Tiaekl{PTB): Sections 02-21 as the training
set, Section 22 as the held-out set, and Section 23 as theete&tsing the same features as Huang and
Sagae (2010), our dependency parser achieves a similarmpearice as Huang and Sagae (2010). We
add the structured language model as an additional feaito¢he baseline system.

We evaluate translation quality using case-insensitiviVlIB -4, calculated by the scrip-
tmteval-v13a.pl. We also report the T scores.

4.2 Complete Comparisons on MT08

To explore the soundness of our approach, we carry out sopeiments in Table 2. With a beam size
100, the baseline decoder achieves a Bscore of 2106 with a speed of.X seconds per sentence.

Since our dependency parser is trained on the English PTBhvidinot included in the MT training
set, there is a chance that the gain of Bscore is due to the increase of nawgrams in the PTB data.
In order to rule out this possibility, we use the tool SRILMttain another tri-gram language model on
English PTB and use it as a secondary language model for ttoelde The B score is 2110, which
is similar to the baseline result. Thus we can conclude timagain of the following+S  experiments
is not because of the using of the additional English PTB.

Our second experiment re-ranks the 100-best translatiothe daseline with our structured language
model trained on PTB. The improvement is less thahB® , which is not statistically significant, as
the search space for re-ranking is relatively small conbaii¢h the decoding space.

As shown in Section 3, we have thredfdirent ways to integrate an Sto the baseline system:

¢ naive: adding the parsing signature to the translation signature
e best-parse keeping the best dependency structure for each translatio
e grouping: regrouping the hypothesis BV(S) in each bin.

The naive approach achieves a Bscore of 19.12, which is significantly lower than the baselifhe
main reason is that adding parsing signatures leads to getgiated translation variance in each beam.
We also tried to increase the beam size to 1000, but we do e@rseimprovement.

The fourth line in Table 2 shows the result of the best-parssg$an et al., 2009). This approach only
slows the speed by a factor of two, but the improvement is tatistically significant. We manually
looked into some dependency trees this approach genesat$ound this approach always introduce
local parsing errors.

The last line shows ourfigcient beam grouping scheme with a grouping size 5, it achiavg@gnificant
improvement with an acceptable speed, which is about 6 tsleeger than the baseline system.
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System | B | Speed
baseline | 21.06| 1.7
re-ranking 21.23| 1.73

S naive 19.12| 2.6
best-parse | 21.30| 3.4

grouping =5) | 21.64 | 10.6

Table 2: Results on MT08. The bold score is significantlydretian the baseline result at leyek 0.05.

System MT03 MTO04 MTO5 MTO8 Avg.

B |[(0B)2|B [(0B2|B [(By2|B | (B)2]| (B2
baseline| 19.94| 10.73 | 22.03| 18.63 | 19.92] 11.45 | 21.06| 10.37 | 12.80
+S 21.49| 9.44 | 22.33| 1838 | 2051 | 10.71 | 21.64| 9.88 | 12.10

Table 3: Results on all test sets. Bold scores are significhetter than the baseline system< 0.5).

4.3 Final Results on All Test Sets

Table 3 shows our main results on all test sets. Our methat gai average improvement a7 (oints

in terms of (T-B)2. Results on NIST MT 03, 05, and 08 are statistically sigaiftowith p < 0.05, using
bootstrap re-sampling with 1000 samples (Koehn, 2004).akeeage decoding speed is about 10 times
slower than the baseline.

5 Related Work

The work of Schwartz et al. (2011) is similar in spirit to auvse are diferent in the following ways.
First, they integrate an S into a phrase-based system (Koehn et al., 2003), we pay nterdgian to

a syntax-based system. Second, their approach slowdowrspéed at near 2000 times, thus, they can
only tune their system on short sentences less than 20 weud$iermore, their results are from a much
bigger beam (10 times larger than their baseline), so it isclear which factor contributes more, the
larger beam size or the S. In contrast, our approach gains significant improvemeves a state-of-the-
art tree-to-string baseline at a reasonable speed, abaue6 slower. And we answer some questions
beyond their work.

Hassan et al. (2009) incorporate a linear-time CCG pargeaiDTM system, and achieve a significant
improvement. Diferent from their work, we pay more attention to the depenglgraeser, and we also
test this approach in our experiments. As they only keepst{m&rsing states during the decoding, they
are stfering from the local parsing errors.

Galley and Manning (2009) adapt the maximum spanning tregl(\Mbarser of McDonald et al. (2005)
to an incremental dependency parsing, and incorporat®itiphrase-based system. But this incremental
parser remains in quadratic time.

Besides, there are also some othfforts that are less closely related to ours. Shen et al. (2008)
and Mi and Liu (2010) develop a generative dependency lajguzodel for string-to-dependency and
tree-to-tree models. But they need parse the target sideditd encode target syntactic structures in
translation rules. Both papers integrate dependencytstaginto translation model, we instead model
the dependency structures with a monolingual parsing mmaltranslation strings.

6 Conclusion

In this paper, we presented affigient algorithm to integrate a structured language modeine@emen-

tal shift-reduce parser in specific) into an incrementad-tee string system. We calculate the structured
language model scores incrementally at the decoding saéiperrthan re-scoring a complete transla-
tion. Our experiments suggest that it is important to destfinient pruning strategies, which have been
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overlooked in previous work. Experimental results on lesgele data set show that our approach signif-
icantly improves the translation quality at a reasonalie/st speed than a state-of-the-art tree-to-string
system.

The structured language model introduced in our work orttgdanto account the target string, and
ignores the reordering information in the source side. Thus future work seeks to incorporate more
source side syntax information to guide the parsing of tihgetaside, and tune a structured language
model for both B and paring accuracy. Another potential work lies in the nefiieient searching and
pruning algorithms for integration.

Acknowledgments

We thank the three anonymous reviewers for helpful suggestiand Dan Gildea and Licheng Fang for
discussions. Yu and Liu were supported in part by CAS ActitanPor the Development of Western
China (No. KGZD-EW-501) and a grant from Huawei Noah's Arkbl.&#long Kong. Liu was partially
supported by the Science Foundation Ireland (Grant N(CBT1142) as part of the CNGL at Dublin C-
ity University. Huang was supported by DARPA FA8750-13a40 (DEFT), a Google Faculty Research
Award, and a PSC-CUNY Award, and Mi by DARPA HR0011-12-C-B0The views and findings in
this paper are those of the authors and are not endorsed h\Stioe Chinese governments.

References

Alfred V. Aho and J&rey D. Ullman. 1972. Parsing of series in automatic compartatn The Theory of Parsing,
Trandation, and Compiling, page Volume I.

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003. &ylitased language models for statistical machine
translation. InProceedings of MT Summit IX. Intl. Assoc. for Machine Trandlation.

Ciprian Chelba and Frederick Jelinek. 2000. Structuregdage modeling. volume 14, pages 283 — 332.

Michael Collins and Brian Roark. 2004. Incremental parsiitp the perceptron algorithm. IRroceedings of
ACL.

Michel Galley and Christopher D. Manning. 2009. Quadrétitce dependency parsing for machine translation.
In Proceedings of the Joint Conference of ACL 2009 and AFNLP, pages 773-781, Suntec, Singapore, August.
Association for Computational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marc2004. What's in a translation rule? Rroceed-
ings of HLT-NAACL, pages 273-280.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Mar8teve DeNeefe, Wei Wang, and Ignacio Thayer.
2006. Scalable inference and training of context-richagtit translation models. IRroceedings of COLING-
ACL, pages 961-968.

Hany Hassan, Khalil Sima’an, and Andy Way. 2009. A syntaadifiirect translation model with linear-time de-
coding. InProceedings of EMNLP 2009, pages 1182-1191, Singapore, August. Association for Qtetipnal
Linguistics.

Liang Huang and Haitao Mi. 2010.fikcient incremental decoding for tree-to-string transtatitn Proceedings
of EMNLP, pages 273-283.

Liang Huang and Kenji Sagae. 2010. Dynamic programmingeelr-time incremental parsing. Rroceedings
of ACL 2010, pages 1077-1086, Uppsala, Sweden, July. Associationdmmp@tational Linguistics.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Statatsyntax-directed translation with extended domain
of locality. In Proceedings of AMTA, pages 66—73.

Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structweexsptron with inexact search. Rroceedings
of NAACL 2012, Montreal, Quebec.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu. 2003is8tal phrase-based translation. Rroceedings
of NAACL, pages 127-133.

1142



Philipp Koehn. 2004. Statistical significance tests for hiae translation evaluation. IRroceedings of EMNLP,
pages 388-395.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-stringyatnent template for statistical machine translation.
In Proceedings of COLING-ACL, pages 609-616.

Yang Liu, Yajuan LU, and Qun Liu. 2009. Improving tree-te« translation with packed forests. Pnoceedings
of ACLANJCNLP, pages 558-566, Suntec, Singapore, August.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Janiddap005. Non-projective dependency parsing
using spanning tree algorithms. Pnoceedings of HLT-EMNLP, pages 523-530, Vancouver, British Columbia,
Canada, October.

Haitao Mi and Qun Liu. 2010. Constituency to dependencysiedion with forests. IfProceedings of ACL, pages
1433-1442, Uppsala, Sweden, July.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-basedsletion. InProceedings of ACL: HLT, pages
192-199.

Joakim Nivre. 2004. Incrementality in deterministic degemcy parsing. In Frank Keller, Stephen Clark, Matthew
Crocker, and Mark Steedman, editoPspceedings of the ACL Workshop Incremental Parsing: Bringing Engi-
neering and Cognition Together, pages 50-57, Barcelona, Spain, July. Association for Gaational Linguis-
tics.

Franz Joseph Och. 2003. Minimum error rate training in ®iatil machine translation. IRAroceedings of ACL,
pages 160-167.

Slav Petrov and Dan Klein. 2007. Improved inference for xickdized parsing. InProceedings of HLT-NAACL,
pages 404-411.

Matt Post and Daniel Gildea. 2008. Language modeling wigk substitution grammars. Proceedings of
AMTA.

Matt Post and Daniel Gildea. 2009. Language modeling wih substitution grammars. Rroceedings of NIPS
workshop on Grammar |nduction, Representation of Language, and Language Learning.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. Depemgetneelet translation: Syntactically informed
phrasal smt. IfProceedings of the 43rd ACL, Ann Arbor, Ml, June.

Lane Schwartz, Chris Callison-Burch, William Schuler, &tdphen Wu. 2011. Incremental syntactic language
models for phrase-based translationPhoceedings of ACL 2011, pages 620—-631, June.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A new gttio-dependency machine translation algorithm
with a target dependency language modelPitaceedings of ACL-08: HLT, pages 577-585, Columbus, Ohio,
June. Association for Computational Linguistics.

Andreas Stolcke. 2002. SRILM — an extensible language nragitdolkit. In Proceedings of ICSLP, volume 30,
pages 901-904.

1143



