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Abstract

Recent work has shown success in learning word embeddings with neural network language
models (NNLM). However, the majority of previous NNLMs represent each word with a single
embedding, which fails to capture polysemy. In this paper, we address this problem by represent-
ing words with multiple and sense-specific embeddings, which are learned from bilingual parallel
data. We evaluate our embeddings using the word similarity measurement and show that our ap-
proach is significantly better in capturing the sense-level word similarities. We further feed our
embeddings as features in Chinese named entity recognition and obtain noticeable improvements
against single embeddings.

1 Introduction

Word embeddings are conventionally defined as compact, real-valued, and low-dimensional vector rep-
resentations for words. Each dimension of word embedding represents a latent feature of the word, hope-
fully capturing useful syntactic and semantic characteristics. Word embeddings can be used straightfor-
wardly for computing word similarities, which benefits many practical applications (Socher et al., 2011;
Mikolov et al., 2013a). They are also shown to be effective as input to NLP systems (Collobert et al.,
2011) or as features in various NLP tasks (Turian et al., 2010; Yu et al., 2013).

In recent years, neural network language models (NNLMs) have become popular architectures for
learning word embeddings (Bengio et al., 2003; Mnih and Hinton, 2008; Mikolov et al., 2013b). Most
of the previous NNLMs represent each word with a single embedding, which ignores polysemy. In an
attempt to better capture the multiple senses or usages of a word, several multi-prototype models have
been proposed (Reisinger and Mooney, 2010; Huang et al., 2012). These multi-prototype models simply
induce K prototypes (embeddings) for every word in the vocabulary, where K is predefined as a fixed
value. These models still may not capture the real senses of words, because different words may have
different number of senses.

We present a novel and simple method of learning sense-specific word embeddings by using bilingual
parallel data. In this method, word sense induction (WSI) is performed prior to the training of NNLM:s.
We exploit bilingual parallel data for WSI, which is motivated by the intuition that the same word in the
source language with different senses is supposed to have different translations in the foreign language.!
For instance, il il can be translated as investment | overpower | subdue | subjugate / uniform, etc. Among
all of these translations, subdue / overpower [ subjugate express the same sense of il i}z, whereas uniform
[ investment express a different sense. Therefore, we could effectively obtain the senses of one word by
clustering its translation words, exhibiting different senses in different clusters.

The created clusters are then projected back into the words in the source language texts, forming a
sense-labeled training data. The sense-labeled data are then trained with recurrent neural network langu-
gae model (RNNLM) (Mikolov, 2012), a kind of NNLM, to obtain sense-specific word embeddings. As
a concrete example, Figure 1 illustrates the process of learning sense-specific embeddings.

*Email correspondence.

'In this paper, source language refers to Chinese, whereas foreign language refers to English.
This work is licenced under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
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Figure 1: An illustration of the proposed method. SL stands for source language.

To evaluate the sense-specific word embeddings we have learned, we manually construct a Chinese
polysemous word similarity dataset that contains 401 pairs of words with human-judged similarities. The
performance of our method on this dataset shows that sense-specific embeddings are significantly better
in capturing the sense-level similarities for polysemous words.

We also evaluate our embeddings by feeding them as features to the task of Chinese named entity
recognition (NER), which is a simple semi-supervised learning mechanism (Turian et al., 2010). In or-
der to use sense-specific embeddings as features, we should discriminate the word senses for the NER
data first. Therefore, we further develop a novel monolingual word sense disambiguation (WSD) algo-
rithm based on the RNNLM we have already trained previously. NER results show that sense-specific
embeddings provide noticeable improvements over traditional single embeddings.

Our contribution in this paper is twofold:

e We propose a novel approach of learning sense-specific word embeddings by utilizing bilingual
parallel data (Section 3). Evaluation on a manually constructed polysemous word similarity dataset
shows that our approach better captures word similarities (Section 5.2).

o To use the sense-specific embeddings in practical applications, we develop a novel WSD algorithm
for monolingual data based on RNNLM (Section 4). Using the algorithm, we feed the sense-specific
embeddings as additional features to NER and achieve significant improvement (Section 5.3).

2 Background: Word Embedding and RNNLM

There has been a line of research on learning word embeddings via NNLMs (Bengio et al., 2003; Mnih
and Hinton, 2008; Mikolov et al., 2013b). NNLMs are language models that exploit neural networks to
make probabilistic predictions of the next word given preceding words. By training NNLMs, we obtain
both high performance language models and word embeddings.

Following Mikolov et al. (2013b), we use the recurrent neural network as the basic framework for train-
ing NNLMs. RNNLM has achieved the state-of-the-art performance in language modeling (Mikolov,
2012) and learned effective word embeddings for several tasks (Mikolov et al., 2013b). The architecture
of RNNLM is shown in Figure 2.

The input layer of RNNLM consists of two components: w(t) and h(t — 1). w(t) is the one-hot
representation of the word at time step ¢,> h(¢ — 1) is the output of hidden layer at the last time step.
Therefore, the input encodes all previous history when predicting the next word at time step ¢t. Compared

2 A feature vector of the same size of the vocabulary, and only one dimension is on.
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Figure 2: The basic architecture of RNNLM.

with other feed-forward NNLMs, the RNNLM can theoretically represent longer context patterns. The
output y(t) represents the probability distribution of the next word p(w (¢t + 1)|w(t),h(¢ — 1)). The
output values are computed as follows:

h(t) = f(Uw(t) + Wh(t — 1)) (1)
y(t) = g(Vh(t)) )

where f is a sigmoid function and g is a softmax function.

The RNNLM is trained by maximizing the log-likelihood of the training data using stochastic gradi-
ent descent (SGD), in which back propagation through time (BPTT) is used to efficiently compute the
gradients. In the RNNLM, U is the embedding matrix, where each column vector represents a word.

As discussed in Section 1, the RNNLM and even most NNLMs ignore the polysemy phenomenon in
natural languages and induce a single embedding for each word. We address this issue and introduce an
effective approach for capturing polysemy in the next section.

3 Sense-specific Word Embedding Learning

In our approach, WSI is performed prior to the training of word embeddings. Inspired by Gale et al.
(1992) and Chan and Ng (2005), who used bilingual data for automatically generating training examples
of WSD, we present a bilingual approach for unsupervised WSI, as shown in Figure 1. First, we extract
the translations of the source language words from bilingual data (®). Since there may be multiple
translations for the same sense of a source language word, it is straightforward to cluster the translation
words, exhibiting different senses in different clusters (@).

Once word senses are effectively induced for each word, we are able to form the sense-labeled training
data of RNNLMs by tagging each word occurrence in the source language text with its associated sense
cluster (®). Finally, the sense-tagged corpus is used to train the sense-specific word embeddings in a
standard manner (®).

3.1 Translation Words Extraction

Given bilingual data after word alignment, we present a way of extracting translation words for source
language words by exploiting the translation probability produced by word alignment models (Brown et
al., 1993; Och and Ney, 2003; Liang et al., 2006).

More formally, we notate the Chinese sentence as ¢ = (ci,...,c7) and English sentence as e =
(e1, ..., ey). The alignment models can be generally factored as:

plele) = -, pla, cle) 3)
pla,cle) =TT, palajlaj—, )pi(csleq) 4)
where a is the alignment specifying the position of an English word aligned to each Chinese word,

pa(ajlaj—, j) is the distortion probability, and p;(c;le,; ) is the translation probability which we use.
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Table 1: Results of our approach on a sample of polysemous words. The second column lists the extracted
translation words of the source language word (Section 3.1). The third column lists the clustering results
using affinity propagation (Section 3.2). The last column lists the nearest neighbour words computed
using the learned sense-specific word embeddings (Section 5.2.2).

In this paper, we use the alignment model proposed by Liang et al. (2006). We utilize the bidirectional
translation probabilities for the extraction of translations, where a foreign language word w. is deter-
mined as a translation of source language word w,. only if both translation probabilities p;(w.|w,) and
pt(we|w,) exceed some threshold 0 < ¢ < 1.

The second column of Table 1 presents the extraction results on a sample of source language words
with the corresponding translation words.

3.2 Clustering of Translation Words

For each source language word, its translation words are then clustered so as to separate different senses.
At the clustering time, we first represent each translation word with a feature vector (point), so that
we can measure the similarities between points. Then we perform clustering on these feature vectors,
representing different senses in different clusters.

Different from Apidianaki (2008) who represents all occurrences of the translation words with their
contexts in the foreign language for clustering, we adopt the embeddings of the translation words as
the representations and directly perform clustering on the translation words,> rather than the contexts of
occurrences. The embedding representation is chosen for two reasons: (1) Word embeddings encode rich
lexical semantics. They can be directly used to measure word similarities. (2) Embedding representation
of the translation words leads to extremely high-efficiency clustering, because the number of translation
words is orders of magnitude less than their occurrences.

Moreover, since the number of senses of different source language words is varied, the commonly-
used k-means algorithm becomes inappropriate for this situation. Instead, we employ affinity propaga-
tion (AP) algorithm (Frey and Dueck, 2007) for clustering. In AP, each cluster is represented by one
of the samples of it, which we call an exemplar. AP finds the exemplars iteratively based on the con-
cept of “message passing”. AP has the major advantage that the number of the resulting clusters is
dynamic, which mainly depends on the distribution of the data. Compared with other possible clustering
approaches, such as hierarchical agglomerative clustering (Kartsaklis et al., 2013), AP determines the
number of resulting clusters automatically without using any partition criterions.

The third column of Table 1 lists the resulting clusters of the translation words for the sampled pol-
ysemous words. We can see that the resulting clusters are meaningful: senses are well represented by
clusters of translation words.

3.3 Cross-lingual Word Sense Projection

The produced clusters are then projected back into the source language to identify word senses.

3The publicly available word embeddings proposed by Collobert et al. (2011) are used.
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For each occurrence w® of the word w in the source language corpora, we first select the aligned word
with the highest marginal edge posterior (Liang et al., 2006) as its translation. We then identify the sense
of w® by computing the similarities of its translation word with each exemplar of the clusters, and select
the one with the maximum similarity. When w® is aligned with NULL, we heuristically identify its sense
as the most frequent sense of w that appears in the bilingual dataset.

After projecting the word senses into the source language, we obtain a sense-labeled corpus, which is
used to train the sense-specific word embeddings with RNNLM. The training process is exactly the same
as single embeddings, except that the words in our training corpus has been labeled with senses.

4 Application of Sense-specific Word Embeddings

One of the attractive characteristic of word embeddings is that they can be directly used as word features
in various NLP applications, including NER, chunking, etc. Despite of the usefulness of word embed-
dings on these applications, previous work seldom concerns that words may have multiple senses, which
cannot be effectively represented with single embeddings. In this section, we address this problem by
utilizing sense-specific word embeddings.

We take the task of Chinese NER as a case study. Intuitively, word senses are important in NER. For
instance, 3 is likely to be an NE of Location when it refers to America. However, when it expresses the
sense of beautiful, it should not be an NE.

Using sense-specific word embedding features for NER is not as straightforward as using single em-
beddings. For each word in the NER data, we first need to determine the correct word sense of it, which
is a typical WSD problem. Then we use the embedding which corresponds to that sense as features.
Here we treat WSD as a sequence labeling problem, and solve it with a very natural algorithm based on
RNNLM we have already trained (Section 3).

4.1 RNNLM-based Word Sense Disambiguation

Given the automatically induced word sense inventories and the RNNLM which has already been trained
on the sense-labeled data of source language, we first develop a greedy decoding algorithm for the
sequential WSD, which works deterministically. Then we improve it using beam search.

Greedy. For word w, we denote the sense-labeled w as w ., where s¥ represents the k' sense of w.
In each step, a single decision is made and the sense of next word (w(¢ + 1)) which has the maximum
RNNLM output is chosen, given the current (sense-labeled) word w(¢)s+ and the hidden layer h(t — 1)
at the last time step as input. We simply need to compute a shortlist of y(¢) associated with w(¢ + 1),
that is, y (%) |w(141) at each step. This process is illustrated in Figure 3.

Beam search. The greedy procedure described above can be improved using a left-to-right beam
search decoding for obtaining a better sequence. The beam-search decoding algorithm keeps B different
sequences of decisions in the agenda, and the sequence with the best overall score is chosen as the final
sense sequence.

Note that the dynamic programming decoding (e.g. viterbi) is not applicable here, because of the
recurrent characteristic of RNNLM. At each step, decisions made by RNNLM depends on all previous
decisions instead of the previous state only, hence markov assumption is not satisfied.

5 Experiments

5.1 Experimental Settings

The Chinese-English parallel datasets we use include LDCO3E24, LDCO4E12 (1998), the IWSLT 2008
evaluation campaign dataset and the PKU 863 parallel dataset. All corpora are sentence-aligned. After
cleaning and filtering the corpus,* we obtain 918,681 pairs of sentences (21.7M words).

In this paper, we use BerkeleyAligner to produce word alignments over the parallel dataset.’ Berke-
leyAligner also gives translation probabilities and marginal edge posterior probabilities. We adopt the

“Sentences that are too long (more than 40 words) or too short (less than 10 words) are discarded.
Scode. google.com/p/berkeleyaligner/
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Figure 3: Using RNNLM for WSD by sequential labeling (left). Decision at each step of the RNNLM-
based WSD algorithm (right).

scikit-learn tool (Pedregosa et al., 2011) to implement the AP clustering algorithm.® The AP algorithm
is not fully automatic in deciding the cluster number. There is a tunable parameter calls preference. A
preference with a larger value encourages more clusters to be produced. We set the preference at the
median value of the input similarity matrix to obtain a moderate number of clusters. The rnnlm toolkit
developed by Mikolov et al. (2011) is used to train RNNLM and obtain word embeddings.” We induce
both single and sense-specific embeddings with 50 dimensions. Finally, We obtain embeddings of a
vocabulary of 217K words, with a proportion of 8.4% having multiple sense clusters.

5.2 Evaluation on Word Similarity

Word embeddings can be directly used for computing similarities between words, which benefits many
practical applications. Therefore, we first evaluate our embeddings using a similarity measurement.
Word similarities are calculated using the MaxSim and AvgSim metric (Reisinger and Mooney, 2010):

MazSim(u,v) = maxi<i<k, 1<j<k, S(Uia Uj) o)
AvgSim(u,v) = kuikv Zfﬁl Z?ll s(u,v7) (6)

where k,, and k, are the number of the induced senses for words u and v, respectively. s(-, -) can be any
standard similarity measure. In this study, we use the cosine similarity.

Previous works used the WordSim-353 dataset (Finkelstein et al., 2002) or the Chinese version (Jin and
Wu, 2012) for the evaluation of general word similarity. These datasets rarely contain polysemous words,
and thus is unsuitable for our evaluation. To the best of our knowledge, no datasets for polysemous word
similarity evaluation have been published yet, either in English or Chinese. In order to fill this gap in the
research community, we manually construct a Chinese polysemous word similarity dataset.

5.2.1 Chinese Polysemous Word Similarity Dataset Construction

We adopt the HowNet database (Dong and Dong, 2006) in constructing the dataset. HowNet is a Chinese
knowledge database that maintains comprehensive semantic definitions for each word in Chinese. The
process of the dataset construction includes three steps: (1) Commonly used polysemous words are
extracted according to their sense definitions in HowNet. (2) For each polysemous word, we select
several other words to form word pairs with it. (3) Each word pair is manually annotated with similarity.

In step (1), we mainly took advantage of HowNet for the selection of polysemous words. However,
the synsets defined in HowNet are often too fine-grained and many of them are difficult to distinguish,

6scikit*learn.org
Twww.fit.vutbr.cz/~imikolov/rnnlm/

502



particularly for non-experts. Therefore, we manually discard those words with senses that are hard to
distinguish.

In step (2), for each polysemous word w selected in step 1, we sample several other words to form
word pairs with w. The sampled words can be roughly divided into two categories: related and unrelated.
The related words are sampled manually. They can be the hypernym, hyponym, sibling, (near-)synonym,
antonym, or topically related to one sense of w. The unrelated words are sampled randomly.

In step (3), we ask six graduate students who majored in computational linguistics to assign each word
pair a similarity score. Following the setting of WordSim-353, we restrict the similarity score in the range
(0.0, 10.0). To address the inconsistency of the annotations, we discard those word pairs with a standard
deviation greater than 1.0. We end up with 401 word pairs annotated with acceptable consistency. Unlike
the WordSim-353, in which most of the words are nouns, the words in our dataset are more diverse in
terms of part-of-speech tags.

Table 2 lists a sample of word pairs with annotated similarities from the dataset. The whole evaluation
dataset will be publicly available for the research community.®

’ Word ‘ Paired word | Category Mean.Sim | Std.Dev

CilE JEMRconguer | synonym | 860 |.029 |
HH S key point | unrelated 0.12 0.19

o | Benter | autonym | 790 | 097
Z%%%publish near-synonym 7.86 0.76

yig plant stem | sibling | 780 |.012
P H cost topic-related 5.86 0.90
1] §=L7) food hypernym 6.50 0.71

Table 2: Sample word pairs of our dataset. The unrelated words are randomly sampled. M ean.Stm
represents the mean similarity of the annotations, Std. Dev represents the standard deviation.

5.2.2 Evaluation Results

Following Zou et al. (2013), we use Spearman’s p correlation and Kendall’s 7 correlation for evaluation.
The results are shown in Table 3. By utilizing sense-specific embeddings, our approach significantly
outperforms the single-version using either MaxSim or AvgSim measurement.

For comparison with multi-prototype methods, we borrow the context-clustering idea from Huang et
al. (2012), which was first presented by Schiitze (1998). The occurrences of a word are represented by
the average embeddings of its context words. Following Huang et al.’s settings, we use a context window
of size 10 and all occurrences of a word are clustered using the spherical k-means algorithm, where & is
tuned with a development set and finally set to 2.

System MaxSim AvgSim
pxlOO\rxlOO px100\7-><100
Ours 554 40.9 49.3 352
SingleEmb 42.8 30.6 42.8 30.6
Multi-prototype 40.7 29.1 38.3 274

Table 3: Spearman’s p correlation and Kendall’s 7 correlation evaluated on the polysemous dataset.

Surprisingly, the multi-prototype method performs even slightly worse than the single-version, which
suggests that learning a fixed number of embeddings for every word may even harm the embedding.
Additionally, the clustering process of the multi-prototype approach suffers from high memory and time
cost, especially for the high-frequency words.

8ir.hit.edu.cn/~jguo
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To obtain intuitive insight into the superior performance of sense-specific embeddings, we list in the
last column of Table 1 the nearest neighborhoods of the sampled words in the evaluation dataset. The list
shows that we are able to find the different meanings of a word by using sense-specific embeddings.

5.3 Application on Chinese NER

We further apply the sense-specific embeddings as features to Chinese NER. We first perform WSD on
the NER data using the algorithm introduced in Section 4. For beam search decoding, the beam size B
is tuned on a development set and is finally set to 16.

We conduct our experiments on data from People’s Daily (Jan. and Jun. 1998).° The original corpus
contains seven NE types.'? In this study, we select the three most common NE types: Person, Location,
Organization. The data from January are chosen as the training set (37,426 sentences). The first 2,000
sentences from June are chosen as the development set and the next 8,000 sentences as the test set.

CRF models are used in our NER system and are optimized by L2-regularized SGD. We use the
CRFSuite (Okazaki, 2007) because it accepts feature vectors with numerical values. The state-of-the-art
features (Che et al., 2013) are used in our baseline system. For both single and sense-specific embedding
features, we use a window size of 4 (two words before and two words after).

5.3.1 Results

Table 4 demonstrates the performance of NER on the test set. As desired, the single embedding features
improve the performance of our baseline, which were also shown in (Turian et al., 2010). Furthermore,
the sense-specific embeddings outperform the single word embeddings by nearly 1% F-score (88.56 vs.
87.58), which is statistically significant (p-value < 0.01 using one-tail t-test).

System ‘ P ‘ R ‘ F ‘
Baseline 93.27 | 81.46 | 86.97
+SingleEmb 93.55 | 82.32 | 87.58
+SenseEmb (greedy) 93.38 | 83.56 | 88.20
+SenseEmb (beam search) | 93.59 | 84.05 | 88.56

Table 4: Performance of NER on test data.

According to our hypothesis, the sense-specific embeddings should bring considerable improvements
to the NER of polysemous words. To verify this, we evaluate the per-token accuracy of the polysemous
words in the NER test data. We again adopt HowNet to determine the polysemy. Words that are defined
with multiple senses are selected as test set. Figure 4 shows that the sense-specific embeddings indeed
improve the NE recognition of the polysemous words, whereas the single embeddings even decrease the
accuracy slightly. We also obtain improvements on the NE recognition of the monosemous words, which
provide evidences that more accurate prediction of polysemous words is beneficial for the prediction of
the monosemous words through contextual influence.

6 Related Work

Previous studies have explored the NNLMs, which predict the next word given some history or future
words as context within a neural network architecture. Schwenk and Gauvain (2002), Bengio et al.
(2003), Mnih and Hinton (2007), and Collobert et al. (2011) proposed language models based on feed-
forward neural networks. Mikolov et al. (2010) studied language models based on RNN, which managed
to represent longer history information for word-predicting and demonstrated outstanding performance.

Besides, researchers have also explored the word embeddings learned by NNLMs. Collobert et al.
(2011) used word embeddings as the input of various NLP tasks, including part-of-speech tagging,
chunking, NER, and semantic role labeling. Turian et al. (2010) made a comprehensive comparison

of various types of word embeddings as features for NER and chunking. In addition, word embeddings
Swww.icl.pku.edu.cn/icl_groups/corpus/dwldform1.asp
1°Person, Location, Organization, Date, Time, Number and Miscellany
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Figure 4: Per-token accuracy on the polysemous and monosemous words in the NER test data. Polyse-
mous(k) represents the set of words that have more than or equal to k senses defined in HowNet.

are shown to capture many relational similarities, which can be recovered by vector arithmetic in the
embedding space (Mikolov et al., 2013b; Fu et al., 2014). Klementiev et al. (2012) and Zou et al. (2013)
learned cross-lingual word embeddings by utilizing MT word alignments in bilingual parallel data to
constrain translational equivalence.

Most previous NNLMs induce single embedding for each word, ignoring the polysemous property of
languages. In an attempt to capture the different senses or usage of a word, Reisinger and Mooney (2010)
and Huang et al. (2012) proposed multi-prototype models for inducing multiple embeddings for each
word. They did this by clustering the contexts of words. These multi-prototype models simply induced
a fixed number of embeddings for every word, regardless of the real sense capacity of the specific word.

There has been a lot of work on using bilingual resources for word sense disambiguation (Gale et
al., 1992; Chan and Ng, 2005). By using aligned bilingual data along with word sense inventories such
as WordNet, training examples for WSD can be automatically gathered. We employ this idea for word
sense induction in our study, which is free of any pre-defined word sense thesaurus.

The most similar work to our sense induction method is Apidianaki (2008). They presented a method
of sense induction by clustering all occurrences of each word’s translation words. In their approach,
occurrences are represented with their contexts. We suggest that clustering contexts suffer from high
memory and time cost, as well as data sparsity. In our method, by clustering the embeddings of transla-
tion words, we induce word senses much more efficiently.

To evaluate word similarity models, researchers often apply a dataset with human-judged similarities
on word pairs, such as WordSim-353 (Finkelstein et al., 2002), MC (Miller and Charles, 1991), RG
(Rubenstein and Goodenough, 1965) and Jin and Wu (2012). For context-based multi-prototype mod-
els, (Huang et al., 2012) constructs a dataset with context-dependent word similarity. To the best of
our knowledge, there is no publicly available datasets for context-unaware polysemous word similarity
evaluation yet. This paper fills this gap.

7 Conclusion

This paper presents a novel and effective approach of producing sense-specific word embeddings by
exploiting bilingual parallel data. The proposed embeddings are expected to capture the multiple senses
of polysemous words. Evaluation on a manually annotated Chinese polysemous word similarity dataset
shows that the sense-specific embeddings significantly outperforms the single embeddings and the multi-
prototype approach.

Another contribution of this study is the development of a beam-search decoding algorithm based on
RNNLM for monolingual WSD. This algorithm bridges the proposed sense-specific embeddings and
practical applications, where no bilingual information is provided. Experiments on Chinese NER show
that the sense-specific embeddings indeed improve the performance, especially for the recognition of the
polysemous words.
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