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Abstract

Authorship verification is the problem of answering the question whether or not a sample text
document was written by a specific person, given a few other documents known to be authored by
them. We propose a proximity based method for one-class classification that applies the Common
N-Gram (CNG) dissimilarity measure. The CNG dissimilarity (KeSelj et al., 2003) is based on
the differences in the frequencies of n-grams of tokens (characters, words) that are most common
in the considered documents. Our method utilizes the pairs of most dissimilar documents among
documents of known authorship. We evaluate various variants of the method in the setting of
a single classifier or an ensemble of classifiers, on a multilingual authorship verification corpus
of the PAN 2013 Author Identification evaluation framework. Our method yields competitive
results when compared to the results achieved by the participants of the PAN 2013 competition
on the entire set, as well as separately on two subsets — English and Spanish ones — out of the
three language subsets of the corpus.

1 Introduction

The task of computational detection of who wrote a given text is a widely studied linguistic and machine
learning problem with applications in domains such as forensics, security, criminal and civil law, or liter-
ary research. The authorship verification problem is a type of such a computational authorship analysis
task, in which, given a set of documents written by one author, and a sample document, we are asked
whether or not this sample document was written by this given author. This is different from the more
traditional problem of deciding who among a finite number of candidate authors for which we are given
sample writings, wrote a document in question, and, albeit more difficult, is often considered to better
reflect the real-life problems related to authorship detection (Koppel et al., 2012).

We describe our one-class proximity based classification method and evaluate it on the multilingual
dataset of the Authorship Identification competition task of PAN 2013 (evaluation lab on uncovering
plagiarism, authorship, and social software misuse) (Juola and Stamatatos, 2013).

During the competition, to which a variant of our method has been submitted (Jankowska et al., 2013),
it yielded ranking 5th (joint) out of 18 with respect to the accuracy, and 1st rank out of 10 in the secondary
ranking based on the area under the ROC curve (AUC), which evaluates the ordering of instances by the
confidence score. In this paper we show some further experiments on how a different way of tuning
the classifier parameters, using solely the training dataset of the competition, as well as an ensemble
of classifiers based on our method, without any parameter tuning, leads to competitive accuracy results
while still achieving high AUC values.

2 Related Work

The author analysis has been studied extensively in the context of the authorship attribution problem, in
which there is a small set of candidate authors out of which the author of a questioned document is to
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be selected. There are several papers (Stamatatos, 2009; Juola, 2008; Koppel et al., 2009) presenting
excellent surveys of this area.

The two main categories (Stamatatos, 2009) of solutions for the problem are similarity based ap-
proaches, in which a classification is performed in a Neigherst Neighbour scheme, attributing a sample
text to the author whose writing is most similar according to some measure, and machine-learning based
approaches, in which each document by an author is treated as a data sample within a class, and a super-
vised classifier is trained on these data.

A more limited research has been performed on an open-set variant on this problem, in which it is
possible that none of the candidate authors wrote a document in question, with authorship verification
being the extreme case of an open-set problem with only one candidate. The “unmasking method” for
authorship verification (Koppel and Schler, 2004) is successful for novel-length texts. This approach,
similarly as our method, falls into a category of intrinsic methods (Juola and Stamatatos, 2013); it uses
only the documents in question, without constructing classes of other authors. The ensemble of one-class
classifiers (Halvani et al., 2013), which achieved high accuracy at the PAN 2013 Author Identification
competition, is also an example of such an intrinsic method. It varies from our approach by using a
different scheme of creating the dissimilarity between an unknown document and the known authorship
set of texts, based on the Nearest Neighbour technique (Tax, 2001), as well as by a different distance
measure and features used.

Another way of approaching the author verification problem is to cast it into a binary or multi-class
classification, by creating a class or classes of other authors. The “imposters” method (Koppel and Win-
ter, 2014) generates a very large set of texts by authors that did not write the questioned document,
to transform the problem into a open-set author attribution problem with many candidates, handled
by an ensemble-based similarity method (Koppel et al., 2011). A modified version of the imposters
method (Seidman, 2013) achieved first ranking in the PAN 2013 Authorship Identification competition.
The method (Veenman and Li, 2013), which achieved the highest accuracy on the English set in this
competition, is also of such an extrinsic type; its first step is a careful selection of online documents
similar to the ones in the problems. The method (Ghaeini, 2013), which produces competitive ordering
of verification instances, uses weighted k-NN approach using classes of other authors created from other
verification instances.

3 Methodology

The formulation of the authorship verification task for the Author Identification Task at PAN 2013 is the
following: “Given a set of documents (no more than 10, possibly only one) by the same author, is an
additional (out-of-set) document also by that author?”” (Juola and Stamatatos, 2013).

We approach this task with an algorithm based on the idea of proximity based methods for one-class
classification. In one-class classification framework, an object is classified as belonging or not belong-
ing to a target class, while only sample examples of objects from the target class are available during
the training phase. Our method resembles the idea of the k-centers algorithm for one-class classifica-
tion (Ypma et al., 1998; Tax, 2001), with k£ being equal to the number of all training documents in the
target set (i.e., written by the given author). The k-centers algorithm is suitable for cases when there
are many data points from the target class; it uses equal radius sphere boundaries around the target data
points and compares the sample document to the closest such centre. We propose a different classifica-
tion condition, described below, utilizing the pairs of most dissimilar documents within the set of known
documents.

Let A = {di,...,dy}, k > 2, be the input set of documents written by a given author, which we will
call known documents. If only one known document is provided, we split it in half and treat these two
chunks as two known documents. Let u be the input sample document, of which the authorship we are to
verify, that is return the answer “Yes” or "No” to the posed question whether it was written by the given
author.

Our algorithm calculates for each known document d;,¢ = 1,2,...,k, the maximum dissimilar-
ity between this document and all other known documents: D™%"(d;, A), as well as the dissimilar-
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ity between this document and the sample document u: D(d;, ), and finally the dissimilarity ratio
r(di,u, A) = D,ﬂ(fim (and thus r(d;,u, A) < 1 means that there exists a known document more
dissimilar to d; than u, while r(d;,u, A) > 1 means that all the known documents are more similar to
d; than ). The average M (u, A) of the dissimilarity ratio over all known documents dy, da, ..., dj, from
A, is the subject of the thresholding: the sample u is classified as written by the same person as the
known documents if and only if M (u, A) is at most equal to a selected threshold . Notice that in this
framework the dissimilarity between the documents does not need to be a metric distance, i.e., it does
not need to fulfil the triangle inequality (as is the case for the dissimilarity measure we choose).

For the dissimilarity measure between documents we use the Common N-Gram (CNG) dissimilarity;
proposed by Keselj et al. (2003); this dissimilarity (or its variants) used in the Nearest Neighbour classi-
fication scheme (Common N-gram classifier) was successfully applied to authorship classification tasks
(Keselj et al., 2003; Juola, 2008; Stamatatos, 2007). The CNG dissimilarity is based on the differences
in the usage frequencies of the most common n-grams of tokens (usually characters, but possibly other
tokens) of the documents. Each document is represented by a profile: a sequence of the most common
character n-grams (strings of characters of the given length n from the document) coupled with their
frequencies (normalized by the length of the document). The dissimilarity between two documents of
the profiles P; and P is defined as follows:

2
o= 3 () .
2

ze(P1UP)

where x is a character n-gram from the union of two profiles, and fp, (x) is the normalized frequency of
the n-gram = in the the profile P;, ¢ = 1,2 (fp,(z) = 0 whenever x does not appear in the profile F;).
The parameters of the dissimilarity are the length of the n-grams n and the length of the profile L. As
our method is based on the ratios of dissimilarities between documents, we take care that the documents
in a given problem are always represented by profiles of the same length. We experiment with two ways
of selecting the length of the profiles. In the dynamic-length variant, the length of profiles is selected
separately for each problem, based on the number of n-grams in the documents in the given instance
(parametrized as a fraction f of all n-grams of the document that contains the least number of them). In
the fixed-length variant, we use a selected fixed length L of profiles. For a one-class classifier we need
to select two parameters defining the features used for dissimilarity (length of the n-grams n, and either
the fixed length L of a profile, or the fraction f defining the profile length), and the parameter 6 (for
classifying by thresholding the average dissimilarity ratio M).

We linearly scale the measure M to represent it as a confidence score in the range from 0 (the highest
confidence in the answer “No”" ) to 1 (the highest confidence in the answer “Yes”), with the answer “Yes”
given if and only if the confidence score is at least 0.5. The value of M equal to 6 is transformed to
the score 0.5, values greater than 6 to the scores between 0 and 0.5, and values less than 6 to the scores
between 0.5 and 1 (a cutoff of 0.1 is applied, , i.e. all values of M (u, A) < 6 — cutoff are mapped to the
score 1, and all values of M (u, A) > 6 + cutoff are mapped to the score 0).

4 Training and test datasets

We leverage the evaluation framework of the PAN 2013 competition task of Author Identification (Juola
and Stamatatos, 2013), the datasets of which were carefully created for authorship verification, with
effort made to match within each problem instance the texts by the same genre, register, theme and time
of writing. The dataset consists of English, Greek and Spanish subsets. In each instance, the number
of documents of known authorship is not greater than 10 (possibly only one). The dataset is divided
into the training set panl3—-ai-train and the test set panl3-ai-test. The training set was made
available for the participants before the competition; the test set was used to evaluate the submissions
and subsequently published (PAN, 2013).

To enrich the training dataset for our competition submission, we also compiled ourselves two ad-
ditional datasets using existing sets for other authorship identification tasks. mod-panl2-aa-EN is

389



an English author verification set compiled from the fiction corpus for the Traditional Authorship At-
tribution sub task of the PAN 2012 competition (PAN, 2012; Juola, 2012). mod-Bpc-GR is a Greek
author verification set compiled from the Greek dataset of journal articles (Stamatatos et al., 2000). It is
important to note that these sets are different from the competition dataset in that we did not attempt to
match the theme or time of writing of the texts.

Table 1 presents characteristics of the datasets.

panl3-ai-train

total | English Spanish Greek
number of problems 35 10 5 20
mean of the known document number per problem | 4.4 32 24 5.5
mean length of documents in words 1226 1038 653 1362
genre textbooks | editorials, fiction | articles

panl3-ai-test

total | English Spanish Greek
number of problems 85 30 25 30
mean of the known document number per problem | 4.1 4.2 3.0 4.9
mean length of documents in words 1163 1043 890 1423
genre textbooks | editorials, fiction | articles

mod-panl2-aa-EN
total: English

number of problems 22
mean of the known document number per problem 2.0
mean length of documents in words 4799
genre fiction

mod-Bpc-GR
total: Greek

number of problems 76
mean of the known document number per problem 2.5
mean length of documents in words 1120
genre articles

Table 1: Characteristics of datasets used in our authorship verification experiments.

5 Evaluation measures

In our experiments we use two measures of evaluation, based on the measures proposed for the PAN 2013
competition. The accuracy is the fraction of all problems that have been answered correctly. The AUC
measure is the area under the ROC curve based on the confidence scores. It is the nature of applications
of authorship verification, such as forensics, that makes the confidence score and not only the binary
answer, an important aspect of a solution (Gollub et al., 2013).

For our method accuracy is equivalent to the measure that was used in the competition for the main
evaluation. This measure is F}, defined based on the fact that in the competition it was allowed to
withdraw an answer (i.e., use an “I do not know” option). Precision and recall were defined as follows:
recall = %, precision = %, and F} is the harmonic mean of prec?ision and
recall. For any method that, as our method, provides the answer “Yes” or “No” for all problem instances,

the accuracy and F are equivalent.
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6 Types of classifiers

A single classifier of our method requires two parameters defining the features to be used to represent
a document (the length of an n-gram and the length of a profile), as well as a selection of the threshold
for the dissimilarity for the classification decision. We tune and evaluate four version of such single
classifiers. Combining many such one-class classifiers, each using different combination of features
defining parameters, into one ensemble, allows to remove or mitigate the parameter tuning. We describe
the creation and the evaluation of four types of ensembles.

Table 2 reports the considered space for feature defining parameters. On a training set, for a given
combination of feature defining parameters (n,L) or (n,f), we use the accuracy at the optimal threshold

(a threshold 6 that maximizes the accuracy), as a measure of performance for these parameters.

Parameters

n  length of n-grams
L #of n-grams: profile length (fixed-length)

f  fraction of n-grams for profile length (dynamic-length)
0 threshold for classification

02 threshold for classification if at least 2 known documents are given
0,  threshold for classification if only one known document is given

Space of considered parameters

n for character n-grams
n for word n-grams

{3,4,.

.,9,10}

{1,2,3}

Table 2: Parameters for four variants of single one-class classifiers and four ensembles of one-class

classifiers based on our method.

6.1 Single classifiers

For single character n-gram classifiers, we tuned the parameters for each language separately on training
data, by selecting feature defining parameters based on their performance, and selecting the thresholds
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L {200, 500, 1000, 1500, 2000, 2500, 3000 }
f {0.2,0.3,...,0.9,1}
single classifiers ensembles
English | Spanish Greek English ‘ Spanish Greek
vDl | n 6 7 10 eC type character
f 0.75 (n,L) all in the considered space
0 1.02 1.005 1.002 0 1
vEl | n 6 7 eW | type word
L 2000 2000 (n,L) all in the considered space
0o+ 1.02 1.008 0 1
01 1.06 1.04 eCW | type character, word
vE2 | n 7 3 9 (n, L) all in the considered space
L 3000 2000 3000 0 1
f2+ || 1.014 1.014 0.997 eCW | type character, word
01 1.056 1.126 1.060 (n, L) || selected based on training data
vb2 [n [[7 3 9 6hH | 7 | @3
f 0.8 0.6 0.8 6 1
O+ || 1.013 1.00530207 | 0.9966
01 1.053 1.089 1.059




to correspond to the optimal thresholds. Table 2 reports the parameters of four variants of single classi-
fiers. We include our two submissions to the PAN 2013 Authorship Identification competition: the final
submission vF1 and the preliminary submission vD1. The other two classifiers were tuned and tested
after the competition.

Our preliminary submission vD1 (Table 2) is tuned on panl3-ai-train, with f chosen ad-hoc.
This is the only classifier among the reported variants that does not use a preprocessing of truncation of
all documents in a given problem instance to the length of the shortest document, which tend to increase
the accuracy for cases of a significant difference in the length of documents.

For tuning of parameters of the final submission vF1 (Table 2) we use not only panl3-ai-train,
but also additional training sets mod-panl2-aa—EN and mod-Bpc—-GR. We also introduce two thresh-
old values: one for cases when there are at least two known documents, and another one for the cases
when there is only one known document (which has to be divided in two). The intuition behind this dou-
ble threshold approach is that when there is only one known document, the two halves of it can be more
similar to each other than in other cases. After the parameters are selected based on subsets of training
sets with only these problems that contain at least two known documents, the additional threshold is
selected based on the optimal threshold on a modified “1-only” training set, from the problem of which
all known documents except of a random single one is removed. For Spanish, with only three training
instances with more than one known document, we use the same parameters as for English.

For tuning of vF2 and vD2 (Table 2) we use only competition training data, without the additional
corpora used for vF 1. Feature parameters are selected based on the performance on the subsets contain-
ing at least two known documents, and on the “1-only” modified sets (which allows us to use the Spanish
training set for tuning the Spanish classifiers).

6.2 Ensembles of classifiers

We test ensembles of single one-class classifiers based on our method, with the ensemble combining
answers of the classifiers, and each classifier using different set of features. An important advantage of
an ensemble is the alleviation of the problem of tuning the parameters. Each classifier uses a different
combination of parameters n and L defining the features. And as many classifiers are used, instead of
tuning the threshold of a single classifier based on some training data, the threshold of each classifier
is set to some fixed value, with 1 being a natural choice, as it corresponds to checking whether or not
the unknown document is (on average) less similar to each given known document than the author’s
document that is most dissimilar to this given known document.

We test majority voting and voting weighted by the confidence scores of single classifiers. For each
ensemble we combine answers of the classifiers in order to obtain the confidence score of the ensemble.
For majority voting the confidence score of the ensemble is the ratio of the number of classifiers that
output “Yes” to the total number of classifiers, the confidence score of the weighted voting is the average
of the confidence scores of the single classifiers.

We experiment with n-grams being characters (utf8-encoded) and words (converted to uppercase).
Table 2 summarize the ensembles. The ensemble eC is of all character n-gram classifiers in our space
of considered parameters n and L; eW is of all word n-gram classifiers; eCW is of all classifiers of eC
and eW. These ensembles do not use any training data. We also create a classifier eCW_sel (Table 2),
which is a subset of the classifiers of eCW, selected based on the performance of the single classifiers
on the training data of the competition. For each language separately, we remove classifiers that on the
training data achieved lowest accuracies at their respective optimal thresholds, while keeping at least half
of the character based classifiers and at least half of the word based classifiers. (For Spanish, eCW_sel
and eCW differ just by one classifier: the only one that on the small Spanish training set has the optimal
accuracy less than 1.)

7 Results

The accuracy and the area under the ROC curve (AUC) values achieved by the variants of our method
on the PAN 2013 Author Identification test dataset are presented in Table 3. The table states also the
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best PAN 2013 competition results of other participants! (that is the results of these participants that
achieved the highest accuracy or AUC on any (sub)set). There were 17 other participants for which there
are accuracy (or F) results, 9 of which submitted also confidence scores evaluated by AUC.

PAN 2013 Author Identification test dataset
Fy
= accuracy except for Ghaeini,2013 AUC
all English | Spanish | Greek || all English | Spanish | Greek

single classifiers

vD1 0.718 | 0.733 0.760 0.667 || 0.790 | 0.837 0.846 0.718
vE1 0.682 | 0.733 0.720 0.600 || 0.793 | 0.839 0.859 0.711
vD2 0.729 | 0.767 0.760 0.667 || 0.805 | 0.850 0.936 0.704
vE2 0.753 | 0.767 0.880 0.633 || 0.810 | 0.844 0.885 0.664
ensembles of classifiers
eC majority | 0.729 | 0.800 0.840 0.567 || 0.754 | 0.777 0.833 0.620
weight 0.729 | 0.833 0.800 0.567 || 0.764 | 0.830 0.859 0.582
eW majority | 0.718 | 0.733 0.720 0.700 || 0.763 | 0.830 0.805 0.700
weight 0.741 | 0.767 0.760 0.700 || 0.822 | 0.886 0.853 0.782
eCW majority | 0.800 | 0.833 0.840 0.733 || 0.755 | 0.817 0.821 0.633

weight 0.741 | 0.800 0.840 0.600 || 0.780 | 0.842 0.853 0.622
eCW_sel majority | 0.800 | 0.833 0.840 0.733 || 0.778 | 0.826 0.814 0.682
weight 0.788 | 0.800 0.840 0.733 || 0.805 | 0.857 0.853 0.687

boxed values: best competition results of other PAN 2013 Author Identification participants

Seidman,2013 0.753] | 0.800] | 0.600 | |0.833] || [0.735 | 0.792 | 0.583 | [0.824
Veenman and Li,2013 | — 0.800 - - - - - -
Halvani et al.,2013 | 0.718 | 0.700 | |0.840] | 0.633 || - - - -
Ghaeini,2013 0.606 | 0.691 | 0.667 | 0.461 || 0.729 |[0.837] |[0.926] | 0.527

Table 3: Area under the ROC curve (AUC) and F (which is equal to accuracy for all algorithms except
for (Ghaeini, 2013)) on the test dataset of PAN 2013 Author Identification competition task. Results of
variants of our method compared with competition results of those among other competition participants
that achieved the highest value of any evaluation measure on any (sub)set. The highest result in any
category is bold; the highest result by other competition participants in any category is boxed.

All variants of our method perform better on the English and Spanish subset than on the Greek one,
both in terms of the accuracy and in terms of AUC. On the Greek subset they are all outperformed by
other competition participant(s). This is most likely due to the fact that the Greek subset was created in a
way that makes it especially difficult for algorithms that are based on CNG character-based dissimilarity
(Juola and Stamatatos, 2013), by using a variant of CNG dissimilarity for the character 3-grams in order
to select difficult cases. This particularity of the set may also be the reason why the ensemble eC of
character n-gram classifiers performed worse than other methods on this set.

The variants of our method are competitive in terms of the ordering of the verification instances ac-
cording to the confidence score as measured by AUC. During the competition, our final submission vF 1
achieved the first ranking according to the AUC on the entire set, the highest AUC on the English subset,
and the second-highest AUC values on the Spanish and Greek subset, out of 10 participants that submit-

!The results of our methods are on the published competition dataset. The results by other participants are the published
competition results. The actual competition evaluation set for Spanish may have some text in a different encoding then the
published set; our final submission method vF1 yielded on it a different result than on the published dataset.
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ted confidence scores. All variants of our method perform better than any other competition participant
on the entire set. On the English subset the single classifiers and the ensembles with weighted voting
have AUC above 0.8, and out of those only eC has AUC lower than the best result by other participants.
On the Spanish subset all variants of our method achieved AUC above 0.8, with vD2 achieving AUC
higher than the best competition result on this subset.

In terms of overall accuracy on the entire set, the ensembles combining character and word based
classifiers: eCW with majority voting and eCW_sel with both types of voting, achieve accuracy higher
then the best overall accuracy in the competition. They also match or surpass the best competition
accuracy on the English subset, and match the best competition accuracy on the Spanish subset. The
highest accuracy on the English subset was achieved by eC with weighted voting, eCW with majority
voting, and eCW_se1 with majority voting (higher than the best competition result). vF2 yields on the
Spanish subset accuracy higher than the best competition result.

For the ensembles of classifiers, on the English and Spanish subsets, the AUC for voting weighted by
the confidence scores are higher than the AUC for the majority voting, but not so on the Greek subset.
This is consistent with the fact that on the Greek subset the confidence scores for single classifier variants
yield worse ordering (AUC) than on other sets. Creation of eCW_sel by removing from the ensemble
eCW the classifiers that perform worst on the training data improves the Greek results, and slightly the
English results.

We tested the statistical significance of accuracy differences between all pairs of accuracies reported
in Table 3 by the exact binomial McNemar’s test (Dietterich, 1998). Only few of these differences are
statistically significant. On the entire set these are: the difference between the accuracy of eCW with
majority voting and of eC with majority voting, vD1 and vF1, as well as the difference between the
accuracies of eCW_sel with weighted voting and of vF1. On the Greek subset, this is the difference
between the accuracies of the submission (Seidman, 2013) and the lower accuracy of eC with weighted
voting.

English mod-panl2-aa-EN Greek mod-Bpc—-GR

accuracy ‘ AUC accuracy AUC

vD1 0.545 0.649 0.605 0.661
vD2 0.727 0.826 0.566 0.698
vE2 0.773 0.843 0.618 0.709
eC majority 0.636 0.843 0.658 0.694
weighted 0.682 0.806 0.671 0.703

eW majority 0.636 0.674 0.750 0.757
weighted 0.727 0.736 0.737 0.749

eCW majority 0.636 0.785 0.737 0.725
weighted 0.682 0.818 0.711 0.719

eCW_sel majority 0.636 0.789 0.750 0.742
weighted 0.682 0.826 0.737 0.737

Table 4: Accuracy and area under ROC curve (AUC) of our method on other English and Greek datasets.
The sets were compiled by ourselves for the purpose of enriching training domain for other variant of
our classifier. The highest result in any category is bold.

The datasets mod-panl2-aa-EN and mod-Bpc—-GR were compiled by ourselves from other au-
thorship attribution sets for the purpose of enriching the training corpora for our final submission vF1.
The comparison between results on the English and Greek subsets of vF1 with the results of vF2 (for
which these additional sets were not used), shows that vF'2 achieved better results on English data. while
vF1 has higher AUC on Greek data.

Though these additional sets were not created specifically for authorship verification evaluation, we
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examine the results of our methods on these sets (with the exception of vF1, which is tuned on them).
We present the results in Table 4. vD1 performs poorly on mod-panl2-aa—EN. This is in part due to
the fact that in this set the documents in a given problem instance can differ significantly with respect to
the length, and the variant vD1 does not use the preprocessing of truncation all files withing a problem
to the same length. The variants vD2 and vF2 (which apply this truncation) yielded accuracy and
AUC similar in value to the ones achieved on the PAN 2013 English subset. The ensembles containing
character n-gram classifiers yielded similar AUC on mod-panl2-aa—-EN as on the PAN2013 English
subset, close in value to 0.8. But their accuracies are distinctly lower than the results on the English
competition subset, with values below 0.7 (for each such an ensemble, vast majority of the misclassified
instances are false negatives: cases classified as not written by the same person when in fact they are). For
mod-Bpc—GR the single classifiers (with parameters tuned on the competition Greek subset) perform
rather poorly, with results similar but lower in values than the results yielded on the competition Greek
test set. The ensembles containing word n-gram based classifiers perform better than the ensembles
containing only the character n-gram classifiers, yielding both AUC and accuracy in the range of 0.71 —
0.75.

8 Future Work

It will be of interest to investigate the relation between the performance of our method and the number
and the length of the considered texts. An interesting direction indicated by results of our experiments is
also the analysis of the role of word n-grams and character n-grams for authorship verification depending
on the genre of the texts, and on the topical similarity between the documents.

9 Conclusions

We present our proximity based one-class classification method for authorship verification. The method
uses for each document of known authorship the most dissimilar document of the same author, and exam-
ines how much more or less similar is the questioned document. We use Common N-Gram dissimilarity
based on differences in frequencies of character and word n-grams.

We evaluate our method on the set of PAN 2013 Authorship Identification competition. One variant
of our method was submitted to the competition. The ordering by scores indicating the confidence that
the documents were written by the same person, yielded by our method, and evaluated by area under
ROC curve (AUC), is competitive with respect to other participants of the competition, overall, and on
the English and Spanish subsets. On the entire set, AUC by each variant of our method is higher than the
best result by other participants. In terms of accuracy, the method also performs better on the English
and Spanish subsets of the dataset, and worse on the Greek one. An ensemble combining character based
classifiers and word based classifiers yields the best accuracy, surpassing the best competition result on
the entire set and on the English subset, while matching the best competition result on the Spanish subset.

As all proximity based one-class classification algorithms, our method relies on a selected threshold on
the proximity between the questioned text and the set of documents of known authorship. Additionally,
a single classifier requires two parameters defining the features representing documents. Ensembles of
classifiers allow to alleviate the parameter tuning, by using many classifiers for many combinations of
feature defining parameters, with a threshold fixed to 1 (a natural, albeit arbitrary, value).
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