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Abstract

Arabic words are often ambiguous between name and non-name interpretations, frequently
leading to incorrect name translations. We present a technique to disambiguate and transliter-
ate names even if name interpretations do not exist or have relatively low probability distribu-
tions in the parallel training corpus. The key idea comprises named entity classing at the pre-
processing step, decoding of a simple confusion network created from the name class label and
the input word at the statistical machine translation step, and transliteration of names at the
post-processing step. Human evaluations indicate that the proposed technique leads to a statis-
tically significant translation quality improvement of highly ambiguous evaluation data sets
without degrading the translation quality of a data set with very few names.

1 Introduction

Arabic person and location names are often ambiguous between name and non-name interpretations,
as noted in (Hermjakob et al., 2008; Zayed et al., 2013). (1) and (2) illustrate such ambiguities for
Iraqi Arabic, where the ambiguous names and their translations are in bold-face and the Buckwalter
transliteration of Arabic is provided in parentheses:'

(1) a. s pasto dwydedl an ddd Sle
(Any sAkn b$gp ym Almdrsp bxDrA')
I live in an apartment near the school in Khadraa

b. s ‘).‘b} i_éﬁ_m_ﬁ
(mSbwgp xDrA')
It is painted green

(2) a. I Jein zlaw Huind
(Sygdr SbAH yqgwl Alk)
What can Sabah tell you?

b. plu> anis ST asl sl sluw
(SbAH Alxyr Ant Akyd ngyb HsAm)
Good morning you must be captain Hosam

In this paper, we propose a technique for disambiguating and transliterating Arabic names in an
end-to-end statistical machine translation system. The key idea lies in name classing at the pre-
processing step, decoding of a simple confusion network created from the class label $name, and the
input word at the machine translation step, and transliteration of names by a character-based phrase
transliteration model at the post-processing step.

While Bertoldi et al. (2007) propose confusion network decoding to handle multiple speech recog-
nition outputs for phrase translation and Dyer et al. (2008) generalize lattice decoding algorithm to

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
! Arabic should be read from right to left, and the Buckwalter transliteration should be read from left to right.
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tackle word segmentation ambiguities for hierarchical phrase-based translation, the current proposal is
the first to deploy a confusion network for name disambiguation and translation. The character-based
phrase transliteration model captures the asymmetry between Arabic and English vowel systems by
treating English vowels as spontaneous words attachable to the neighboring target phrases for phrase
(a sequence of characters) acquisition.

Confusion network decoding enables the system to choose between name and other translations of
the source word on the basis of the decoding cost computed from all of the decoder feature functions
which incorporate name tag scores into translation model scores. Probabilistic choice between name
versus non-name interpretations makes the technique robust to name classing errors, without stipulat-
ing the frequency threshold of the names to be transliterated in order to avoid translation quality deg-
radation (Hermjakob et al., 2008; Li et al., 2013). A tight integration of named entity detection and
classing into the machine translation system, coupled with a generative approach to name translitera-
tion, enables the system to produce reliable name translations even when name interpretations do not
exist or have relatively low distributions in the parallel corpus, distinguishing the current proposal
from Hermjakob et al. (2008).

In Section 2, we give an overview of the translation system. In Section 3, we discuss the model
training and confusion network decoding. In Section 4, we detail name transliteration model. We pre-
sent the experimental results in Section 5. We discuss related work in Section 6 and conclude the pa-
per in Section 7.

2 End-to-end Translation System Overview

Arabic name disambiguation and transliteration techniques are incorporated into an end-to-end phrase
translation system (Och and Ney, 2002; Koehn et al., 2003; Koehn et al., 2007). Our phrase translation
system builds on Tillmann (2003) for translation model training and an in-house implementation of
Ney and Tillmann (2003) for beam search phrase decoding.

Iraqi Arabic to English end-to-end phrase translation systems are trained on DARPA TransTac data
(Hewavitharana et al., 2013), comprising 766,410 sentence pairs (~6.8 million morpheme tokens in
Arabic, ~7.3 million word tokens in English; ~55k unique vocabulary in Arabic and ~35k unique vo-
cabulary in English). The data consist of sub-corpora of several domains including military combined
operations, medical, humanitarian aid, disaster relief, etc., and have been created primarily for speech-
to-speech translations. The process flow of Arabic to English translation incorporating the proposed
technique is shown in Figure 1. The components relevant to name disambiguation and transliteration
are in bold face.

Given the input sentence (3), the spelling normalizer normalizes i to .

(3) sl ks dwydedl an by Sl ST
(Iny sAkn bSgp ym Almdrsp bxDrA')

The morpheme segmenter segments a word into morphemes (Lee et al., 2003; Lee, 2004; Habash and
Sadat, 2006) as in (4), where # indicates that the morpheme is a prefix.

(4) =1 yas #g duw ydo #J1 HU_JJ#Q O=S Lw gy
(Any sRAkn b# $gp ym Al# mdrsp b# xDrA')

Part-of-speech tagging is applied to the morphemes, identifying a name with the tag NOUN_PROP. The
input word tagged as NOUN_PROP is classified as name, denoted by the label $name in (5).

(5) Sname (sl as) #o dwydo #J1 a0 Lid #o (Slw O
(Any sAkn b# S$gp ym Al# mdrsp b# Sname (xDrA'))

The token $name (s/=3) is decomposed into the class label $name and the source word s =i

creating a simple confusion network for decoding. The beam search phrase decoder computes the

translation costs for all possible input phrases including the phrase pair “$name | $name”* using all of

% The source phrase $name translates to the target phrase $Sname.
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the decoder feature functions. Assuming that the translation cost for $name being translated into
Sname is the lowest, the decoder produces the translation (6), where the name classed source word
¢)_»=a retains its Arabic spelling .

(6) I live in an apartment near the school in ! jas

The Arabic word ! »=2 in (6) is transliterated into khadraa by the NAME/OOV transliteration module.
And the system produces the final translation output (7).

(7) I live in an apartment near the school in khadraa

Arabic Input

|
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|

Morpheme Segmentation

l Pre-processing

Part-of-Speech Tagging

|

Name Classing

|

Confusion Network :
Phrase Decoding SMT Decoding
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|
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Figure 1. Process Flow of Arabic to English Phrase Translation Decoding

We use an in-house implementation of the maximum entropy part-of-speech tagger described in
Adwait (1996) for name classing. The part-of-speech tagger is trained on the combination of LDC-
released Arabic Treebank data containing about 3 million morpheme tokens from MSA (modern stan-
dard Arabic) and in-house annotated TransTac Iraqi Arabic data containing about 63k morpheme to-
kens.

F-score of the tagger on proper noun tags, NOUN PROP, is about 93% on 2,044 MSA name tokens
derived from Arabic Treebank: Part 3 v 3.2 (LDC2010T08), and about 81.4% on 2,631 Iraqi Arabic
name tokens derived from the DARPA TransTac corpus.
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3 Model Training and Confusion Network Decoding

We train translation and language models with name classing to obtain proper translation and language
model probabilities of the class label $name. We extend the baseline phrase beam search decoder to han-
dle a relatively simple confusion network (CN hereafter) and incorporate the name part-of-speech tagging
scores into the decoder feature functions.

3.1 Translation Model

For any name classed input word, $name_(oil_F 1) in (5), we would like to have the name translation,
Sname — $name, always available in addition to other translations of the input word obtainable from the
parallel training corpus.

In order to estimate $name distributions without obfuscating the distributions of other training vocabu-
lary, we apply name classing only to words that occur less than 3 times in the training corpus and part-of-
speech tagged with NOUN_PROP. The reasons are three-fold: 1) we need to keep all non-name translations
of the training vocabulary, 2) typical low frequency words include names and typos, 3) even with $name
classing on low frequency words only, the overall $name count is high enough for a robust probability
estimation.

After name classing of words occurring less than 3 times, $name occurs 6,944 times (122™ most fre-
quent token) in Arabic and 9,707 times (108" most frequent token) in English. We train both phrase trans-
lation and distortion models on the name classed parallel corpus. Note that the frequency restriction ap-
plies only to model training. During decoding, any word labeled with $name may be name transliterated
regardless of its frequency in the training corpus, differentiating the current technique from (Li et al,,
2013).

3.2 Language Models

To properly capture the name and non-name ambiguities, we interpolate two types language models: 1) 5-
gram language model trained on the English side of the parallel corpus without name classing (LM1), 2)
5-gram language model trained on the English side of the parallel corpus and additional monolingual cor-
pora with name classing (LM2).

Each language model is smoothed with modified Kneser-Ney (Chen and Goodman, 1998). The two
sets of language models are interpolated, as in (8), where a is set to 0.1. We find the optimal interpolation
weight on the basis of BLEU scores of the development test data set containing about 30k word tokens in
Arabic and about 43k word tokens in English.

(8) o + 1M1 + (l—o) - 1M2

3.3 Confusion Network Decoding

The confusion network containing the class label $name and the source word is handled by an extension
of the baseline phrase decoder. The baseline decoder utilizes 11 feature functions including those in (9)°
through (14), where f denotes the source phrase and e, the target phrase, and s, the source sentence, ¢,

the target sentence and a, a word alignment. We use the in-house implementation of the simplex algo-
rithm in Zhao et al. (2009) for decoder parameter optimization.

(9) Direct phrase translation model for pr(g\7)

(10) Distortion models (Al-Onaizan and Papineni, 2006)
(11) Mixture language models

3 We do not use pr(? | ;)
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(12) Lexical weights p,(flea)& p, (e|f,a), cf. (Koehn et al., 2003)
(13) Lexical weights p, (tls,a) & p, (slt,a)
(14) Word and phrase penalties (Zens and Ney, 2004)

Lexical weight p (E| 7, a)in (12) is computed according to (15), where j = I, ..., n source word positions

and i = /,..., m target word positions within a phrase, N = source phrase length, w(elf) = the lexical prob-
ability distribution:*

as)  pyefa=([T w (@ f)/N

Lexical weight p,(#|s,a) in (13) is computed according to (16), where K = number of phrases in the input
sentence, k = k" phrase, and pr, (el f,a) = p, ,(e| f,a)without normalization by the source phrase
length V.

K p— pE—
(16) pu(tls,a) = []pr, (el fra)
k=1

We augment the baseline decoder in two ways: First, we incorporate the maximum entropy part-of-
speech tagging scores of names into the translation scores in (9), (12) and (13). We simply add the name
part-of-speech tag cost, i.e. —log probability, to the translation model costs. Second, the decoder can acti-
vate more than one edge from one source word position to another, as shown in Figure 2. The name
classed input is split into two tokens $name and xDrA’, leading to two separate decoding paths. The
choice between the two paths depends on the overall decoding cost of each path, computed from all of the
decoder feature functions.

Since the decoding path to $name is always available when the input word is classed as $name at the
pre-processing step, the technique can discover the name interpretation of an input word even if the name
interpretation is absent in the parallel training corpus. Even when the input word occurs as a name in the
training corpus but has a lower name translation probability than non-name translations in the baseline
phrase table, it can be correctly translated into a name as long as the word is labeled as $name and the
decoder feature functions support the $name path in the given context. When a non-name token is mistak-
enly labeled as $name, the confusion network decoder can recover from the mistake if the non-name path
receives a lower decoding cost than the $name path.® If the input token is name classed and the correct
name translation also exists in the baseline phrase table with a high probability, either path will lead to the
correct translation, and the decoder chooses the path with the lower translation cost.

@

Figure 2. Confusion Network Decoding Paths for Name Classed Input

* Estimated in the manner described in Koehn et al. (2003).

> Arabic is represented by Buckwalter transliteration scheme.

® The decoding scores are computed as cost on the basis of —log likelihood of various component models. And therefore, a
smaller decoding cost indicates a higher translation quality.
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4 Character-Based Phrase Transliteration Models

All instances of un-translated input words, which include names and OO0Vs, are transliterated in the post-
processing step. Character-based phrase transliteration models are trained on 9,737 unique name pairs.
965 name pairs are obtained from a name lexicon and the remaining 8,772 name pairs are automatically
derived from the parallel training corpus as follows: 1) Take each side of the parallel corpus, i.e. Iraqi
Arabic or English. 2) Mark names manually or automatically. 3) Apply word alignment to the name-
marked parallel corpus in both directions. 4) Extract name pairs aligned in both directions. For name
marking, we used the manual mark-up that was provided in the original data.

5-gram character language models are trained on about 120k entries of names in English. In addition to
about 9.7k names from the English side of the parallel names, about 110k entries are collected from wiki
pages, English Gigaword 5™ Edition (LDC2011T07), and various name lexicons.

4.1 Phrase Extraction with English Vowels as Spontaneous Words

Short vowels are optional in written Arabic, whereas all vowels have to be obligatorily specified in Eng-
lish for a word to be valid (Stalls and Knight, 1998; Al-Onaizan and Knight, 2002b). We model the
asymmetrical nature of vowels between the two languages by treating all instances of unaligned English
vowels —a, e, i, 0, u — as spontaneous words which can be attached to the left or to the right of an aligned
English character for phrase extractions. An example GIZA++ (Och and Ney, 2003) character alignment is
shown in Figure 3. Arabic name is written left to right to illustrate the monotonicity of the alignments.

¢ 3 0 ‘ O ‘ s T
~ | S o
N 1 Se N
~ 1 \\ \
/\ ) ‘\\\\\\\ \
g h a d a, r a n a W i

Figure 3. Automatic Character Alignment between Arabic and English names

In Figure 3, solid lines indicate the automatic machine alignments. English vowels in rectangular boxes
indicate null alignments by the aligner. The dotted lines indicate the potential attachment sites of the un-
aligned vowels for phrase extractions. The first instance of unaligned a (denoted by a;) may be a part of
the phrases containing the preceding consonant sequence g 4, or the following consonant d. The second
instance of unaligned a (denoted by a,) may be a part of the phrases containing the preceding consonant d
or the following consonant .’

4.2 Experiments

We use exact match accuracy® to evaluate transliteration qualities. Systems are tested on 500 unique name
pairs including 52 names unseen in the training corpus. Experimental results are shown in Table 1.” Note
that using English vowels as spontancous words dramatically improves the accuracy from 21.6% to
89.2%.

Decoding is carried out by the baseline phrase decoder discussed in Section 3.3, using the same de-
coder feature functions except for the distortion models. Using only phrase translation and language
model probabilities for decoding results in 74.4% accuracy on SYSTEM4, much lower than 90% accuracy
with all decoder feature functions. The same language model is used for all experiments. For the end-to-

7 Attachment of unaligned English vowels takes place after phrase extractions and should be distinguished from a heuristic
alignment of unaligned English vowels to Arabic characters before phrase extractions.

8 A transliteration is correct if and only if it exactly matches the truth, i.e. gold standard.

® Giza++ word aligner is trained with 5 iterations of IBM MODEL 1, 5 iterations of HMM, 5 iterations of IBM MODEL 3 and 5 iterations
of IBM MODEL 4. HMM word aligner (Vogel et al., 1996) is trained with 15 iterations of 1BM MODEL 1 and 6 iterations of HMM.
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end translation quality evaluations in Section 5, we use SYSTEM4. Exact match accuracy of SYSTEM4 on
the 52 unseen name pairs is 46%.

Systems Character Alignments | Symmetrization' Target spontaneous words Accuracy
SYSTEM1 GIZA++ Union None 21.6%
SYSTEM2 HMM Refined None 86.8%
SYSTEM3 GIZA++ Union All English vowels: a, ¢, i, 0, u 89.2%
SYSTEM4 GIZA++ & HMM Union All English vowels: @, ¢, i, o, u | 90.0%

Table 1. Name transliteration accuracy on 500 names according to various phrase extraction techniques

5 End-to-end Translation System Experimental Results

End-to-end translation quality experiments are carried out on 3 evaluation data sets shown in Table 2.
TransTac.eval has a low out-of-vocabulary (OOV) and a low name ratios, and has been used as the test
data for system development among DARPA BOLT—C'' program partners. TransTac.oov has a high oov
and a high name ratios, and has been created in-house for OOV detection system developement. Tran-
sTac.name has a low OOV and a high name ratios, and was used for the TransTac 2008 name translation
evaluations.

Evaluation Data Sets TransTac.eval TransTac.oov TransTac.name
sentence count 3,138 344 79
token count 36,895 3,053 514
OOV ratio 0.4% 4.7% 0.6%
name ratio ~0.5% ~11.3% ~15.4%

Table 2. Translation Quality Evaluation Data Statistics

5.1 Systems, Metrics and Results

End-to-end translation system evaluation results are shown in Table 3. Bold-faced and italicized scores
indicate that the system’s translation quality is statistically significantly better than all other systems with
over 95% confidence, i.e. two-tailed P value < 0.05 in paired t-tests.

Metrics Systom fvalsets TransTac.eval | TransTac.oov | TransTac.name | TransTac.name spnorm
Uncased | baseline 33.35 30.72 35.03 37.39
BLEU OOVTranslit 33.35 31.93 35.03 37.54
(4-gram | name t 32.94 31.81 32.97 40.15
&lref) |cN 33.35 32.60 32.19 40.97
HUMAN baseline 3.16 1.45 3.19 3.19
(6-point | OOVTranslit 3.22 2.88 3.36 3.36
scale) name t 2.16 2.79 3.58 3.58
CN 3.20 3.09 3.86 3.86

Table 3. Translation Quality Evaluation Result

The system baseline is trained without name classing and decoded by the baseline decoder without
name classing. The system OOVTranslit is trained and decoded the same way as the baseline except that
all instances of un-translated OOVs are transliterated at the post-processing step. The system name ¢ is

19 Bi-directional word alignment symmetrization methods, as defined in Och and Ney (2003), include union, intersection and
refined.

' BoLT stands for Broad Operational Language Translation and BOLT-C focuses on speech-to-speech translation with dialog man-
agement.
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trained without name classing and decoded by the baseline decoder with name classing.'” The system CN
is trained with name classing and decoded by the CN decoder with name classing."

We evaluate the systems, using automatic BLEU (Papineni et al., 2002), and 6-point scale human
evaluations. Lowercased BLEU scores are computed with 1 reference translation up to 4-grams. Scoring
criteria for human evaluations are as follows. 0: exceptionally poor; 1: poor; 2: not good enough; 3:
good enough; 4: very good; 5: excellent. Human evaluations are conducted on a subset of the automatic
evaluation data containing names.'* We exclude the input sentences for which all systems produce the
same translation output. This leaves 201 sentences from TransTac.eval, 197 sentences from Tran-
sTac.oov, 64 sentences from TransTac.name.

5.2 Result Analysis

We observe that human evaluation scores are relatively consistent with BLEU scores on two data sets,
TransTac.eval and TransTac.oov. TransTac.eval contains very few names. Therefore, incorrect name
classing at the pre-processing step hurts the translation quality for the system name_t. The CN decoder can
improve the translation quality by recovering from a name classing error by choosing the non-name path.
Transliteration of O0Vs (OOVTranslit) can improve the translation quality if any of the OOVs are names.
Human evaluations capture the behaviors of the CN decoder and OOVTranslit by giving a slightly higher
(statistically insignificant) score to OOV Translit, 3.22, and the CN decoder, 3.20, than to the baseline, 3.16.
All three systems, baseline, OOVTranslit and CN, however, received the same BLEU scores, 33.35. This
seems to reflect the fact humans can easily capture the spelling variation of names whereas the automatic
evaluation with 1 reference cannot.

Transtac.oov has a high 00V and a high name ratios and all 00Vs are names. Therefore, name classing
improves the translation quality as long as the correctly classed names out-number the incorrectly classed
ones, explaining the higher translation quality of name ¢ than the baseline. OOVTranslit improves the
translation quality over the baseline because all OOVs are names. The CN decoder out-performs all three
other systems by correctly disambiguating non-OOV names and transliterating name OOVs. BLEU scores
and human evaluation scores show the same pattern.

For TransTac.name with a high name and a low OOV ratios, however, human evaluation and BLEU
scores show the opposite pattern, although none of the BLEU scores are statistically significantly better
than others (note the small evaluation data size of 79 segments and 514 tokens). Since most names in this
data set are known to the translation vocabulary and is highly ambiguous, we expect the CN decoder to
out-perform all other systems. This expectation is borne out in the human evaluations, but not in BLEU
scores. Our analysis indicates that the apparent inconsistency between BLEU and human evaluation scores
is primarily due to spelling variations of a name, which are not captured by BLEU with just one reference,
cf. (Li et al., 2013). Out of the human evaluated 64 names in TransTac.name, the baseline system pro-
duced the same spelling as the reference 34 times (53.13%), which contrasts with 28 times (43.75%) by
the CN decoder. Overall, the CN decoder produced 62 correct name translations, about 20% more than 49
correct translations by the baseline system. Table 4 shows the names for which the reference spelling
agrees with the baseline system, but disagrees with the CN decoding followed by transliteration.

Reference CN output Reference CN output Reference CN output
tikrit tikreet mariam maryam mousa moussa
ajlan al-"ajlan Jjaafar gaafar basra al-basra

Table 4. Name Spelling Variations

12 We ensure that any name classed input word $name is translated into $name by adding $name to the translation vocabulary,
and the input word for $name is transliterated in the post-processing stage.

13 We also evaluated another system, called name_st, which is trained with name classing and decoded with name classing using
the baseline decoder. BLEU scores on TransTac.eval and TransTac.oov indicated that model training and decoding with name
classing (name_st) is only slightly better than model training without name classing and decoding with name classing (name _t).

4 For TransTac.eval data, we selected the sentences containing words tagged as name, i.e. NOUN_PROP, by the automatic part-of-
speech tagger. The name ratio around 0.5% in Table 2 is computed on the basis of human annotations on the reference translation.
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To verify that the inconsistency between BLEU and human evaluation scores is due to name spelling
variations which humans capture but automatic metrics does not, we recomputed BLEU scores after nor-
malizing spellings of the system outputs to be consistent with the reference translation spelling. The re-
computed BLEU scores are denoted by TransTac.name spnorm in Table 3, which shows that the recom-
puted BLEU scores are indeed consistent with the human evaluation scores.’ Also note that the translation
quality improvement by transliterating OOV names is well captured in human evaluation scores, 3.19 in
the baseline vs. 3.36 in the system OOVTranslit, but not in BLEU scores, 35.03 in both baseline and OOV-
Translit.

We point out that the same name is often spelled differently in various parts of our training corpus and
even in the same reference translation, e.g. al-aswad vs. aswad, jassim vs. jasim, rvisha vs. rasha, mahadi
vs. mehdi vs. mahdi, etc., as had been noted in Al-Onaizan and Knight (2002b), Huang et al. (2008).

6 Related Work

Al-Onaizan and Knight (2002a) propose an Arabic named entity translation algorithm that performs at
near human translation accuracy when evaluated as an independent name translation module. Hassan et al.
(2007) propose to improve named entity translation by exploiting comparable and parallel corpora.
Hermjakob et al. (2008) present a method to learn when to transliterate Arabic names. They search for
name translation candidates in large lists of English words/phrases. Therefore, they cannot accurately
translate a name if the correct English name is missing in the word lists. Their restriction of named entity
transliteration to rare words cannot capture name interpretations of frequent words, e.g. zlw= (Sa-
bah/morning), if the name interpretations are absent in the parallel corpus. Li et al. (2013) propose a
Name-aware machine translation approach which tightly integrates high accuracy name processing into a
Chinese-English MT model. Similar to Hermjakob et al. (2008), they restrict the use of name translation to
names occurring less than 5 times in the training data. They train the translation model by merging the
name-replaced parallel data with the original parallel data to prevent the quality degradation of high fre-
quency names.

Onish et al. (2010) present a lattice decoding for paraphrase translations, which can handle OOV
phrases as long as their paraphrases are found in the training corpus. They build the paraphrase lattices of
the input sentence, which are given to the Moses lattice decoder. They deploy the source-side language
model of paraphrases as a decoding feature.

Stalls and Knight (1998) propose a back-transliteration technique to recover original spelling in Roman
script given a foreign name or a loanword in Arabic text, which consist of three models: a model to con-
vert an Arabic string to English phone sequences, a model to convert English phone sequences to English
phrases, a language model to rescore the English phrases. They use weighted finite state transducers for
decoding. Al-Onaizan and Knight (2002b) propose a spelling-based source-channel model for translitera-
tion (Brown et al., 1993), which directly maps English letter sequences into Arabic letter sequences, and
therefore overcomes Stalls and Knight’s major drawback that needs a manual lexicon of English pronun-
ciations. Sherif and Kondrak (2007) propose a substring-based transliteration technique inspired by
phrase based translation models and show that substring (i.e. phrase) models out-perform letter (i.e. word)
models of Al-Onaizan and Knight (2002b). Their approach is most similar to the current approach in that
we both adopt phrase-based translation models for transliteration. The current approach and Sherif and
Kondrak (2007), however, diverge in most technical details including word alignments, phrase extraction
heuristics and decoding, although it is not clear how they estimate transliteration probabilities. Crucially,
we use the same set of decoder feature functions (excluding distortion models) as the end-to-end phrase
translation system including lexical weights for phrases and a sentence in both directions and word/phrase
penalties, whereas Sherif and Kondrak (2007) use only transliteration and language models for substring

' The spellings of the cN decoder output are normalized as follows: 38 instances of names, 2 instances of ’s to is, 2 instances of
the city of arar to arar city and 1 instance of talk with to speak to. Only name spelling normalizations were necessary for other
system outputs.
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transducer. We noted in Section 4 that inclusion of all decoder feature functions improves the accuracy
by 15.6% absolute, compared with using just translation and language models for decoding.

7 Conclusion

We proposed a confusion network decoding to disambiguate Arabic names between name and non-
name interpretations of an input word and character-based phrase transliteration models for NAME/OOV
transliteration.

Name classing at the pre-processing step, coupled with name transliteration at the post-processing
step, enables the system to accurately translate OOV names. Robust TM/LM probability estimations of
names on the class label $name enable the system to correctly translate names even when the name
interpretation of an in-vocabulary word is absent from the training data. Confusion network decoding
can recover from name classing errors by choosing an alternative decoding path supported by decoder
feature functions, obviating the need for stipulating a count threshold of an input token for name trans-
lation. The character-based phrase transliteration system achieves 90% exact match accuracy on 500
unique name pairs, utilizing all of the phrase decoder feature functions except for distortion models.
We capture the asymmetries of English and Arabic vowel systems by treating any instance of an un-
aligned English vowel as a spontaneous word that can be attached to the preceding or following target
phrases for phrase acquisition.

Although we proposed the confusion network decoding and character-based phrase transliteration
models in the contexts of Arabic name disambiguation and transliteration tasks, the techniques are
language independent and may be applied to any languages.
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