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Abstract

This paper proposes a simple yet effective framework of @mf$s-lingual syntax projection to
transfer syntactic structures from source language tetéagguage using monolingual treebanks
and large-scale bilingual parallel text. Heseftmeans that we only project reliable dependencies
to compose high-quality target structures. The projeatsthinces are then used as additional
training data to improve the performance of supervisedguars The major issues for this
idea are 1) errors from the source-language parser and envisgrd word aligner; 2) intrinsic
syntactic non-isomorphism between languages; 3) incamparse trees after projection. To
handle the first two issues, we propose to use a probabitisfiendency parser trained on the
target-language treebank, and prune out unlikely prajedependencies that have low marginal
probabilities. To make use of the incomplete projected astit structures, we adopt a new
learning technique based @mbiguous labelings For a word that has no head words after
projection, we enrich the projected structure with all otwerds as its candidate heads as long
as the newly-added dependency does not cross any projegpeshdencies. In this way, the
syntactic structure of a sentence becomes a parse forebig{ams labels) instead of a single
parse tree. During training, the objective is to maximizeniixed likelihood of manually labeled
instances and projected instances with ambiguous lalsellExperimental results on benchmark
data show that our method significantly outperforms a strioasgline supervised parser and
previous syntax projection methods.

1 Introduction

During the past decade, supervised dependency parsing &@es gneat progress. However, due to
the limitation of scale and genre coverage of labeled dats, very difficult to further improve the
performance of supervised parsers. On the other hand, érrjstime-consuming and labor-intensive to
manually construct treebanks. Therefore, lots of recemk\was been devoted to get help from bilingual
constraints. The motivation behind are two-fold. First,iffiallt syntactic ambiguity in one language
may be very easy to resolve in another language. Second,@anourate parser on one language may
help an inferior parser on another language, where the npesfoce difference may be due to the intrinsic
complexity of languages or the scale of accessible labelgalurces.

Following the above research line, much effort has been decently to explore bilingual constraints
for parsing. Burkett and Klein (2008) propose a rerankingellamethod for joint constituent parsing
of bitext, which can make use of structural corresponderetufes in both languages. Their method
needs bilingual treebanks with manually labeled syntacdies on both sides for training. Huang et
al. (2009) compose useful parsing features based on wordemag information in source-language
sentences. Chen et al. (2010a) derive bilingual subtresti@ints with auto-parsed source-language
sentences. During training, both Huang et al. (2009) anch@hel. (2010a) require bilingual text with
target-language gold-standard dependency trees. Alleabmrk shows significant performance gain
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over monolingual counterparts. However, one potentiahdliantage is that bilingual treebanks and
bitext with one-side annotation are difficult to obtain. Téfere, They usually conduct experiments on
treebanks with a few thousand sentences. To break thisraonisChen et al. (2011) extend their work
in Chen et al. (2010a) and translate text of monolingualb@e&s to obtain bilingual treebanks with a
statistical machine translation system.

This paper explores another line of research and aims ta boestate-of-the-art parsing accuracy
via syntax projection. Syntax projection typically works fallows. First, we train a parser on source-
language treebank, called a source parser. Then, we useutoe parser to produce automatic syntactic
structures on the source side of bitext. Next, with the hégutomatic word alignments, we project the
source-side syntactic structures into the target sidealliyjrthe target-side structures are used as gold-
standard to train new parsing models of target languagevideie work on syntax projection mostly
focuses on unsupervised grammar induction where no labeledexists for target language (Hwa et al.,
2005; Spreyer and Kuhn, 2009; Gancheyv et al., 2009; Liu €@13). Smith and Eisner (2009) propose
quasi-synchronous grammar for cross-lingual parser gioje and assume the existence of hundreds
of target language annotated sentences. Similar to our imotlkis paper, Jiang et al. (2010) try to
explore projected structures to further improve the pentorce of statistical parsers trained on full-scale
monolingual treebanks (see Section 4.4 for performancepaason).

The major issues for syntax projection are 1) errors fronsthegce-language parser and unsupervised
word aligner; 2) intrinsic syntactic non-isomorphism beem languages; 3) incomplete parse trees after
projection. Hwa et al. (2005) propose a simple projectigoathm based on thdirect correspondence
assumptiofDCA). They apply post-editing to the projected structusih a set of hand-crafted heuristic
rules, in order to handle some typical cross-lingual syitadivergences. Similarly, Ganchev et al.
(2009) manually design several language-specific constidiring projection, and use projected partial
structures as soft supervision during training based otegos regularization (Ganchev et al., 2010).
To make use of projected instances with incomplete treegy8pand Kuhn (2009) propose a heuristic
method to adapt training procedures of dependency parsistead of directly using incomplete trees
to train dependency parsers, Jiang et al. (2010) train & ti@endency/non-dependency classifier on
projected syntactic structures, and use outputs of theifirsas auxiliary features to help supervised
parsers. One potential common drawback of above work isabtle ¢f a systematic way to handle
projection errors and incomplete trees.

Different from previous work, this paper proposes a sime sffective framework of soft syntax
projection for dependency parsing, and provides a moreastegnd systematic way to handle the
above issues. First, we propose to use a probabilistic paeseed on target-language treebank, and
prune unlikely projected dependencies which have very lawgmal probabilities. Second, we adopt
a new learning technique based on ambiguous labelings te msé of projected incomplete trees
for training. For a word that has no head words after prapectiwe enrich the projected structure
by adding all possible words as its heads as long as the remtdgd dependency does not cross any
projected dependencies. In this way, the syntactic streicti a sentence becomes a parse forest
(ambiguous labelings) instead of a single parse tree. Duraining, the objective is to maximize
the mixed likelihood of manually labeled instances andequigd instances with ambiguous labelings.
Experimental results on benchmark data show that our mesiigadicantly outperforms a strong baseline
supervised parser and previous syntactic projection rdstho

2 Syntax Projection

Given an input sentence = wow; ...wy,,, a dependency tree&= {(h,m) : 0 < h <n,0 <m < n},
where(h, m) indicates a directed arc from theadword w;, to themodifierw,,,, andwy is an artificial
node linking to the root of the sentence.

Syntax projection aims to project the dependency &&ef a source-language sentenceinto the
dependency structure of its target-language translaticia word alignments, where a word alignment
a; = z means the target-side wotd is aligned into the source-side worte, as depicted in Figure
1(a) and Figure 1(b). For simplicity, we avoid one-to-maligranents by keeping the one with highest
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Figure 1. lllustration of syntax projection from English@hinese with a sentence fragment. The two
Chinese auxiliary words it 3" (past tense marker) andi¥,” (relative clause marker), are not aligned to
any English words.

marginal probability when the target word is aligned to npl#t source words. We first introduce a
simple syntax projection approach based on DCA (Hwa et @05®, and then propose two extensions
to handle parsing and aligning errors and cross-lingualasyic divergences.

Projection with DCA. If two target wordsw; andw; are aligned to two different source word§. and
We, and the two words compose a dependency in the sourcédses) < d®, then add a dependency
(i,7) into the projected syntactic structure. For example, asveha Figure 1(a), the two Chinese
words “f#,” and “%5” are aligned to the two English words “ditland “things ", and the dependency
“things; ~dids” is included in the source tree. Therefore, we project thgeddency into the target side
and add a dependency, ~%5” into the projected structure, as shown in Figure 1(b). Ariobs
drawback of DCA is that it may produce many wrong dependsndige to the errors in the automatic
source-language parse trees and word alignments. Evermaitlual parse trees and word alignments,
syntactic divergences between languages can also leadjéziion errors.

Pruned with target-side marginals. To overcome the weakness of DCA, we propose to use target-
side marginal probabilities to constrain the projectioagass and prune obviously bad projections. We
train a probabilistic parser on an existing target-sideldesk. For each projected dependency, we
compute its marginal probability with the target parserd gnune it off the projected structure if the
probability is below gruning threshold\,,. Our study shows that dependencies with very low marginal
probabilities are mostly wrong (Figure 2).

Supplemented with tar get-side marginals. To further improve the quality of projected structures, we
add dependencies with high marginal probabilities acogrtlh the target parser. Specifically, if a target
word w; obtain a head word; after projection, and if another woid, has higher marginal probability
than asupplement thresholdl, to be the head word af;, then we also add the dependerfgy;) into
the projected structure. In other words, we allow one worldaee multiple heads so that the projected
structure can cover more correct dependencies.

From incomplete tree to forest. Some words in the target sentence may not obtain any heatswor
after projection due to incomplete word alignments or thénprg process, which leads to incomplete
parse trees after projection. Also, some words may haveiptaulhead words resulting from the
supplement process. To handle these issues, we first cahegutojected structures into parse forests,
and then propose a generalized training technigue basednbigaous labelings to make use of the
projected instances. Specifically, if a word does not hawedhgords after projection, we simply
add into the projected structure all possible words as itglidate heads as long as the newly-added
dependency does not cross any projected dependencidsisatied in Figure 1(c). We introduce three
new dependencies to compose candidate heads for the inesttaord “33”. Note that it is illegal to
add the dependency; ~it 3" since it would cross the projected dependené‘~F 5"
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3 Dependency Parsing with Ambiguous L abelings

In parsing community, two mainstream methods tackle the@gncy parsing problem from different

perspectives but achieve comparable accuracy on a vafidanguages. Graph-based methods view
the problem as finding an optimal tree from a fully-connea@écted graph (McDonald et al., 2005;

McDonald and Pereira, 2006; Carreras, 2007; Koo and Coll%0), while transition-based methods
try to find a highest-scoring transition sequence that ldads legal dependency tree (Yamada and
Matsumoto, 2003; Nivre, 2003; Zhang and Nivre, 2011).

3.1 Graph-based Dependency Parser (GParser)

We adopt the graph-based paradigm because it allows usgandlie derive our CRF-based probabilistic
parser, which is required to compute the marginal proliggsliof dependencies and likelihood of both
manually labeled data and unannotated bitext with ambiglahelings. The graph-based method factors
the score of a dependency tree into scores of small sulrees

Score(x,d;w) =w - f(x,d) = Z Score(x,p; w)
pcd

(1)

We adopt the second-order model of McDonald and Pereirab]289 our core parsing algorithin,
which defines the score of a dependency tree as:

SCOT@(Xa d; W) = Z Wdep * fdep(xv h, m) + Z Wsib fsib(xv h, s, m) (2)
{(h,m)}Cd {(h,s),(h,m)}Cd

where f;.,(x, h,m) and fg;,(x, h,s,m) are feature vectors corresponding to two kinds of subtree;
W 4ep/sib Qre the feature weight vectors; the dot product gives theesamntributed by the corresponding
subtrees. We adopt the state-of-the-art syntactic feapnaposed in Bohnet (2010).

3.2 Probabilistic CRF-based GPar ser

Previous work on dependency parsing mostly adopts lineaeta@nd online perceptron training, which
lack probabilistic explanations of dependency trees dwditiood of the training data. Instead, we build
a log-linear CRF-based probabilistic dependency pardechwdefines the probability of a dependency
tree as:
exp{Score(x,d;w)} ) _ /.

706 w) ;o Z(xyw) = d/g}:( )exp{Score(xd ;W) } A3)

whereZ(x) is the normalization factor arl(x) is the set of all legal dependency treesor

p(dlx;w) =

3.3 Likeihood and Gradient of Training Data with Ambiguous L abelings

Traditional CRF models assume one gold-standard labeldon éaining instance, which means each
sentence is labeled with a single parse tree in the case sihgarTo make use of projected instances
with ambiguous labelings, we propose to use a generaliagurig framework which allows a sentence
to have multiple parse trees (forest) as its gold-standefetence (Tackstrom et al., 2013). The goal
of the training procedure is to maximize the likelihood of thaining data, and the model is updated to
improve the probabilities of parse forests, instead oflsipgrse trees. In other words, the model has
the flexibility to distribute the probability mass among therse trees inside the forest, as long as the
probability of the forest improves. In this generalizedhiework, a traditional instance labeled with a
single parse tree can be regarded as a special case thatdbecfantains only one parse tree.

The probability of a sentence with ambiguous labelings is defined as the sum of probabilities of
all parse treel contained in the forest:

p(Flx;w) = p(dx;w) 4

deF

'Higher-order models of Carreras (2007) and Koo and ColB04.0) can achieve a little bit higher accuracy, but suffemfr
higher time cost 0D (n*) and system complexity. Our method is applicable to the tbidkr model.
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Train Dev Test
PTB | 39,832 1,346 2416
CTB5 | 16,091 803 1,910
CTB5X | 18,104 352 348
Bitext 0.9M - -

Table 1: Data sets (in sentence number).

Suppose the training data sefis= {(x;, 7;)},. Then the log likelihood oD is:

N
L(D;w) = log p(Filxi; w) (5)

=1
Then we can derive the partial derivative of the log liketidowith respect tav:

IL(D;w) _ i ( S p(dlxi, Fswt (i d) - S p(d\xi;w)f(xi,d)) )

ow i—1 deF; dey(x;)

wherep(d|x;, Fi; w) is the probability ofd under the space constrained by the parse fofest
_exp{Score(x;,d;w)}

b Fiow) = ST s Fiw) = 3 exp{Seore(diw)} (7

The first term in Eq. (6) is the model expectations in the $eapace constrained I3%;, and the second
term is the model expectations in the complete search spécg. Since)(x;) contains exponentially
many legal dependency trees, direct calculation of thergktaym is prohibitive. Instead, we can use the
classic Inside-Outside algorithm to efficiently compute siecond term withii®(n?) time complexity,
wheren is the length of the input sentence. Similarly, the first tean be solved by running the Inside-
Outside algorithm in the constrained search space

3.4 Stochastic Gradient Descent (SGD) Training

With the likelihood gradients, we apply L2-norm reguladZ8GD training to iteratively learn the feature
weightsw for our CRF-based baseline and bitext-enhanced parsersfolld® the implementation
in CRFsuite? At each step, the algorithm approximates a gradient with allssubset of training
examples, and then updates the feature weights. Finkel €Qfl8) show that SGD achieves optimal
test performance with far fewer iterations than other og#tion routines such as L-BFGS. Moreover,
it is very convenient to parallel SGD since computation agnexamples in the same batch is mutually
independent.

Once the feature weightg are learnt, we can parse the test data and try to find the dptisnse tree
with the Viterbi decoding algorithm io(n?3) parsing time (Eisner, 2000; McDonald and Pereira, 2006).

d* = arg max p(d|x; w)
de)(x) (8)

4 Experimentsand Analysis

To verify the effectiveness of our proposed method, we catiyexperiments on English-to-Chinese
syntax projection, and aim to enhance our baseline Chinasseipwith additional training instances
projected from automatic English parse trees on bitext. rRonolingual treebanks, we use Penn
English Treebank (PTB) and Penn Chinese Treebank 5.1 (CTBH)English, we follow the standard
practice to split the data into training (sec 02-21), depalent (sec 22), and test (sec 23). For CTB5, we
adopt the data split of (Duan et al., 2007). We convert thgirai bracketed structures into dependency

2http://WWW.chokkan.org/software/crfsuite/
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Figure 2: Distribution (Percent) and accuracy (UAS) of defencies under different marginal
probability interval for Chinese baseline parser on CTB&ettgpoment set. For exampl8,8 at x-axis
means the intervdD.8,0.9).

structures using Penn2Malt with its default head-findingggu We build a CRF-based bigram part-
of-speech (POS) tagger with the features described in (lal.et2012b), and produce POS tags for
all train/development/test datasets and bitext (10-wakkaifing for training datasets). The tagging
accuracy on test sets93.3% on English and4.0% on Chinese.

To compare with the recent work on syntax projection of Jiahgl. (2010) who use a smaller test
dataset, we follow their data split of CTB5 and use gold-déad POS tags during training and test. We
refer to this setting as CTB5X.

For bitext, we collect a parallel corpus from FBIS news (LDC0O3E14, MZ&ntence pairs), United
Nations (LDCO04E12, 0.62M), IWSLT2008 (0.04M), and PKU-8@32M). After corpus cleaning, we
obtain a large-scale bilingual parallel corpus contairGr@M sentence pairs. We run the unsupervised
BerkeleyAligne? (Liang et al., 2006) for 4 iterations to obtain word alignrigen Besides hard
alignments, we also make use of posterior probabilitiegpkfy one-to-many alignments to one-to-one
as discussed in Section 2. Table 1 shows the data statistics.

For training both the baseline and bitext-enhanced paragrset the batch size #@0 and run SGD
until a maximum iteration number 60 is met or the change on likelihood of training data becomes to
small. Since the number of projected sentences is much rharethat of manually labeled instances
(0.9M vs. 16K), itis likely that the projected data may oveedm manually labeled data during training.
Therefore, we adopt a simple corpus-weighting strategfori@esach iteration, we randomly sample 50K
projected sentences and 15K manually labeled sentenaesalidraining data, and run SGD to train
feature weights using the sampled data. To speed up traiw@gdopt multi-thread implementation of
gradient computations in the same batch. It takes about lodagin our bitext-enhanced parser for one
iteration using a single CPU core, while using 24 CPU corédsg ineeds about 2 hours.

We measure parsing performance using unlabeled attachsnerg (UAS, percent of words with
correct heads), excluding punctuation marks. For sigmtieaest, we adopt Dan Bikel's randomized
parsing evaluation comparator (Noreen, 1989).

4.1 Analysison Marginal Probabilities

In order to gain insights for parameter settings of syntajgution, we analyse the distribution and
accuracy of dependencies under different marginal préibabiterval. We train the baseline Chinese
parser on CTB5 train set, and use the parser to produce thginalaprobabilities of all dependencies
for sentences in CTB5 development set. We discard all depeiels that have a marginal probability
less thard.0001 for better illustration. Figure 2 shows the results, wheeecan see that UAS is roughly
proportional to marginal probabilities. In other word, dadencies with higher marginal probabilities
are more accurate. For example, dependencies with prafesbiinder interval0.8,0.9) has a80%
chance to be correct. From another aspect, we can seéftabf dependencies fall in probability

3http://code.googIe.(:om/p/berkeleyaligner/
4http://www.cis.upenn.edu/ ~ dbikel/software.html
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Figure 3: Performance with different parameter settingS\pf\;) on CTB5 development set.

interval [0, 0.1), and such dependencies have very low accuré&)).(These observations are helpful for
our parameter selection and methodology study during sypraection.

4.2 Results of Syntax Projection on Development Dataset

We apply the syntax projection methods described in Seetiorthe bilingual text, and use the projected
sentences with ambiguous labelings as additional trainstgnces to train new Chinese parsers based on
the framework described in Section 3. Figure 3 shows the U&®es on development set with different
parameters settings. Theuning threshold), (see Section 2) balances the quality and coverage of
projection. Larger\, leads to more accurate but fewer projections. $hgplement threshold, (see
Section 2) balances the size and oracle score of the prdjémtest. Smallep; can increase the oracle
score of the forest by adding more dependencies with lowegimel probabilities, but takes the risk of
making the resulted forest too ambiguous and weak to prppepervise the model during training).

The DCA method corresponds to the results with = 0.0 and\; = 1.0. We can see that DCA
largely decreases UAS compared with the baseline CRF-lmsedr. The reason is that although DCA
projects many source-language dependencies to the tadge{l$% of target-language words obtain
head words), it also introduces a lot of noise during praject

DCA prunedwith target-side marginals corresponds to the results wjth> 0.0 and A\, = 1.0.
Pruning with target-side marginals can clearly improve pmejection quality by pruning out bad
projections. When\, = 0.1, 31% of target-language words obtain head words, and the model
outperforms the baseline parser®§% at peak UAS. When,, = 0.5, the projection ratio decreases to
26% and the improvement &3%. Based on the results, we chooge= 0.1 in later experiments.

Figure 3(b) presents the resultsDCA pruned & supplementedith different A;. The supplement
process adds a small amount of dependencies of high pritieshiiito the projected forest and therefore
increases the oracle score, which provides the model withbiligy to distribute the probability mass to
more preferable parse trees. We can see that although tk&Jd&adoes not increase much, the training
curve is more smooth and stable than that without supplerBasied on the results, we choose= 0.6
in later experiments.

4.3 Final Resultsand Comparisonson Test Dataset

Table 2 presents the final results on CTB5 test set. For eaderpave choose the parameters
corresponding to the iteration number with highest UAS owettijpment set. To further verify the
usefulness of syntax projection, we also conduct expetisneith self-training, which is known as a
typical semi-supervised method. For the standard seifiig, we use Chinese-side bitext with self-
predicted parse trees produced by the baseline parser di®maldtraining instances, which turns out
to be hurtful to parsing performance. This is consistenhedrlier results (Spreyer and Kuhn, 2009).

SPlease note whek, + X >= 1, A, becomes useless. The reason is that if the probability afjagted dependendy, ;)
is larger),,, then no other word beside; can have a probability larger than of being the head word af;.
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UAS
Baseline Supervised Parser 81.04
Standard Self-training 80.51 (-0.53)
Self-training with Ambiguous Labelings 81.09 (+0.05)
DCA 78.70 (-2.34)
DCA Pruned 81.46 (+0.42)
DCA Pruned & Supplemented 81.71 (+0.67)

Table 2: UAS on CTBS test set.indicate statistical significance at confidence leve ef 0.01.

Supervised Bitext-enhanced
Jiang et al. (2010 87.15 87.65 (+0.50)
This work 89.62 90.50 (+0.88f)

Table 3: UAS on CTB5X test set.indicate statistical significance at confidence leveb ef 0.01.

Then, we try a variant of self-training with ambiguous labgé$ following the practice in Tackstrom
et al. (2013), and use a parse forest composed of depengearfciégh probabilities as the syntactic
structure of an instance. We can see that ambiguous labdiilg traditional self-training, but still have
no significant improvement over the baseline parser. Resuliable 2 indicate that our syntax projection
method is able to project useful knowledge from sourcedagg parse trees to the target-side forest, and
then helps the target parser to learn effective features.

4.4 Comparisonswith Previous Results on Syntax Projection on CTB5X

To make comparison with the recent work of Jiang et al. (200@)rerun the process of syntax projection
with CTB5X as the target treebank with tBECA pruned & supplementeaiethod §, = 0.1 and A, =
0.6).% Table 3 shows the results. Jiang et al. (2010) employ thenseomler MSTParser of McDonald
and Pereira (2006) with a basic feature set as their baserpaffe can see that our baseline parser is
much stronger than theirs. Even though, our approach leddsger UAS improvement.

This work is different from theirs in a few aspects. Firste thurpose of syntax projection in their
work is to produce dependency/non-dependency instance e used to train local classifiers to
produce auxiliary features for MSTParser. In contrast, dhputs of syntax projection in our work
are partial trees/forests where only reliable dependeraie kept and some words may receive more
than one candidate heads. We directly use these partiatwstes as extra training data to learn model
parameters. Second, their work measures the reliabilitg pfojected dependencies only from the
perspective of alignment probability, while we adopt a ptubstic parsing model and use target-side
marginal probabilities to throw away bad projections, whiarns out effective in handling syntactic
non-isomorphism and errors in word alignments and soudeegsarses.

5 Redated work

Cross-lingual annotation projection has been applied toynthfferent NLP tasks to help processing

resource-poor languages, such as POS tagging (Yarowsky@aid2001; Naseem et al., 2009; Das and
Petrov, 2011) and named entity recognition (NER) (Fu eR@ll1). In another direction, much previous

work explores bitext to improve monolingual NER performafi@ased on bilingual constraints (Chen et
al., 2010b; Burkett et al., 2010; Li et al., 2012a; Che et2413; Wang et al., 2013).

Based on a universal POS tag set (Petrov et al.,, 2011), MdBaiaal. (2011) propose to train
delexicalized parsers on resource-rich language forqrgisource-poor language without use of bitext
(Zeman and Resnik, 2008; Cohen et al., 2011; Sggaard, 20Btkstrom et al. (2012) derive cross-
lingual clusters from bitext to help delexicalized parsansfer. Naseem et al. (2012) propose selectively
sharing to better explore multi-source transfer inforoati

8In the previous draft of this paper, we directly use the mrige data with in previous subsection for simplicity, andifin

that UAS can reach 91.39% (+1.77). The reason is that the T&% is overlapped with CTB5 train. We correct this mistake
in this version.
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Our idea of training with ambiguous labelings is originaigpired by the work of Tackstrom et al.
(2013) on multilingual parser transfer for unsupervisegahelency parsing. They use a delexicalized
parser trained on source-language treebank to obtain foaesgs for target-language sentences, and re-
train a lexicalized target parser using the sentences withigquous labelings. Similar ideas of learning
with ambiguous labelings are previously explored for d¢fasgtion (Jin and Ghahramani, 2002) and
sequence labeling problems (Dredze et al., 2009).

6 Conclusions

This paper proposes a simple yet effective framework of sgfss-lingual syntax projection. We
make use of large-scale projected structures as addittaaiaing instances to boost performance of
supervised parsing models trained on full-set manuallglibtreebank. Compared with previous work,
we make two innovative contributions: 1) using the margipralbabilities of a target-side supervised
parser to control the projection quality with the existenEparsing and aligning errors and cross-lingual
syntax divergences; 2) adopting a new learning technigsedambiguous labelings to make use of
projected incomplete dependency trees for model trairixperimental results on two Chinese datasets
demonstrate the effectiveness of the proposed framewaidk,show that the bitext-enhanced parser
significantly outperforms all baselines, including sujiesd parsers, semi-supervised parsers based on
self-training, and previous syntax projection methods.

Our anonymous reviewers present many great comments,iggpea the experimental section. We
will improve this work accordingly and release an extendetsion of this paper at the homepage of
the first author. Such extensions include: 1) further expdpsource-language parsing probabilities and
alignment probabilities to help syntax projection; 2) stnd the effect of the scale of source/target
treebank and bilingual text.
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