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Abstract

This paper presents a machine learning approach to sarcasm detection on Twitter in two lan-
guages – English and Czech. Although there has been some research in sarcasm detection in
languages other than English (e.g., Dutch, Italian, and Brazilian Portuguese), our work is the
first attempt at sarcasm detection in the Czech language. We created a large Czech Twitter cor-
pus consisting of 7,000 manually-labeled tweets and provide it to the community. We evaluate
two classifiers with various combinations of features on both the Czech and English datasets.
Furthermore, we tackle the issues of rich Czech morphology by examining different preprocess-
ing techniques. Experiments show that our language-independent approach significantly outper-
forms adapted state-of-the-art methods in English (F-measure 0.947) and also represents a strong
baseline for further research in Czech (F-measure 0.582).

1 Introduction

Sentiment analysis on social media has been one of the most targeted research topics in NLP in the past
decade, as shown in several recent surveys (Liu and Zhang, 2012; Tsytsarau and Palpanas, 2012). Since
the goal of sentiment analysis is to automatically detect the polarity of a document, misinterpreting irony
and sarcasm represents a big challenge (Davidov et al., 2010).

As there is only a weak boundary in meaning between irony, sarcasm and satire (Reyes et al., 2012),
we will use only the term sarcasm in this paper. Bosco et al. (2013) claim that “even if there is no agree-
ment on a formal definition of irony, psychological experiments have delivered evidence that humans can
reliably identify ironic text utterances from an early age in life.” We have thus decided to rely on the abil-
ity of our human annotators to manually label sarcastic tweets to train our classifiers. Sarcasm generally
reverses the polarity of an utterance from positive or negative into its opposite, which deteriorates the
results of a given NLP task. Therefore, correct identification of sarcasm can improve the performance.

The issue of automatic sarcasm detection has been addressed mostly in English, although there has
been some research in other languages, such as Dutch (Liebrecht et al., 2013), Italian (Bosco et al.,
2013), or Brazilian Portuguese (Vanin et al., 2013). To the best of our knowledge, no research has been
conducted in Czech or other Slavic languages. These languages are challenging for many NLP tasks
because of their rich morphology and syntax. This has motivated us to focus our current research on both
English and Czech.

Majority of the existing state-of-the-art techniques are language dependent, which rely on language-
specific lexical resources. Since no such resources are available for Czech, we adapt some language-
independent methods and also apply various preprocessing steps for sentiment analysis proposed by
Habernal et al. (2013).

This paper focuses on document-level sarcasm detection on Czech and English Twitter datasets using
supervised machine learning methods. The Czech dataset consists of 7,000 manually labeled tweets,
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the English dataset consists of a balanced distribution and an imbalanced distribution, each contain-
ing 100,000 tweets, where hashtag #sarcasm was used as an indicator of sarcastic tweets. We pro-
vide both datasets under Creative Commons BY-NC-SA licence1 at http://liks.fav.zcu.cz/
sarcasm/.

Our research questions were the following: (1) To what extent can the language-independent approach
compete with methods based on lexical language-dependent resources? (2) Is it possible to reach good
agreement on annotating sarcasm and what typical text properties on Twitter are important for sarcasm
detection? (3) What is the best preprocessing pipeline that can boost performance on highly-flective
Czech language and what types of features and classifiers yield the best results?

The rest of this article is organized as follows. Section 2 describes the related work. In section 3, we
outline our approach to sarcasm detection and describe the selection of features in our approach. Section
4 thoroughly describes the datasets and the annotation process. Section 5 describes and discusses the
experimental results. Finally we conclude in Section 6.

2 Related Work

Experiments with semi-supervised sarcasm identification on a Twitter dataset (5.9 million tweets) and on
66,000 product reviews from Amazon were conducted in (Davidov et al., 2010) and (Tsur et al., 2010).
They used 5-fold cross validation on their kNN-like classifier and obtained an F-measure of 0.83 on
the product reviews dataset and 0.55 on the Twitter dataset. For acquiring the Twitter dataset they used
hashtag #sarcasm as an indicator of sarcastic tweets. They further created a balanced evaluation set of
180 tweets using 15 human annotators via Amazon Mechanical Turk2 and achieved an inter-annotator
agreement 0.41 (Fleiss’ κ).

González-Ibáñez et al. (2011) experimented with Twitter data divided into three categories (sarcas-
tic, positive sentiment and negative sentiment), each containing 900 tweets. They used the #sarcasm
and #sarcastic hashtags to identify sarcastic tweets. They used two classifiers – support vector
machine (SVM) with sequential minimal optimization (SMO) and logistic regression. They tried var-
ious combinations of unigrams, dictionary-based features and pragmatic factors (positive and negative
emoticons and user references), achieving the best result (accuracy 0.65) for sarcastic and non-sarcastic
classification with the combination of SVM with SMO and unigrams. They employed 3 human judges to
annotate 180 tweets (90 sarcastic and 90 non-sarcastic). The human judges achieved Fleiss’ κ = 0.586,
demonstrating the difficulty of sarcasm classification. Another experiment included 50 sarcastic and 50
non-sarcastic (25 positive, 25 negative) tweets with emoticons annotated by two judges. The automatic
classification and human judges achieved the accuracy of 0.71 and 0.89 respectively. The inter-annotator
agreement (Cohen’s κ) was 0.74.

Reyes et al. (2012) proposed features to capture properties of a figurative language such as ambiguity,
polarity, unexpectedness and emotional scenarios. Their corpus consists of five categories (humor, irony,
politics, technology and general), each containing 10,000 tweets. The best result in the classification of
irony and general tweets was F-measure 0.65.

In (Reyes et al., 2013) they explored the representativeness and relevance of conceptual features (sig-
natures, unexpectedness, style and emotional scenarios). These features include punctuation marks,
emoticons, quotes, capitalized words, lexicon-based features, character n-grams, skip-grams, (Guthrie
et al., 2006), and polarity skip-grams. Their corpus consists of four categories (irony, humor, education
and politics), each containing 10,000 tweets. Their evaluation was performed on two distributional sce-
narios, balanced distribution and imbalanced distribution (25% ironic tweets and 75% tweets from all
three non-ironic categories) using the Naive Bayes and decision trees algorithms from the Weka toolkit
(Witten and Frank, 2005). The classification by the decision trees achieved an F-measure of 0.72 on the
balanced distribution and an F-measure of 0.53 on the imbalanced distribution.

The work of Riloff et al. (2013) identifies one type of sarcasm: contrast between a positive sentiment
and negative situation. They used a bootstrapping algorithm to acquire lists of positive sentiment phrases

1http://creativecommons.org/licenses/by-nc-sa/3.0/
2http://www.mturk.com
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and negative situation phrases from sarcastic tweets. They proposed a method which classifies tweets as
sarcastic if it contains a positive predicative that precedes a negative situation phrase in close proximity.
Their evaluation on a human-annotated dataset3 of 3000 tweets (23% sarcastic) was done using the SVM
classifier with unigrams and bigrams as features, achieving an F-measure of 0.48. The hybrid approach
that combines the results of the SVM classifier and their contrast method achieved an F-measure of 0.51.

Sarcasm and nastiness classification in online dialogues was also explored in (Lukin and Walker, 2013)
using bootstrapping, syntactic patterns and a high precision classifier. They achieved an F-measure of
0.57 on their sarcasm dataset.

3 Our Approach

This paper presents the first attempt at sarcasm detection in the Czech language, in which we focus on
supervised machine learning approaches and evaluate their performance. We selected various n-grams,
including unigrams, bigrams, trigrams with frequency greater than three (Liebrecht et al., 2013), and a
set of language-independent features, including punctuation marks, emoticons, quotes, capitalized words,
character n-grams and skip-grams (Reyes et al., 2013) as our baselines.

3.1 Classification
Our evaluation was performed using the Maximum Entropy (MaxEnt) and Support Vector Machine
(SVM) classifiers. We used Brainy – a Java framework for machine learning (Konkol, 2014) – with
default settings (the linear kernel for SVM). All experiments were conducted in the 5-fold cross vali-
dation manner similar to (Davidov et al., 2010; González-Ibáñez et al., 2011). Our motivation to test
multiple classifiers stemmed also from related works which mostly test more than one classifier. On the
other hand, the choice between state-of-the-art linear classifiers might not be much of importance, as the
most important is the feature engineering.

3.2 Features
For our evaluation we used the most promising language-independent features from the related work and
POS related features. Feature sets used in our evaluation are described in Table 1.

Group Features Description

N-gram

Character n-gram
We used character n-gram features (Blamey et al., 2012). We set the minimum
occurrence of a particular character n-gram to either 5 or 50, in order to prune the
feature space. Our character feature set contains 3-grams to 6-grams.

N-gram We used word unigrams, bigrams and trigrams as binary features. The feature space
is pruned by the minimum n-gram occurrence set to 3 (Liebrecht et al., 2013).

Skip-bigram
Instead of using sequences of adjacent words (n-grams) we used skip-grams
(Guthrie et al., 2006), which skip over arbitrary gaps. Reyes et al. (2013) consider
skip-bigrams with 2 or 3 word skips and remove skip-grams with a frequency≤ 20.

Pattern
Pattern

Patterns composed of high frequency words (HFWs)4 and content words (CWs)5

used by (Davidov et al., 2010). Pattern must contain at least one high frequency
word. The patterns contain 2-6 HFWs and 1-6 CWs. We set the minimum occur-
rence of a particular pattern to 5.

Word-shape pattern
We tried to improve pattern features by using word-shape classes for content words.
We assign words into one of 24 classes6 similar to the function specified in (Bikel
et al., 1997).

POS

POS characteristics
We implemented various POS features, e.g., the number of nouns, verbs, and adjec-
tives (Ahkter and Soria, 2010), the ratio of nouns to adjectives and verbs to adverbs
(Kouloumpis et al., 2011), and number of negative verbs obtained from POS tags.

3They used three annotators. Each annotator was given the same 100 tweets with the sarcasm hashtag and 100 tweets
without the sarcasm hashtag (the hashtags were removed). On these tweets the pairwise inter-annotator scores were computed
(Cohen’s Kappa κ1 = 0.80, κ2 = 0.81 and κ3 = 0.82). Then each annotator labeled additional 1000 tweets.

4A word whose corpus frequency is more than 1000 words per million plus all punctuation characters.
5A word whose corpus frequency is less than 1000 words per million.
6We use edu.stanford.nlp.process.WordShapeClassifier with the WORDSHAPECHRIS1 setting.
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POS word-shape Unigram feature consisting of POS and word-shape (see Word-shape pattern). The
feature space is pruned by the minimum occurrence set to 5.

POS n-gram
Direct use of POS n-grams has not shown any significant improvement in sentiment
analysis but it may improve the results of sarcasm detection. We experimented with
3-grams to 6-grams with the minimum n-gram occurrence set to 5.

Others

Emoticons
We used two lists of positive and negative emoticons (Montejo-Ráez et al., 2012).
The feature captures the number of occurrences of each class of emoticons within
the text.

Punctuation-based

We adapted punctuation-based features proposed by (Davidov et al., 2010). This
feature set consists of number of words, exclamation marks, question marks, quota-
tion marks and capitalized words normalized by dividing them by the maximal ob-
served value multiplied by the averaged maximal value of the other feature groups.

Pointedness

Pointedness was used by (Reyes et al., 2013) to distinguish irony. It focuses on
explicit marks which should reflect a sharp distinction in the information that is
transmitted. The presence of punctuation marks, emoticons, quotes and capitalized
words has been considered.

Extended Pointedness
This feature captures the number of occurrences of punctuation marks and emoti-
cons as well as the number of words, exclamation marks, question marks, quotation
marks and capitalized words normalized by maximal observed value.

Word-case
We implemented various word-case features that include, e.g., the number of upper
cased words, number of words with first letter capital normalized by number of
words and number of upper cased characters normalized by number of words.

Table 1: Descriptions of used feature sets.

4 Evaluation Datasets

We collected datasets using Twitter Search API and Java Language Detector7. We collected 140,000
Czech and 780,000 English tweets, respectively. Due to lack of support for the Czech language on
Twitter, we used the Twitter Search API parameter geocode to acquire tweets posted near Prague. For
the English dataset we also collected tweets with the #sarcasm hashtag. Czech users generally don’t
use the sarcasm (“#sarkasmus”) or irony (“#ironie”) hashtag variants8 thus we had to annotate the
Czech dataset manually. The final label distribution in datasets is shown in Table 4.

4.1 Filtering and Normalization
All user, URL and hashtag references in tweets have been replaced by “user”, “link” and “hashtag”
respectively. We also removed all tweets starting with “RT” because they refer to previous tweets and
tweets containing just combinations of user, link, “RT” and hashtags without any additional words.

Tokenization of tweets requires proper handling of emoticons and other special character sequences
typical on Twitter. The Ark-tweet-nlp tool (Gimpel et al., 2011) offers precisely that and although it was
developed and tested in English, it yields satisfactory results in Czech as well.

Czech is a highly flective language and uses a lot of diacritics. However some Czech users type
only the unaccented characters.9 Preliminary experiments showed that removing diacritics yields better
results, thus we removed diacritics from all tweets.

4.2 Czech Dataset Annotation
Firstly we conducted an experiment to determine whether to annotate the original data or the normalized
data. We selected two sample sets of 50 tweets containing Czech sarcasm (#sarkasmus) and irony
(#ironie) hashtags and other tweets. One annotator obtained the original data while the other got the
normalized data from the first sample set. We then tried to give both annotators the original data from the
first sample set and finally we gave them both the normalized data from the second sample set. Table 2
shows the difficulty of sarcasm identification without the knowledge hidden in hashtags, user and links.

7http://code.google.com/p/jlangdetect/
8We found only 10 tweets with sarcasm hashtag (“#sarkasmus”) and 100 tweets with irony hashtag (“#ironie”) in

140,000 collected tweets.
9Approximately 10% of collected tweets were without any diacritics.
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Table 2: Confusion matrices and annotation agreement (Cohen’s κ) between two annotators using orig-
inal or normalized data.

“Basic” pipe Pipe 2 Pipe 3

Tokenizing: ArkTweetNLP
POS tagging: PDT

– Stem: no (Sn) / light (Sl) / HPS (Sh)
– Stopwords removal
– – Phonetic: eSpeak (Pe)

Table 3: The preprocessing pipes for Czech (top-down). Combinations of methods are denoted using
the appropriate labels, e.g. “Sn” means 1. tokenizing, 2. POS-tagging, 3. no stemming and 4. removing
stopwords. eSpeak stands for a phonetic transcription to International Phonetic Alphabet, which should
reduce the effects of grammar mistakes and misspellings.

The most promising results come from the annotation of the original data, thus the rest of the data are
annotated in this manner.

We randomly selected 7,000 tweets from the collected data for annotation. The annotators were given
just simple instructions without an explicit sarcasm definition (see Section 1): “A tweet is considered
sarcastic when its content is intended ironically / sarcastically without anticipating further information.
Offensive utterances, jokes and ironic situations are not considered ironic / sarcastic.”

The complete dataset of 7,000 tweets was independently annotated by two annotators. The inter-
annotator agreement (Cohen’s κ) between the two annotators is 0.54. They disagreed on 403 tweets. To
resolve these conflicts we used a third annotator.

The third annotator has been instructed the same way as the other two. The final κ agreement was mea-
sured between the first two annotators, thus it was not affected by the third annotator. Kappa agreements
measured on the conflicted states (403 tweets) were 0.4 (annotator 1 vs. annotator 3) and 0.6 (annotator
2 vs. annotator 3).

Preprocessing
Preprocessing steps for handling social media texts in Czech were explored in (Habernal et al., 2013).
The preprocessing diagram and its variants is depicted in Table 3. Overall, there are various possible pre-
processing “pipe” configurations including “Basic” pipeline consisting of tokenizing and POS-tagging
only. We adapted all their preprocessing pipelines. However, as the number of combinations would be
too large, we report only the settings with better performance.

4.3 English Dataset

We collected 780,000 (130,000 sarcastic and 650,000 non-sarcastic) tweets in English. The #sarcasm
hashtag was used as an indicator of sarcastic tweets. From this corpus we created two distributional
scenarios based on the work of (Reyes et al., 2013). Refer to Table 4 for the final statistics of the dataset.
Part of speech tagging was done using the Ark-tweet-nlp tool (Gimpel et al., 2011).

5 Results

For each preprocessing pipeline (refer to table 3) we assembled various sets of features and employed
two classifiers. Accuracy (micro F-measure) tends to prefer performance on dominant classes in highly
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Dataset \ Tweets Sarcastic Non-sarcastic
Czech 325 6,675

English Balanced 50,000 50,000
English Imbalanced 25,000 75,000

Table 4: The tweet distributions in datasets.

Feature Set \ Pipeline Basic Sh ShPe Sl SlPe Sn SnPe
Baseline 1 (B1): n-gram 54.8 55.3 55.2 55.0 55.0 54.4 55.3
B1 + pattern 55.1 54.4 54.7 55.1 54.8 54.2 54.5
B1 + word-shape pattern 54.6 54.8 55.2 54.4 55.0 54.8 55.1
B1 + punctuation-based 54.7 48.8 48.8 48.8 48.8 53.8 55.5
B1 + pointedness 55.0 54.7 54.7 55.0 55.9 54.8 54.9
B1 + extended pointedness 54.5 48.8 48.8 48.8 48.8 54.7 54.6
B1 + POS n-gram 53.4 54.1 54.2 55.3 55.1 54.2 53.9
B1 + POS word-shape 55.0 55.6 55.2 54.8 54.6 55.8 54.4
B1 + skip-bigram 54.2 54.8 54.2 54.7 56.0 54.6 54.4
B1 + POS characteristics + emoticons 55.5 54.7 55.6 55.2 55.4 55.2 53.9
B1 + POS characteristics + emoticons + word-case 53.8 56.4 55.5 54.6 55.3 55.9 55.3
Character n-gram (3-6, min. occurrence > 5) 53.0 52.7 53.2 53.9 54.7 52.0 53.2
Baseline 2 (B2) 55.0 55.2 55.4 56.8 56.2 54.7 54.0
B2 + FS1 52.3 48.8 48.8 48.8 48.8 52.0 52.9
B2 + FS1 + FS2 53.0 48.8 48.8 48.8 48.8 52.2 53.6
B2 + pattern 55.3 55.4 55.7 56.9 56.6 54.4 53.6
B2 + POS word-shape 55.5 55.8 55.4 57.0 56.3 55.3 54.7
B2 + POS characteristics + emoticons + word-case 56.1 55.7 55.7 56.9 56.1 55.0 54.3

Table 5: Results on the Czech dataset with the MaxEnt classifier. Macro F-measure, 95% confidence
interval ≈ ±1.2. Best results are in bold. B2: character n-gram (3-5, min. occurrence > 50) + skip-
bigram + pointedness; FS1: character n-gram (3-6, min. occurrence > 5) + extended pointedness; FS2:
POS word-shape + pattern + POS characteristics + emoticons + word-case.

unbalanced datasets (Manning et al., 2008), thus we chose macro F-measure as the evaluation metric
(Forman and Scholz, 2010), as it allows us to compare classification results on different datasets. For
statistical significance testing, we report confidence intervals at α 0.05. Another applicable methods
would be, i.e., two-matched-samples t Test or McNemar’s test (Japkowicz and Shah, 2011).

5.1 Czech

Tables 5 and 6 show the results on the Czech dataset. The best result (F-measure 0.582) was achieved
by the SVM classifier and a feature set enriched with patterns, utilizing stopwords removal and phonetic
transcription in the preprocessing step.

The importance of the appropriate preprocessing techniques for Czech is evident from the improve-
ment of results for various feature sets, e.g., the best result for “Basic” pipeline (see line “B2 + pattern”).
Both baselines show improvement on most preprocessing pipelines. The most significant difference is
visible on the second baseline with the MaxEnt classifier and the “Sl” pipeline where the F-measure is
0.018 higher than the “Basic” pipeline with no additional preprocessing. The n-gram baseline was sig-
nificantly outperformed by the SVM classifier with feature sets “B1 + POS characteristics + Emoticons
+ Word-case” and “B1 + extended pointedness” on the “SnPe” pipeline.

Error Analysis
To get a better understanding of the limitations of our approach, we inspected 100 random tweets from the
Czech dataset, which were wrongly classified by the SVM classifier with the best feature combination.
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Feature Set \ Pipeline Basic Sh ShPe Sl SlPe Sn SnPe
Baseline 1 (B1): n-gram 55.8 54.6 54.5 54.6 55.5 56.0 53.9
B1 + pattern 55.6 54.0 54.3 54.6 55.7 55.4 55.6
B1 + word-shape pattern 54.9 55.0 53.8 55.2 55.1 55.4 55.3
B1 + punctuation-based 55.8 48.8 48.8 48.8 48.8 55.7 53.7
B1 + pointedness 55.9 54.5 53.1 54.6 54.3 55.4 54.6
B1 + extended pointedness 56.5 48.8 48.8 48.8 48.8 55.8 56.9
B1 + POS n-gram 54.0 54.1 54.0 54.7 53.4 54.5 53.9
B1 + POS word-shape 55.2 56.4 55.9 55.1 56.0 56.1 55.0
B1 + skip-bigram 55.9 55.3 54.8 55.4 55.0 56.1 55.2
B1 + POS characteristics + emoticons 55.9 54.5 54.1 54.6 54.2 56.7 55.8
B1 + POS characteristics + emoticons + word-case 55.6 54.5 54.3 55.1 55.5 56.3 56.4
Character n-gram (3-6, min. occurrence > 5) 54.6 53.6 53.3 55.2 53.6 53.4 54.9
Baseline 2 (B2) 55.9 56.4 56.3 57.0 56.2 57.1 55.8
B2 + FS1 52.2 48.8 48.8 48.8 48.8 53.1 52.7
B2 + FS1 + FS2 54.0 48.8 48.8 48.8 48.8 54.4 54.3
B2 + pattern 56.8 57.0 56.7 56.5 57.5 57.1 58.2
B2 + POS word-shape 56.5 56.3 57.2 56.4 56.1 56.3 57.8
B2 + POS characteristics + emoticons + word-case 56.2 55.7 55.8 56.0 56.0 57.0 56.0

Table 6: Results on the Czech dataset with the SVM classifier. Macro F-measure, 95% confidence
interval ≈ ±1.2. Best results are in bold. B2: character n-gram (3-5, min. occurrence > 50) + skip-
bigram + pointedness; FS1: character n-gram (3-6, min. occurrence > 5) + extended pointedness; FS2:
POS word-shape + pattern + POS characteristics + emoticons + word-case.

We found 48 false positives and 52 false negatives. The annotators disagreed upon 10% of these tweets.
Non-sarcastic tweets were often about news, reviews, general information and user status updates. In

most of the difficult cases of true negatives, the tweet contains a question, insult, opinion or wordplay.
Understanding sarcasm in some tweets was often bound with broader common knowledge (e.g., about

news or celebrities), the context known only to the author or authors opinion. Another difficulty poses
subtle or sophisticated expression of sarcasm such as “I’m not sure whether you didn’t overdo a bit the
first part of the renovation - the demolition. :)”10 or “Conservatism, once something is in the school
rules, it must be followed, forever, otherwise anarchy will break out and traditional values will die.”11

5.2 English

The results on both balanced and imbalanced English datasets are presented in Table 7. In most cases the
MaxEnt classifier significantly outperforms the SVM classifier. The combination of majority of features
(“B2 + FS1 + FS2”) with the MaxEnt classifier yields the best results for both balanced and imbalanced
dataset distributions. This suggests that these features are coherent. While no single feature captures the
essence of sarcasm, all features together provide useful linguistic information for detecting sarcasm at
textual level.

Balanced distribution Both baselines were surpassed by various combinations of feature sets with
the MaxEnt classifier, although in some cases very narrowly (“B1 + punctuation-based” and “B1 +
pointedness” feature sets). Although the SVM classifier has slightly worse results, it still performs
reasonably, and we even recorded significant improvement over the baseline for “B1 + POS word-shape”.
The best results were achieved using the MaxEnt classifier with “B2 + FS1 + FS2” (F-measure 0.947)
and “B1 + word-shape pattern ” (F-measure 0.943) feature sets.

10“Jestli jste tu prvnı́ část rekonstrukce - demolici - trochu nepřehnali . :)”
11“Konzervatismus , když je to jednou ve školnı́m řádu , tak se to musı́ dodržovat , a to navždy , jinak vypukne anarchie a

tradičnı́ hodnoty zemřou .”
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Dataset Balanced Imbalanced
Classifier MaxEnt SVM MaxEnt SVM
Feature set \ Results Fm CI Fm CI Fm CI Fm CI
Baseline 1 (B1): n-gram 93.28 0.16 92.86 0.16 90.76 0.18 90.44 0.18
B1 + pattern 94.25 0.14 93.13 0.16 91.86 0.17 90.22 0.18
B1 + word-shape pattern 94.33 0.14 93.17 0.16 92.01 0.17 90.35 0.18
B1 + punctuation-based 93.32 0.15 92.84 0.16 90.72 0.18 90.43 0.18
B1 + pointedness 93.29 0.16 92.99 0.16 91.00 0.18 90.07 0.19
B1 + extended pointedness 93.68 0.15 92.61 0.16 91.07 0.18 89.89 0.19
B1 + POS n-gram 93.66 0.15 92.64 0.16 91.20 0.18 89.85 0.19
B1 + POS word-shape 93.96 0.15 93.19 0.16 91.41 0.17 90.51 0.18
B1 + skip-bigram 93.63 0.15 93.17 0.16 90.99 0.18 90.48 0.18
B1 + POS characteristics + emoticons 93.97 0.15 91.66 0.17 91.69 0.17 89.39 0.19
B1 + POS characteristics + emoticons + word-case 93.96 0.15 91.54 0.17 91.61 0.17 88.89 0.19
Character n-gram: (3-6, min. occurrence > 5) 93.01 0.16 91.73 0.17 90.36 0.18 88.81 0.20
Baseline 2 (B2) 92.81 0.16 91.67 0.17 90.65 0.18 88.70 0.20
B2 + FS1 93.82 0.15 91.56 0.17 91.21 0.18 88.73 0.20
B2 + FS1 + FS2 94.66 0.14 91.39 0.17 92.37 0.16 88.62 0.20
B2 + pattern 93.60 0.15 91.66 0.17 90.86 0.18 88.82 0.20
B2 + POS word-shape 93.20 0.16 91.65 0.17 90.82 0.18 88.74 0.20
B2 + POS characteristics + emoticons + word-case 93.21 0.16 91.07 0.18 89.98 0.19 88.40 0.20

Table 7: Results on the English dataset with the MaxEnt and SVM classifiers. Macro F-measure (Fm)
and 95% confidence interval (CI) are in %. Best results are in bold. B2: character n-gram (3-5, min.
occurrence > 50) + skip-bigram + pointedness; FS1: character n-gram (3-6, min. occurrence > 5) +
extended pointedness; FS2: POS word-shape + pattern + POS characteristics + emoticons + word-case.

Imbalanced distribution However, data in the real world do not necessarily resemble the balanced
distribution. Therefore we have also performed the evaluation on an imbalanced distribution. The Max-
Ent classifier clearly achieves the best results. This experiment indicates that combinations of features
“B2 + FS1 + FS2” (F-measure 0.924) and “B1, word-shape pattern” (F-measure 0.920) yields the best
results for both balanced and imbalanced dataset distribution.

5.3 Discussion
To explain the huge difference in the performance between English and Czech, we conducted an addi-
tional experiment in English. We sampled the “big-data” English corpus (100k Tweets) to obtain the
same distribution as on the “small-data” Czech corpus (325 sarcastic and 6,675 non-sarcastic Tweets).
Feature combination “B2 + FS1 + FS2” achieves an F-measure of 0.734± 0.01 (MaxEnt classifier) and
0.729 ± 0.01 (SVM). This performance drop shows that the amount of training data plays a key role
(≈ 0.92 on “big-data” vs. ≈ 0.73 on “small-data”). However, these results are still significantly better
than in Czech (≈ 0.58). This demonstrates that Czech is a challenging language in sarcasm detection, as
in other NLP tasks.

In addition, we also experimented with the Naive Bayes classifier and with delta TF-IDF feature
variants (Martineau and Finin, 2009; Paltoglou and Thelwall, 2010) in both languages. However, the
performance was not satisfactory in comparison with the reported results.

6 Conclusions

We investigated supervised machine learning methods for sarcasm detection on Twitter. As a pilot study
for sarcasm detection in the Czech language, we provide a large human-annotated Czech Twitter dataset
containing 7,000 tweets with inter-annotator agreement κ = 0.54. The novel contributions of our work
include the extensive evaluation of two classifiers with various combinations of feature sets on both
the Czech and English datasets as well as a comparison of different preprocessing techniques for the
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Czech dataset. Our approaches significantly outperformed both baselines adapted from related work12

in English and achieved F-measure of 0.947 and 0.924 on the balanced and imbalanced datasets, re-
spectively.13 The best result on the Czech dataset was achieved by the SVM classifier with the feature
set enriched with patterns yielding F-measure 0.582. The whole project is available to the community
under GPL license at http://liks.fav.zcu.cz/sarcasm/. We believe that our findings will
contribute to the research outside the mainstream languages and may be applied to sarcasm detection in
other Slavic languages, such as Slovak or Polish.

6.1 Future work
We approached the problem mainly from the data-driven perspective (annotation, feature engineering,
error analysis). However, we feel that elaborating deep linguistic insights would be helpful to better
understand the phenomena of sarcasm on social media (Averbeck, 2013; Averbeck and Hample, 2008;
Ivanko et al., 2004; Jorgensen, 1996).

There are also possible extensions to the lexical/morphological features – either in the direction of
semi-supervised learning and adding for example features based on latent semantics, topic models, or
graphical models popular in the sentiment analysis field (Habernal and Brychcı́n, 2013; Brychcı́n and
Habernal, 2013), or the direction of deeper linguistic processing in terms of, e.g., syntax/dependecy
parsing (but this has limitation given the nature of Twitter data as well as unavailability of such tools for
Czech). These deserve further investigation and are planned in future work.
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