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Abstract

Authorship detection is a challenging task due to many design choices the user has to decide
on. The performance highly depends on the right set of features, the amount of data, in-sample
vs. out-of-sample settings, and profile- vs. instance-based approaches. So far, the variety of
combinations renders off-the-shelf methods for authorship detection inappropriate. We propose a
novel and generally deployable method that does not share these limitations. We treat authorship
attribution as an anomaly detection problem where author regions are learned in feature space.
The choice of the right feature space for a given task is identified automatically by representing
the optimal solution as a linear mixture of multiple kernel functions (MKL). Our approach allows
to include labelled as well as unlabelled examples to remedy the in-sample and out-of-sample
problems. Empirically, we observe our proposed novel technique either to be better or on par
with baseline competitors. However, our method relieves the user from critical design choices
(e.g., feature set) and can therefore be used as an off-the-shelf method for authorship attribution.

1 Introduction

Automatically attributing a piece of text to its author is one of the oldest problems studied in linguis-
tics (Mendenhall, 1887). Despite being an old problem, authorship attribution is still highly topical
and todays applications range from plagiarism detection (Maurer et al., 2006), identifying the origin of
anonymous harassments in emails, blogs, and chat rooms (Tan et al., 2013) to copyright and estate is-
sues as well as resolving historical questions of disputed authorship (Mosteller and Wallace, 1964; Fung,
2003).

Intrinsically, the goal of authorship detection is to identify the characteristic traits of an author. The
idea is that, these traits distinguish an author from others in terms of writing style, use of words, etc. Thus,
prior work often focuses on designing and extracting features from text to capture these traits. There is a
great deal of features proposed for authorship detection, including word or character n-grams (Burrows,
1987; Houvardas and Stamatatos, 2006), part-of-speech (Stamatatos et al., 2001), probabilistic context-
free grammars (Raghavan et al., 2010), or linguistic features (Koppel et al., 2006). However, indicative
features for one author do not necessarily help to characterise another. A major problem in authorship
detection is therefore to find the right set of features for a given task at hand (Forman, 2003).

Algorithmically, a variety of different models have been studied in the context of authorship detection,
ranging from probabilistic approaches (Seroussi et al., 2011) and similarity-based methods (Koppel et
al., 2011) to vector space models (Fung, 2003; Li et al., 2006). The approaches either treat documents as
independent (instance-based) or concatenate documents by the same author (profile-based). Intuitively,
the latter is helpful if an author has a concise way of expressing herself so that the concatenated document
allows to extract a statistic that is sufficient for capturing her style. On the other hand, instance-based
approaches are better suited for expressive authors and have advantages in sparse data scenarios.

Another aspect in authorship attribution is the application scenario of the final model. In transductive
(in-sample) settings, the unlabelled documents of interest are already included in the training process
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Figure 1: Three solutions of an anomaly detection problem where data is represented by RBF kernels
with different band-width parameters. Combining anomaly detection with multiple kernel learning al-
lows to include all three kernels simultaneously in the optimisation and to find the optimal linear mixture
of the three (or more) kernels together automatically for a given task.

and the model does not necessarily perform well on new and unseen texts. By contrast, inductive (out-
of-sample) scenarios generally allow to learn models that can be applied to any future text but require
larger training samples to achieve accurate performances.

In this paper, we propose a general machine learning-based approach to authorship detection. Our
approach remedies the above mentioned problems by fusing existing techniques: (i) We cast authorship
attribution as an anomaly detection problem where one model is learned for every author. The idea is to
identify a concise region in feature space that contains (most of) the documents of the author of interest
while other documents are considered outliers. Thus, the model can be viewed as a profile-based ap-
proach in feature space while the data is treated on an instance-based level. (ii) We remedy the in-sample
/ out-of-sample problem by providing a semi-supervised extension of the commonly unsupervised outlier
detection framework. By doing so, we may include authorship labels for the already known documents
and leave the disputed ones unlabelled. (iii) Finally, we devise our model consequentially as a member
of the multiple kernel learning family to automatically include a mathematically well founded feature
selection framework that renders the method generally applicable. The optimal solution is given by a
(possibly sparse) linear mixture of kernel functions.

Empirically, we observe that our approach consistently outperforms baseline competitors or confirms
common knowledge with respect to the authorship of disputed articles. The main advantage of the
method however lies in its simplicity. Practitioners do not need to take critical design choices in terms of
which features to use and which not. By contrast, all features (kernels) can be used in the optimisation
and the method itself finds the optimal combination for the problem at hand.

The remainder of this paper is structured as follows. Section 2 reviews related work. Our main contri-
bution is presented in Section 3. We report on empirical results in Section 4 and Section 5 concludes.

2 Related Work

Authorship attribution using linguistic and stylistic features has a long tradition and can be dated back
to the nineteenth century. As a first attempt, Mendenhall (Mendenhall, 1887) uses features based on
word lengths to characterise the plays of Shakespeare. Later in the first half of the 20th century, different
textual statistics, such as Zipf’s distribution (Zipf, 1932) and Yule’s k-statistic (Yule, 1944) have been
proposed to quantify textual style. A study conducted by (Mosteller and Wallace, 1964) is one of the most
influential modern work in authorship attribution. They use a Bayesian approach to analyse frequencies
of a small set of function words for The Federalist Papers, a series of 85 political essays written by John
Jay, Alexander Hamilton, and James Madison. Until the late 1990s, research in stylometry has been
dominated by feature engineering to quantify writing style (Holmes, 1998) and about 1,000 different
measures have been proposed (Rudman, 1997).
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Document representation is essential for author attribution tasks. Features aim to capture character-
istic traits of authors that persist across topics. Traditional stylometric features include function and
high-frequency words, hapax legomena, Yules k-statistic, syllable distributions, sentence length, word
length and word frequencies, vocabulary richness functions as well as syntactic features. Many stud-
ies combine features of different types using multivariate analyses. Some researchers use punctuation
symbols while others experiment with n-grams (Diederich et al., 2003). Grammatical style markers with
natural language processing techniques are also used to extract features from the documents.

Also in terms of technical approaches, authorship attribution has been studied with a wide range of
different approaches. The deployed techniques can be broadly divided into three categories: machine
learning (Diederich et al., 2003), multivariate/cluster analysis (Khmelev, 2000), and natural language
processing (Stamatatos et al., 2000). Principal components analysis (PCA) is one of the widely used
techinques for authorship studies, for instance, (Holmes and Crofts, 2010) apply PCA to identify the
authorship of unknown articles that have been attributed to Stephen Crane. In addition, machine learning-
based approaches, including neural networks (Neme et al., 2011) and support vector machines (SVMs)
(Diederich et al., 2003), are frequently used to discriminate documents by different authors. An excellent
survey on the diversity of approaches for authorship detection is provided by (Stamatatos, 2009).

Density level set estimation, also known as one-class learning (Tax and Duin, 1999; Schölkopf et
al., 1999), is the problem of learning a representation of a single class of interest, rejecting data points
that deviate from the learned model of normality. Thus, it has been proven very successful in anomaly
detection scenarios such as network intrusion detection (Görnitz et al., 2009). Various extensions have
been proposed, i.e. to incorporate prior and additional knowledge (Görnitz et al., 2013; Blanchard et al.,
2010) in a semi-supervised fashion (Chapelle et al., 2006) and to learn linear combinations of kernels
(Kloft et al., 2011; Rakotomamonjy et al., 2008) which is especially usefull whenever the right choice of
representation is unknown.

3 Methodology

In this section, we cast semi-supervised anomaly detection as an instance of multiple kernel learning.
The rational for this idea is shown in Figure 1. The figure shows three solutions for an anomaly de-
tection task. The data is represented by RBF kernels with different band-width parameters. As shown
in the figure, the choice of the band width parameter is crucial and leads to very different solutions.
Usually, kernel parameters are thus included in the model selection and their optimisation is often time
consuming. Fusing the anomaly detection with multiple kernel learning allows to include all three ker-
nels simultaneously in the optimisation and to find the best linear mixture of the three (or more) kernels
together with model parameters for the data at hand.

We briefly review anomaly detection and semi-supervised anomaly detection in Sections 3.1 and 3.2,
respectively, and present our main contribution, multiple kernel learning for anomaly detection, in Sec-
tion 3.3.

3.1 Preliminaries
Anomaly detection is often cast as an unsupervised one-class problem where the goal is to find a hyper-
plane that separates the majority of the input examples from the origin with maximum margin, so that, by
definition, points not exceeding the hyperplane are considered outliers. Analogously, we aim to learn a
separating hyperplane for articles by an author of interest, such that documents not exceeding the learned
hyperplane are written by other authors.

Given a n articles x1, . . . ,xn of possibly different authors, a straight forward optimisation problem
that identifies the hyperplane in terms of its normal vector w and threshold ρ is known as one-class
support vector machine (Tax and Duin, 1999; Schölkopf et al., 1999) and given by

min
w,ρ,ξ≥0

1
2
‖w ‖22 − ρ+ ηu

n∑
i=1

ξi

s.t. ∀ni=1 : 〈w, φ(xi)〉 ≥ ρ− ξi.
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The hyperplane is realised by the decision function

f(x) = 〈w, φ(x)〉 − ρ

and new articles are credited to the author if f(x) > 0 and are considered work by someone else if
f(x) ≤ 0. The threshold ρ can be interpreted as a measure of expressiveness of an author. E.g., authors
who have a very clear and concise style realise smaller thresholds than expressive authors that may adopt
to different writing styles.

3.2 Semi-supervised Anomaly Detection

Using only unlabelled data is usually leading to inaccurate models in the presence of only
a few data points. We therefore extend the problem setting to include m labeled examples
(xn+1, yn+1), . . . , (xn+m, yn+m) in addition to the n unlabelled ones. Labels yi ∈ {+1,−1} are con-
sidered binary, that is in case yi = +1, document xi belongs to the author of interest. To combine sums
and hence, improve readability, we introduce labels yi = +1 ∀ i = 1, . . . , n for all unlabelled examples
and an indicator function Ic ≡ [c > n] to mask labeled examples; the function Ic simply returns 1 if
c > n and 0 otherwise.

A semi-supervised generalisation of the hypersphere model of the previous section is the convex semi-
supervised anomaly detection (SSAD) (Görnitz et al., 2013) which uses an L2-regularizer together with
the hinge-loss. Let γ be the margin for the labeled examples and κ, ηu, and ηl trade-off parameters, the
optimisation problem becomes

min
w,ρ,γ≥0,ξ≥0

1
2
‖w ‖22 − ρ− κγ +

n+m∑
i=1

(Iiηl + (1− Ii)ηu)ξi

s.t. ∀n+m
i=1 : yi〈w, φ(xi)〉 ≥ yiρ+ Iiγ − ξi.

The solution w admits a dual representation and can be written as

w =
n+m∑
i=1

αiyiφ(xi)

and hence, the decision function depends only on inner products of the input examples wich paves the
way for kernel functions Kφ(x,x′) = 〈φ(x), φ(x′)〉 (see (Müller et al., 2001) for an introduction to
kernels). It holds

f(x) =
n+m∑
i=1

αiyi〈φ(xi), φ(x)〉 − ρ =
n+m∑
i=1

αiyiKφ(xi,x)− ρ.

We omit the subscript φ in the remainder to not clutter notation unnecessarily.

3.3 Multiple Kernel Learning for Anomaly Detection

Learning linear combinations of multiple kernels is an appealing strategy when the right choice of rep-
resentations is unknown. We therefore generalise the semi-supervised anomaly detection of the previous
section as a member of the multiple kernel learning framework (Lanckriet et al., 2004). Thus, we aim to
learn a weighted combination of T kernels with mixing coefficients β = (β1, . . . , βT ):

KMKL(x,x′) :=
T∑
t=1

βtKt(x,x′) =
T∑
t=1

βt〈φt(x), φt(x′)〉

=
T∑
t=1

〈
√
βtφt(x),

√
βtφt(x′)〉.
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In general, properties of the mixing coefficients include (i) non-negativity, hence βt ≥ 0 and (ii) normal-
isation ‖β ‖p = 1. Recent work (Kloft et al., 2011) suggests to use the more general p-norm instead of
a common 1-norm (Lanckriet et al., 2004; Bach et al., 2004; Rakotomamonjy et al., 2008). The latter
usually leads to sparse mixing coefficients which is not appealing in every situation whereas p-norm with
1 ≤ p ≤ inf admits sparsity adjustments for the problem at hand and thus adds flexibility. Incorporating
multiple feature representations in our model introduced in Section 3.1 leads to

fMKL(x) =
T∑
t=1

〈ŵt,
√
βtφt(x)〉 − ρ =

T∑
t=1

√
βt〈ŵt, φt(x)〉 − ρ. (1)

Due to technical reasons, i.e. to preserve convexity, we substitute the model parameters wt =
√
βtŵt

and arrive at the revised primal MKL-SSAD optimisation problem:

min
{wt},ρ,γ≥0,ξ≥0,β≥0

λ

2
‖β ‖2p +

1
2

T∑
t=1

1
βt
‖wt ‖22 − ρ− κγ +

n+m∑
i=1

(Iiηl + (1− Ii)ηu)ξi

s.t. ∀n+m
i=1 : yi

T∑
t=1

〈wt, φt(xi)〉 ≥ yiρ+ Iiγ − ξi. (2)

(Kloft et al., 2011) prove the equivalence of Tikhonov and Ivanov regularisation which allows to move
the regulariser on the mixing coefficients in the objective function. We will exploit this relation on various
occasions in this section. Deriving the Lagrange dual problem, we arrive at the intermediate saddle point
problem

max
α

min
{wt},β≥0

λ

2
‖β ‖2p +

1
2

T∑
t=1

1
βt
‖wt ‖22 −

n+m∑
i=1

αiyi
∑
t

〈wt, φt(xi)〉

s.t. κ ≤
n+m∑
i=1

Iiαi and 0 ≤ αi ≤ Iiηl + (1− Ii)ηu ∀ i

We are solving the optimisation problem in a block-coordinate descent fashion by alternating between
w and β. This enables us to compute the latter analytically assuming fixed variables w and setting the
partial derivative to zero:

λβt
p−1 ‖β ‖2−pp − ‖wt ‖22

βt
2 = 0.

Therefore, given Υ ≥ 0 we get

βt = Υ‖wt ‖
2

p+1

2 .

Furthermore, it holds that at any optimal point ‖β ‖p = 1 and solving for Υ gives Υ =

1/(
∑T

t=1 ‖wt ‖
2p

p+1

2 )
1
p . Putting things together, gives the analytical update rule

βt =
‖wt ‖

2
p+1

2

(
∑T

t=1 ‖wt ‖
2p

p+1

2 )
1
p

(3)

which, since only norms are involved, ensures non-negativity for the mixing coefficients. Substituting
wt using the representer theorem wt = βt

∑n+m
i=1 αiyiφt(xi) yields the final optimisation problem for
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Algorithm 1 Proposed optimization algorithm for MKL-SSAD (2)
Require: x,y, ηu, ηl, κ & p− norm

Initialize kernel mixture coefficients such that ‖βz=0 ‖p = 1
while Until Convergence do

Step 1: solve the convex SSAD problem as stated in Eqn. (4)
αz+1 = argmaxα:0≤αi≤Iiηl+(1−Ii)ηu

J(α,βz) s.t. κ ≤∑n+m
i=1 Iiαi

Step 2: optimize the weights according to Eqn. (3)
βz+1 = argminβ≥0 J(αz+1,β) s.t. ‖β ‖2p ≤ 1
z=z+1

end while
return Trained parameter vector α?, weights β∗

MKL-SSAD:

max
α

min
β:‖β ‖2p≤1

=:J(α,β)︷ ︸︸ ︷
−1

2

∑
i,j

αiαjyiyj

T∑
t=1

βtKt(xi,xj) (4)

s.t. κ ≤
n+m∑
i=1

Iiαi and 0 ≤ αi ≤ Iiηl + (1− Ii)ηu ∀ i

As a block-coordinate descent method, we can iteratively alternate between the two optimisation blocks
and every limit point of Algorithm 1 is a globally optimal point (cmp. also (Kloft et al., 2011)). Algo-
rithm 1 summarises the proposed optimisation procedure.

4 Empirical Results

In this section, we empirically evaluate the benefit of fusing semi-supervised anomaly detection with
multiple kernel learning. We experiment on two data sets, the Reuters-50-50 corpus in Section 4.1 and
the Federalist Papers in Section 4.2

4.1 Reuters 50-50
We use a subset of the Reuters 50-50 data set1 to evaluate the performance of the aforementioned
approaches. The reduced data contains 1000 articles written by 10 authors, Aaron Pressman, Alan
Crosby, Alexander Smith, Benjamin Kang Lim, Bernard Hickey, Brad Dorfman, Darren Schuettler,
David Lawder, Edna Fernandes, and Eric Auchard.

We deploy the following four kernels to represent documents: the first kernel is made of 484 func-
tion words taken from (Koppel and Schler, 2003), the second contains part-of-speech (POS) tags, the
third is assembled by 3-letter suffixes, the last one simply a bag-of-words (BOW) kernel. We split the
data into training (90%) and test (10%) sets and conduct a 10-fold cross-validation on the training set
for model selection. The best performing models are then evaluated on the test set. In this set of ex-
periments, we use a transductive setting where all training instances are labeled and only holdout and
test articles are unlabelled. We compare the performance of our approach with different p-norms to
the SSAD which uses one kernel at a time. For our MKL-based approach we use p-norms in the set
p ∈ {1, 1.7783, 3.1623, 5.6234, 10}.

The results in terms of averaged micro- and macro-F1 measures are shown in Table 1. MKL con-
sistently outperforms the single-kernel baseline for all p-norms. That is, instead of extensively experi-
menting with SSAD and different kernel functions and parameter selections, a single run with our MKL
already leads to better performances in both metrics. The rightmost column in the table shows the result
for SSAD using a sum of the input kernels. Apparently, the performance is worse than using a bag-
of-words kernel alone. This result underlines the necessity of effective feature selection techniques for

1https://archive.ics.uci.edu/ml/datasets/Reuter 50 50
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Figure 2: Kernel mixture coefficients for the 10 classes

authorship attribution. Note that our method can actually be viewed as an ensemble method that com-
bines several models as shown in Equation (1). However, compared to traditional ensembles, our method
uses a convex combination and hence returns the optimal ensemble given the data.

Table 1: F-scores for the subset of Reuters 50-50
p-norm MKL SSAD

1 1.7783 3.1623 5.6234 10 func-w POS Suffix-3 BOW
∑

Fmicro 73.46 73.08 73.84 73.89 74.23 63.08 54.62 70.01 72.85 61.76
Fmacro 79.23 78.86 79.63 79.76 80.07 68.66 58.03 74.01 78.09 70.93

Figure 2 visualises the resulting mixing coefficients for the 10 authors/classifiers. While the models
are very similar at first sight, small deviations indicate differences in the style of the authors. Consider
for instance the top-left matrix. The contribution of the part-of-speech tag kernel (second column) to the
final solution is less than for the other authors. By contrast, the importance of the Suffix-3 kernel has
(slightly) more impact than for the remaining authors. This result shows that author-dependent mixtures
are found that help to capture characteristic traits of the respective writing styles.

4.2 Revisiting the Federalist Papers
The Federalist Papers are a series of 85 articles and essays written during 1787–1788. They were pub-
lished anonymously to persuade the citizens of the State of New York to ratify the Constitution. Later,
these papers were credited to Alexander Hamilton, John Jay, and James Madison; 73 of the documents
are uniquely associated with one of the three authors while the remaining 12, also known as the disputed
papers, have been claimed by both, Hamilton and Madison. Three of the 73 articles are considered joint
work by Hamilton and Madison. Previous studies often assign all 12 disputed papers to Madison which
we assume as ground-truth in the remainder (Mosteller and Wallace, 1964; Fung, 2003).

To confirm or refuse these previous findings, we conduct an experiment using same four kernels as
in the previous section, that is, a function words kernel (Koppel and Schler, 2003), a part-of-speech
(POS) tag kernel, a Suffix-3 kernel, and a bag-of-words (BOW) kernel. We compare the performance
of our approach (MKL) with semi-supervised anomaly detection (SSAD) (Görnitz et al., 2013), support
vector data description (SVDD) (Tax and Duin, 1999), and the one-class SVM (OCSVM) (Schölkopf et
al., 1999). As before, the baselines cannot use all kernels at a time and are evaluated on every kernel
separately. For simplicity, we show only the MKL results for parameter p = 2 as all other p-norms that
we tried out lead to the same result.
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We randomly divide the undisputed papers into training (80%) and holdout (20%) and use the 12
disputed papers for testing. We make sure that training sets contain at least three examples of every
author and two articles written jointly by Hamilton and Madison. Otherwise we discard and draw again.
We repeat experiments five times with randomly drawn training and holdout sets and report on averaged
accuracies for the disputed test set.

Table 2: Results for the disputed articles of the Federalist papers.

kernel H&M M J H
MKL (all) 0 12 0 0

SSAD

484fw 0 12 0 0
POS 9 0 3 0

Suffix3 0 12 0 0
BoW 0 0 0 12

SVDD

484fw 12 0 0 0
POS 12 0 0 0

Suffix3 12 0 0 0
BoW 12 0 0 0

OCSVM

484fw 12 0 0 0
POS 12 0 0 0

Suffix3 12 0 0 0
BoW 12 0 0 0

The results are shown in Table 2. The one-class SVM and SVDD constantly credit the 12 disputed
articles as joint work by Hamilton and Madison. The outcome of SSAD highly depends on the kernel
function; while the part-of-speech kernel distributes the papers on Jay (3) and Hamilton and Madison
(9), respectively, the bag-of-words kernel assigns all documents to Hamilton. By contrast, SVDD with
function word and Suffix-3 kernels attribute the articles to Madison. The same outcome is observed
for our novel MKL that also credits the 12 papers to Madison. Thus, MKL and SSAD with function
words and BoW kernel confirm todays assumption that all 12 papers have been written by Madison.
However, choosing SSAD as the base classifier in the absence of prior knowledge leaves much room for
interpretations and the user in the need of deciding between three solutions, depending on which kernel
she prefers. By using our MKL, selecting features and or kernel functions is no longer necessary as the
learning algorithm itself picks the right combination of kernels for the problem at hand. Thus, the more
kernels are thrown into, the richer the decision space for the MKL.

5 Conclusion

We proposed a universal method for authorship detection. Our approach built upon semi-supervised
anomaly detection and generalised existing techniques to utilise multiple kernels; a requirement which
is particularly beneficial for authorship attribution as features are usually tailored to tasks at hand and do
not necessarily translate well to other authors. Our method is proven to converge to the optimal solution
and simple to implement. Our empirical results show the robustness of our approach as it consistently
outperforms baseline competitors on a subset of Reuters 50-50 or confirms common knowledge wrt the
authorship of disputed articles of the Federalist Papers. The main advantage of the method however lies
in its simplicity. Practitioners do not need to take critical design choices in terms of which features to use
and which not. By contrast, all features (kernels) can be used in the optimisation and the method itself
finds the optimal combination for the problem at hand.
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