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Abstract

Short Messaging Service (SMS) has become a popular form of communication. While it is
predominantly used for monolingual communication, it can be extremely useful for facilitating
cross-lingual communication through statistical machine translation. In this work we present an
application of statistical machine translation to SMS messages. We decouple the SMS transla-
tion task into normalization followed by translation so that one can exploit existing bitext re-
sources and present a novel unsupervised normalization approach using distributed representa-
tion of words learned through neural networks. We describe several surrogate data that are good
approximations to real SMS data feeds and use a hybrid translation approach using finite-state
transducers. Both objective and subjective evaluation indicate that our approach is highly suitable
for translating SMS messages.

1 Introduction

The preferred form of communication has been changing over time with advances in communication
technology. The majority of the world’s population now owns a mobile device and an ever increasing
fraction of users are resorting to Short Message Service (SMS) as the primary form of communication.

SMS offers an easy, convenient and condensed form of communication that is being embraced by
the younger demographic. Due to the inherent limit in the length of a message that can be transmitted,
SMS users have adopted several shorthand notations to compress the message; some that have become
standardized and many that are invented constantly. While SMS is predominantly used in a monolingual
mode, it has the potential to connect people speaking different languages. However, translating SMS
messages has several challenges ranging from the procurement of data in this domain to dealing with
noisy text (abbreviations, spelling errors, lack of punctuation, etc.) that is typically detrimental to trans-
lation quality. In this work we address all the elements involved in building a cross-lingual SMS service
that spans data acquisition, normalization, translation modeling, messaging infrastructure and user trial.

The rest of the paper is organized as follows. In Section 4, we present a variety of channels through
which we compiled SMS data followed by a description of our pipeline in Section 5 that includes nor-
malization, phrase segmentation and machine translation. Finally, we describe a SMS translation service
built using our pipeline in Section 6 along with results from a user trial. We provide some discussion in
Section 7 and conclude in Section 8.

2 Related Work

One of the main challenges of building a machine translation system for SMS messages is the lack of
training data in this domain. Typically, there are several legal restrictions in using consumer SMS data
that precludes one from either using it completely or forces one to use it in limited capacity. Only a
handful of such corpora are publicly available on the Web (Chen and Kan, 2013; Fairon and Paumier,
2006; Treurniet et al., 2012; Sanders, 2012; Tagg, 2009); they are limited in size and restricted to a few
language pairs.

The NUS SMS corpus (Chen and Kan, 2013) is probably the largest English SMS corpus consisting of
around 41000 messages. However, these messages are characteristic of Singaporean chat lingo and not
an accurate reflection of SMS style in other parts of the world. A corpus of 30000 French SMS messages
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was collected in (Fairon and Paumier, 2006) to study the idiosyncrasies of SMS language in comparison
with standard French. More recently, (Pennell and Liu, 2011) have used twitter data as a surrogate
for SMS messages. Most of these previous efforts have focused on normalization, i.e., translation of
SMS text to canonical text while we are interested in translating SMS messages from one language into
another (Eidelman et al., 2011).

Several works have addressed the problem of normalizing SMS text. A majority of these works have
used statistical machine translation (character-level) to translate SMS text into standard text (Pennell and
Liu, 2011; Aw et al., 2009; Kobus et al., 2008). (Beaufort et al., 2010) used a finite-state framework
to learn the mapping between SMS and canonical form. A beam search decoder for normalizing social
media text was presented in (Wang and Tou Ng, 2013). All these approaches rely on supervised train-
ing data to train the normalization model. In contrast, we use an unsupervised approach to learn the
normalization lexicon of word forms in SMS to standard text.

While several works have addressed the problem of normalizing SMS using machine translation, there
has been little to no work on the translation of SMS messages across languages on a large scale. Machine
translation of instant messages from English-to-Spanish was proposed in (Bangalore et al., 2002) where
multiple translation hypotheses from several off-the-shelf translation engines were combined using con-
sensus decoding. However, the approach did not consider any specific strategies for normalization and
the fidelity of training bitext is questionable since it was obtained using automatic machine translation.
Several products that enable multilingual communication with the aid of machine translation in con-
ventional chat, email, etc., are available in the market. However, most of these models are trained on
relatively clean bitext.

3 Problem Formulation

The objective in SMS translation is to translate a foreign sentence £°*% = f7™° ... | f9% into target
(English) sentence e = el = e1,--- 7. In general it is hard to procure such SMS bitext due to lack
of data and high cost of annotation. However, we typically have access to bitext in non-SMS domain.
Let f = f1,---, f; be the normalized version of the SMS input sentence. Given f*"*%, we choose the

sentence with highest probability among all possible target sentences,

8(£5™5) = arg max {P(e|f*™*)} (1)
P(e|f*™) ~ P(e) S P(£™, fle) 2)
f
— P(e) Y. P(£"™|£,€) P({[e) 3)
f

If one applies the max-sum approximation and assumes that P(f°"**|f. e) is independent of e,

é(f*"%) = argmax P(f*|e)P(e) “4)

where f* = arg maxy P(f**|f). Hence, the SMS translation problem can be decoupled into normal-
ization followed by statistical machine translation!.

4 Data

Typically, one has access to a large corpus of general bitext {f, e} while data from the SMS domain
{f*™5 e} is sparse. Compiling a large corpus of SMS messages is not straightforward as there are
several restrictions on the use of consumer SMS data. We are not aware of any large monolingual or
bilingual corpus of true SMS messages besides those mentioned in Section 2. To compile a corpus of
SMS messages, we used three sources of data: transcriptions of speech-based SMS collected through

'One can also use a lattice output from the normalization to jointly optimize over e and f
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smartphones, data collected through Amazon Mechanical Turk? and Twitter® as a surrogate for SMS-
like messages. We describe the composition of each of these data sources in the following subsections.

Corpus Message #count | Corpus Message #count
i love you 988157 ily2
hello 881635 n a meeting
hi 607536 | Amazon Mechanical Turk | check facebook | N/A
how are you 470999 kewl

Speech SMS | what’s up 251044 call u n a few
what are you doing | 218289 lol 472556
where are you 191912 | Twitter haha 232428
call 191430 Imao 102018
lol 105618 omg 709504
how’s it going 102977 thanks for the rt | 300254

Table 1: Examples of English messages collected from various sources in this work

4.1 Speech-based SMS

In the absence of access to a real feed of SMS messages, we used transcription of speech-based SMS
messages collected through a smartphone application. A majority of these messages were collected
while the users used the application in their cars. We had access to a total of 41.3 million English and
2.4 million Spanish automatic transcriptions. To avoid the use of erroneous transcripts, we sorted the
messages by frequency and manually translated the top 40,000 English and 10,000 Spanish messages,
respectively. Our final English-Spanish bitext corpus from this source of data consisted of 50,000 parallel
sentences. Table 1 shows the high frequency messages in this dataset.

4.2 Amazon Mechanical Turk

The SMS messages from speech-based interaction does not consist of any shorthands or orthographic
errors as the decoding vocabulary of the automatic speech recognizer is fixed. We posted a task on
Amazon Mechanical Turk, where we took the speech-based SMS messages and asked the turkers to enter
three responses to each message as they would on a smartphone. We iteratively posted the responses from
the turkers as messages to obtain more messages. We obtained a total of 1000 messages in English and
Spanish, respectively. Unlike the speech data, the responses contained several shorthands.

4.3 Twitter

Twitter is used by a large number of users for broadcasting messages, opinions, etc. The language used in
Twitter is similar to SMS and contains plenty of shorthands, spelling errors even though it is typically not
directed towards another individual. We compiled a data set of Twitter messages that we subsequently
translated to obtain a bilingual corpus. We used the Twitterdj API* to stream Twitter data for a set of
keywords (function words) over a week. The raw data consisted of roughly 106 million tweets. Subse-
quently, we performed some basic normalization (removal of @user, #tags, filtering advertisements, web
addresses) to obtain SMS-like tweets. Finally, we sorted the data by frequency and picked the top 10000
tweets. Eliminating the tweets present in either of the two previous sources resulted in 6790 messages
that we manually translated.

5 Framework

The user input is first stripped of any accents (Spanish), segmented into short chunks using an automatic
punctuation classifier. Subsequently, any shorthand in the message is expanded out using expansion dic-
tionaries (constructed manually and automatically) and finally translated using a phrase-based translation

Zhttps://www.mturk.com
3https://twitter.com
*http://twitterdj.org/en/
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model. Our framework allows the use of confusion networks in case of ambiguous shorthand expansions.
We describe each component of the pipeline in detail in the following sections.

5.1 Tokenization

Our initial analysis of SMS messages from users, especially in Spanish indicated that while some users
use accented characters in orthography, several others omit it for the sake of faster responses and con-
venience. Hence, we decided to train all our models on unaccented characters. Given a message, we
convert all accented characters to their corresponding unaccented forms, e.g., baiio — bano, followed by
lowercasing of all characters. We do not perform any other kind of tokenization.

5.2 Unsupervised SMS Normalization

In Section 5.2, we described a static lookup table for expanding abbreviations and shorthands typically
encountered in SMS messages, e.g., 4ever—forever. While a static lookup table provides a reasonable
way of handling common SMS abbreviations, it has limited coverage. In order to build a larger nor-
malization lexicon, we used distributed representation of words to induce the lexicon in an unsupervised
manner. Distributed word representations (Bengio et al., 2003; Collobert and Weston, 2008; Turian et al.,
2010) induced through deep neural networks have been shown to be useful in several natural language
processing applications. We use the notion of distributional similarity that is automatically induced
through the word representations for learning automatic normalization lexicons.

Canonical form | Noisy form

love loveeee, loveeeee, looove, love, wuv, wove, love, laffff, love, wuvvyv, luhhhh, love, luvvv, luv
starbucks starbs, sbucks

once oncee, lce

tomorrow tmrw, tomorrow, 2moro, tmrrw, tomarrow, tomoro, tomoz, 2mrw, tmr, tm, tmwr, 2mm, tmw, 2morro
forever foreva, Sever, foreverrrr, forver, foreeverrr, 4ever, Seva, 4eva, foreevaa, forevs, foreve

because cause, cos, coz, 'cos, ‘cause, bc, because, becuz, bcuz, cuz, bcus, bcoz, because

homework hwk, hw, hmwk, hmwrk, hmw, homeworkk, homwork, hmk, honework, homeowork
igualmente igualmentee, igualment, iwalmente

siempre simpre, siempre, 100pre, siempre, ciempre, siempre, siiempre, siemore, siempr, siemre, siempe
adios adi, al0, adio

contigo contigoo, cntigo, conmigo, contigoooo, kontigo, conmigoo, conmiqo

demasiado demaciado, demasido, demasiademente, demasiao

Table 2: Examples from the unsupervised normalization lexicon induced through deep learning

We started with the 106 million tweets described in Section 4.3 and used a deep neural network iden-
tical to that used in (Collobert and Weston, 2008), i.e., the network consisted of a lookup table, hidden
layer with 100 nodes and a linear layer with one output. However, we used a context of 5 words and
corrupted the centre word instead of the last word to learn the distributed representations. We performed
stochastic gradient minimization over 1000 epochs on the twitter data. Subsequently, we took the En-
glish and Spanish vocabularies in our translation model and found the 50 nearest neighbors using cosine
distance for each word. We trained the above representations using the Torch toolkit (Collobert et al.,
2011).

Feature English Spanish
dimension | Precision | Recall | Precision | Recall
100 70.4 97.4 69.8 97.3
200 72.2 97.5 79.2 100
300 70.4 97.4 71.6 100

Table 3: Performance of the unsupervised normalization procedure. Only 1-best for each word was
considered.

Once we obtained the 50 nearest neighbors for each word in the clean vocabulary, we used a com-
bination of cosine metric threshold and Levenshtein distance (weighted equally) between the consonant
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skeleton of the strings to construct the mapping lexicon. Finally, we inverted the table to obtain a nor-
malization lexicon. Our procedure currently finds only one-to-one mappings. We took 60 singleton
entries from the static normalization tables reported in Section 5.2 and evaluated the performance of our
approach. The results are shown in Table 3 and some examples of learned normalizations are shown in
Table 2.

5.3 Phrase Segmentation

In many SMS messages, multiple clauses may be concatenated without explicit punctuation. For exam-
ple, the message hi babe hope you're well sorry i missed your call needs to be interpreted as hi babe.
hope you’re well. sorry, i missed your call. We perform phrase segmentation using an automatic punc-
tuation classifier trained on SMS messages with punctuation. The classifier learns how to detect end of
sentence markers, i.e. periods, as well as commas in the input stream of unpunctuated words.

An English punctuation classifier and a Spanish punctuation classifier was trained. The former was
trained on two million words of smartphone data described in Section 4.1 while the latter was trained
on 223,000 words of Spanish subtitles from the OpenSubtitles® corpus. From each of these data sets, a
maximum entropy classifier was trained. Both classifiers utilized both unigram word and part of speech
(POS) features of a window size of two words around the target word to be classified. A POS tagger
trained on the English Penn Treebank provided English POS tags. Likewise, a Spanish POS tagger
provided Spanish POS tags. The training data for the Spanish tagger, 1.6 million words in size, was
obtained by running the Spanish Freeling parser over the Spanish version of TED talk transcripts. Results
are shown in Table 4. Both phrase segmenters detect end of sentence well. The Spanish phrase segmenter
detects commas better than the English one. This might be due to differences in the training sets; commas
appear about 20 times more often in the Spanish data than in the English data.

Class Precision | Recall | F-measure
English | period | 89.7 90.9 90.3

comma | 61.1 10.9 18.5
Spanish | period | 94.3 87.4 90.7

comma | 74.2 374 49.7

Table 4: Performance of automatic phrase segmentation (numbers are in %)

5.4 Machine Translation

We used a phrase-based translation framework with the phrase table represented as a finite-state trans-
ducer (Rangarajan Sridhar et al., 2013). Our framework proceeds by using the standard procedure of
performing word alignment using GIZA++ (Och and Ney, 2003) and obtaining phrases from the word
alignment using heuristics (Zens and Ney, 2004) and subsequently scoring them. The phrase table is
then represented as a finite-state transducer (FST). The FST decoder was used with minimum error rate
training (MERT) to compute a set of weights for the log-linear model. It is important to note that the
cost of arcs of the FST is a composite score (dot product of scores and weights) and hence requires an
additional lookup during the N-best generation phase in MERT to obtain the component scores. The
model is equivalent to Moses (?) phrase translation without reordering.

We noticed from the data collected in Section 4 that in typical SMS scenarios, a lot of phrases are stock
phrases and hence caching these phrases may result in high accuracies instead of deriving the translation
using a statistical model. We took the data created in Section 4 and created a FST to represent the
sentences. The motivation is to increase the precision of common entries as well as reduce the latency
involved in retrieving a translation from a statistical model. An example of the FST translation paradigm
is shown in Figure 1

We experimented with the notion of using a consensus-based word alignment by combining the align-
ment obtained through different alignment tools. We used GIZA++ (Och and Ney, 2003), Berkeley

>http://www.opensubtitles.org
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Cached Table

hello:hello howAdotyourdo:como*estas
° @'
hello

hello how are you —» hola como estas
how are you

Statistical Model

.
00~ 2—0oWIP o LM)

Figure 1: Illustration of the hybrid translation approach using FSTs. WIP and LM refer to the finite state
automata for word insertion penalty and language model, respectively.

Alignment strategy | en2es | es2en

GIZA++ 28.45 | 31.83
Pialign 28.08 | 33.48
Berkeley aligner 27.82 | 32.01
Union 28.01 | 33.14

Majority voting 27.32 | 32.96

Table 5: BLEU scores obtained using different alignment strategies. Only the statistical translation model
was used in the evaluation.

aligner (Liang et al., 2006) and the Phrasal ITG aligner (Pialign) (Neubig et al., 2011). We combined the
alignments in two different ways, taking the union of alignments or majority vote for each target word.
For training the translation model, we used a total of 28.5 million parallel sentences obtained from the
following sources: Opensubtitles (Tiedemann and Lars Nygaard, 2004), Europarl (Koehn, 2005), TED
talks (Cettolo et al., 2012) and Web. The bitext was processed to eliminate spurious pairs by restricting
the English and Spanish vocabularies to the top 150k frequent words as evidenced in a large collection of
monolingual corpora. We also eliminated bitext with ratio of English to Spanish words less than 0.5. The
initial model was optimized using MERT over 1000 parallel sentences from the SMS domain. Results of
the machine translation experiments are shown in Table 5. The test set used was 456 messages collected
in a real SMS interaction (see Section 6.1). The results indicate that consensus alignment procedure is not
superior to the individual alignment outputs. Furthermore, the BLEU scores obtained through both the
consensus procedures are not statistically significant with respect to the BLEU score obtained from the
individual alignment tools. Hence, we used with the phrase translation table obtained using the Phrasal
ITG aligner in all our experiments.

6 SMS Translation Service

In order to test the SMS translation models described in the previous sections, we created the infrastruc-
ture to intercept SMS messages, translate and deliver them in the preferred language of the recipient. The
users were simply asked to register their numbers with a particular language through a Web portal and
subsequently, all messages received by a user would be in the registered language. Some screenshots of
interaction between users is shown in Figure 2. For the messages that are translated, we show both the
original and translated messages. In cases where the translated message is longer than the character limit
per message, we split the message over two message boxes.
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6.1 User Evaluation

@ 4 4 & 5:04PM

<
meeting with . i could

go for coffee. and you
will?

Have you already had
coffee or are you asking
me so that you can join
me

original: Me gustaria ir
para cafe contigo, pero
ahora necesito responder
a los cientos de mensajes
que recibi

trans: i'd like to go for
coffee with you, but now i
need to respond to the

[a] Saving screenshot...

cuatro de julio. Gracias
por preguntar . Te traigo
un recuerdo B - )

trans: i believe that the
fourth of july. thanks for
asking. i'll bring you a
souvenir right - )

original: Me gusta vivir al
limite
rans’ ili

P & 1% 503PM

<
trans: just to certain.

How do you plan to spend
the gift card

original: Ron, puedes
escribir algo un poco mas
interesante !

trans: rum, you can write
something a little more
interesting!

How are you certain that |
am ron

original: Tengo MIS
razones
trans: i have my reasons.

hundreds of messages
that i received

Figure 2: Screenshots of the SMS interface with translation

In order to test the SMS translation models described in the previous sections, we created the infras-
tructure to intercept SMS messages, translate and deliver them in the preferred language of the recipient.
For the messages that are translated, we show both the original and translated messages. In cases where
the translated message is longer than the character limit per message, we split the message over two
message boxes. As part of the study we enrolled 20 English and 5 Spanish participants. The Spanish
participants were bilingual while the English users had little to no knowledge of Spanish. Some of these
interactions turned out to be short while others were had a large number of turns. We collected the
messages exchanged over 2 days that amounted to 241 English and 215 Spanish messages.

Adequacy of Translation

9 45
8 40
]
2
87 355
£e 02
5
§s 2% &
-
o
G4 209
] g
a3 15 8
;
z2 05
[-9
| 5
0 0
Al Most Much Little None

Figure 3: Subjective ratings regarding the adequacy of using SMS translation

We manually translated the 456 messages to create a test data set for evaluation purposes. In the
absence of real SMS feeds in training, this test set is the closest we have to real SMS field data. The BLEU
scores using the entire pipeline (normalization, punctuation, cached and statistical machine translation)
for English-Spanish and Spanish-English was 31.25 and 37.19, respectively. We also created a survey
for the participants to evaluate fluency and adequacy (LDC, 2005) Figures 3 and 4 show the survey
results for adequacy and fluency, respectively. The results indicate that a majority of the people found
the translation quality to be sufficiently adequate while the fluency was between good and non-native.

7 Discussion

The SMS bitext described in Section 4 consists of a total 58790 unique parallel sentences in the SMS
domain. While the bulk of the data (speech-based) does not contain abbreviations and spelling errors, it
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Fluency of Translation

Number of participants
N
w
8
Percentage of participants

Figure 4: Subjective ratings regarding the fluency of using SMS translation

is highly representative of SMS messages and in fact is perfectly suited for statistical machine translation
that typically uses normalized and tokenized data. The iterative procedure using Amazon Mechanical
Turk is a good approach to procuring surrogate SMS data. We plan to continue harvesting data using this
approach.

The unsupervised normalization lexicon learning using deep learning performs a good job of learning
SMS shorthands. However, the induced lexicon contains only one-to-one word mappings. If one were
to form compound words for a given dataset, the procedure can be potentially used for learning many-
to-one and many-to-many mappings. Our framework also learns spelling errors rather well. It may also
be possible to use distributed representations learned through log-linear models (Mikolov et al., 2013)
for our task. However, this is beyond the scope of the work presented in this paper. Finally, we used
only 1-best match for the unsupervised lexicon used in this work. One can potentially use a confusion
network and compose it with the FST model to achieve higher accuracies. Our scheme results in fairly
high precision with almost no false negatives (recall is extremely high) and can be reliably applied for
normalization. The unsupervised normalization scheme did not yield significant improvements in BLEU
score since our test set contained only 4 instances where shorthands were used.

Conventionally, sentence segmentation has been useful in improving the quality of statistical machine
translation (Matusov et al., 2006; Matusov et al., 2005). Such segmentation, albeit into shorter phrases,
is also useful for SMS translation. In the absence of phrase segmentation, the BLEU scores for English-
Spanish and Spanish-English drop to 29.65 and 23.95, respectively. The degradation for Spanish-English
messages is quite severe (drop from 37.19 to 23.95) as the lack of segmentation greatly reduces the use of
the cached table. In the absence of segmentation, the cached table was used for 12.8% and 14.4% of the
total phrases for English-Spanish and Spanish-English, respectively. However, with phrase segmentation
the cached table was used for 29.2% and 39.2% of total phrases.

The subjective results obtained from the user trial augur well for the real use of translation technology
as a feature in SMS. One of the issues in the study was balancing the English and Spanish participants.
Since we had access to more English participants (20) in comparison with Spanish participants (5), the
rate of exchange was slow. However, since SMS messages are not required to be real-time, participants
still engaged in a meaningful conversation. Subjective evaluation results using LDC criteria indicate
that most users were happy with the adequacy of translation while the fluency was rated as average. In
general, SMSS messages are not very fluent due to character limit imposed on the exchanges and hence
machine translation has to use potentially disfluent source text.

8 Conclusion

We presented an application of statistical machine translation for translating SMS messages. We decou-
pled SMS translation into normalization followed by translation. Our unsupervised SMS normalization
approach exploits the distributional similarity of words and learns SMS shorthands with good accuracy.
We used a hybrid translation approach to exploit the repetitive nature of high frequency SMS messages.
Both objective and subjective evaluation experiments indicate that our system generates translation with
high quality while addressing the idiosyncrasies of SMS messages.
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