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Abstract

The techniques of using neural networks to learn distributed word representations (i.e., word
embeddings) have been used to solve a variety of natural language processing tasks. The re-
cently proposed methods, such as CBOW and Skip-gram, have demonstrated their effectiveness
in learning word embeddings based on context information such that the obtained word embed-
dings can capture both semantic and syntactic relationships between words. However, it is quite
challenging to produce high-quality word representations for rare or unknown words due to their
insufficient context information. In this paper, we propose to leverage morphological knowledge
to address this problem. Particularly, we introduce the morphological knowledge as both ad-
ditional input representation and auxiliary supervision to the neural network framework. As a
result, beyond word representations, the proposed neural network model will produce morpheme
representations, which can be further employed to infer the representations of rare or unknown
words based on their morphological structure. Experiments on an analogical reasoning task and
several word similarity tasks have demonstrated the effectiveness of our method in producing
high-quality words embeddings compared with the state-of-the-art methods.

1 Introduction

Word representation is a key factor for many natural language processing (NLP) applications. In the
conventional solutions to the NLP tasks, discrete word representations are often adopted, such as the
1-of-v representations, where v is the size of the entire vocabulary and each word in the vocabulary
is represented as a long vector with only one non-zero element. However, using discrete word vectors
cannot indicate any relationships between different words, even though they may yield high semantic
or syntactic correlations. For example, while careful and carefully have quite similar semantics, their
corresponding 1-of-v representations trigger different indexes to be the hot values, and it is not explicit
that careful is much closer to carefully than other words using 1-of-v representations.

To deal with the problem, neural network models have been widely applied to obtain word repre-
sentations. In particular, they usually take the 1-of-v representations as the word input vectors in the
neural networks, and learn new distributed word representations in a low-dimensional continuous em-
bedding space. The principle of these models is that words that are highly correlated in terms of either
semantics or syntactics should be close to each other in the embedding space. Representative works in
this field include feed-forward neural network language model (NNLM) (Bengio et al., 2003), recurrent
neural network language model (RNNLM) (Mikolov et al., 2010), and the recently proposed continues
bag-of-words (CBOW) model and continues skip-gram (Skip-gram) model (Mikolov et al., 2013a).

However, there are still challenges for using neural network models to achieve high-quality word
embeddings. First, it is difficult to obtain word embeddings for emerging words as they are not included
in the vocabulary of the training data. Some previous studies (Mikolov, 2012) used one or more default
indexes to represent all the unknown words, but such solution will lose information for the new words.
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Second, the embeddings for rare words are often of low quality due to the insufficient context information
in the training data.

Fortunately, semantically or syntactically similar words often share some common morphemes such
as roots, affixes, and syllables. For example, probably and probability share the same root, i.e., probab,
as well as the same syllables, i.e., pro and ba. Therefore, morphological information can provide valu-
able knowledge to bridge the gap between rare or unknown words and well-known words in learning
word representations. In this paper, we propose a novel neural network architecture that can leverage
morphological knowledge to obtaining high-quality word embeddings. Specifically, we first segment the
words in the training data into morphemes, and then employ the 1-of-v representations of both the words
and their morphemes as the input to the neural network models. In addition, we propose to use mor-
phological information as auxiliary supervision. Particularly, in the output layer of the neural network
architecture, we predict both the words and their corresponding morphemes simultaneously. Moreover,
we introduce extra coefficients into the network to balance the weights between word embeddings and
morpheme embeddings. Therefore, in the back propagation stage, we will update the word embeddings,
the morpheme embeddings, and the balancing coefficients simultaneously.

Our proposed neural network model yields two major advantages: on one hand, it can leverage three
types of co-occurrence information, including co-occurrence between word and word (conventional),
co-occurrence between word and morpheme (newly added), and co-occurrence between morpheme and
morpheme (newly added); on the other hand, this new model allows to learn word embeddings and
morpheme embeddings simultaneously, so that it is convenient to build the representations for unknown
words from morpheme embeddings and enhance the representations for rare words. Experiments on
large-scale public datasets demonstrate that our proposed approach can help produce improved word
representations on an analogical reasoning task and several word similarity tasks compared with the
state-of-the-art methods.

The rest of the paper is organized as follows. We briefly review the related work on word embedding
using neural networks in Section 2. In Section 3, we describe the proposed methods to leverage mor-
phological knowledge in word embedding using neural network models. The experimental results are
reported in Section 4. The paper is concluded in Section 5.

2 Related Work

Neural Language Models (NLMs) (Bengio et al., 2003) have been applied in a number of NLP tasks (Col-
lobert and Weston, 2008) (Glorot et al., 2011) (Mikolov et al., 2013a) (Mikolov et al., 2013b) (Socher
et al., 2011) (Turney, 2013) (Turney and Pantel, 2010) (Weston et al., ) (Deng et al., 2013) (Collobert
et al., 2011) (Mnih and Hinton, 2008) (Turian et al., 2010). In general, they learn distributed word rep-
resentations in a continuous embedding space. For example, Mikolov et al. proposed the continuous
bag-of-words model (CBOW) and the continuous skip-gram model (Skip-gram) (Mikolov et al., 2013a).
Both of them assume that words co-occurring with the same context should be similar. Collobert et
al. (Collobert et al., 2011) fed their neural networks with extra features such as the capital letter feature
and the part-of-speech (POS) feature, but they still met the challenge of producing high-quality word
embeddings for rare words.

Besides using neural network, many different types of models were proposed for estimating continuous
representations of words, such as the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet
Allocation (LDA). However, Mikolov et al. (Mikolov et al., 2013c) have shown that words learned by
neural networks are signicantly better than LSA for preserving linear regularities while LDA becomes
computationally expensive on large datasets.

There were a lot of previous attempts to include morphology in continuous models, especially in
the speech recognition field. Represent works include Letter n-gram (Sperr et al., 2013) and feature-
rich DNN-LMs (Mousa et al., 2013). The first work improves the letter-based word representation by
replacing the 1-of-v word input of restricted Boltzman machine with a vector indicating all n-grams of
order n and smaller that occur in the word. Additional information such as capitalization is added as well.
In the model of feature-rich DNN-LMs, the authors expand the inputs of the network to be a mixture of
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selected full words and morphemes together with their features such as morphological tags. Both of
these works intend to capture more morphological information so as to better generalize to unknown or
rare words and to lower the out-of-vocabulary rate.

There are some other related works that consider morphological knowledge when learning the word
embeddings, such as factored NLMs (Alexandrescu and Kirchhoff, 2006) and csmRNN (Luong et al.,
2013), both of which are designed to handle rare words. In factored NLMs, each word is viewed as a
vector of shape features (e.g., affixed, capitalization, hyphenation, and classes) and a word is predicted
based on several previous vectors of factors. Although they made use of the co-occurrence of morphemes
and words, the context information is lost after chopping the words and feeding the neural network with
morphemes. In our model, we also utilize the co-occurrence information between morphemes, which has
not been investigated before. In csmRNN, Luong et al proposed a hierarchical model considering the
knowledge of both morphological constitutionality and context. The hierarchical structure looks more
sophisticated, but the relatedness of words with morphological similarity are weaken by layers when
combining morphemes into words. In addition, the noise accumulated in the hierarchical structure in
building a word might be propagated to the context layer. In our model, the morphological and contextual
knowledge are combined in parallel, and their contributions to the input vector are decided by a pair of
learned tradeoff coefficients.

3 The Morpheme powered CBOW Models

In this section, we introduce the architecture of our proposed neural network model based on the CBOW
model. In CBOW (see Figure 1), a sliding window is employed on the train text stream to obtain the train-
ing samples. In each sliding window, the model aims to predict the central word using the surrounding
words as the input. Specifically, the input words are represented in the 1-of-v format. In the feed-forward
process, these input words are first mapped into the embedding space by the same weight matrix M , and
then the embedding vectors are summed up to a combined embedding vector. After that, the combined
embedding vector is mapped back to the 1-of-v space by another weight matrix M ′, and the resulting
vector is used to predict the central word after conducting softmax on it. In the back-propagation process,
the prediction errors are propagated back to the network to update the two weight matrices. After the
training process converges, the weight matrix M is regarded as the learned word representations.
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Figure 1: The CBOW model.
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In our proposed model, we address the challenge of producing high-quality word embeddings for rare
words and unknown words by leveraging the three types of co-occurrence information between words
and morphemes.

On the input side, we segment the words into morphemes and put both the words and the morphemes
as input. That is, the vocabulary for the 1-of-v representation contains both words and morphemes.
As shown in Figure 2, the surrounding words in the sliding window are w−s, · · · , w−1, w1, · · · , ws and
their corresponding morphemes arem−s,1,m−s,2, · · · ,m−s,t−s ; · · · ;m−1,1,m−1,2, · · · ,m−1,t−1 ;m1,1,
m1,2, · · · , m1,t1 ; · · · ; ms,1, ms,2, · · · , ms,ts , where 2s is the number of the surrounding words and ti is
the number of morphemes for wi (i = −s, · · · ,−1, 1, · · · , s). Note that ti depends on the formation of
wi so that it may vary from word to word. If a word is also a morpheme, there will be two embedding
vectors which are tagged differently. We use vwi and vmi,j to represent the 1-of-v vectors of word wi and
morpheme mi,j respectively. On the input side, both the words and their morphemes are mapped into
the embedding space by the same weight matrix M , and then the weighted sum vI of the combination of
word embeddings and the combination of morpheme embeddings is calculate as below,

vI = φw ·
s∑

i=−s
i 6=0

vwi + φm ·
s∑

i=−s
i 6=0

ti∑
j=1

vmi,j ,

where φw and φm are the tradeoff coefficients between the combination of word embeddings and the
combination of morpheme embeddings.

On the output side, we map the combined embedding vector vI back to the 1-of-v space by another
weight matrix M ′ to do the prediction. We have four settings of the structure. In the first setting, we only
predict the central wordw0, and we name the model under this setting as MorphemeCBOW. In the second
setting, we predict both the central word w0 and its morphemes m0,1,m0,2, · · · ,m0,t0 , and we name this
setting as MorphemeCBOW+. In the above two settings, the tradeoff weights φw and φm are fixed. If
we update the two weights in the learning process of MorphemeCBOW, we will get the third setting and
we name it as MorphemeCBOW*, while updating the two weights in MorphemeCBOW+ yields the forth
setting named MorphemeCBOW++ .

Take MorphemeCBOW+ as example, the objective is to maximize the following conditional co-
occurrence probability,

log(P (w0 | {wi}, {mi,j})) + log(
t0∑

j=1

P (m0,j | {wi}, {mi,j})), (1)

where {wi}, {mi,j} represent the bag of words and bag of morphemes separately. The conditional prob-
ability in the above formula is defined using the softmax function,

P (w0 | {wi}, {mi,j}) =
exp(v′Tw0

· vI)∑
v′∈VO

exp(v′T · vI)
, P (m0,j | {wi}, {mi,j}) =

exp(v′Tm0,j
· vI)∑

v′∈VO

exp(v′T · vI)
, (2)

where VO is the set of the output representations for the whole vocabulary; v′ is used to differentiate with
input representations; and v′w0

, v′m0,j
represent the output embedding vectors ofw0 andm0,j respectively.

Usually, the computation cost for Formula (2) is expensive since it is proportional to the vocabulary
size. In our model, we use negative sampling discussed in (Mikolov et al., 2013b) to speed up the
computation. Particularly, we random select k negative samples u1, u2, · · · , uk for each prediction target
(word or morpheme). By using this technique, Formula (1) can be equally written as,

G(vI) ≡ log σ(v′Tw0
· vI) +

t0∑
j=1

log σ(v′Tm0,j
· vI) +

k∑
i=1

ui 6=w0
ui 6=∀m0,j

Eui∼Pn(u)[log σ(−v′Tui
· vI)],
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where σ denotes the logistic function, and Pn(u) is the vocabulary distribution used to select the negative
samples. Pn(u) is set as the 3/4rd power of the unigram distribution U(u)1. The negative samples should
not be the same as any of the prediction targetsw0 andm0,j (j = 1, · · · , t0). By using negative sampling,
the training time spent on summing up the whole vocabulary in Formula (2) is greatly reduced so that it
becomes linear with the number of the negative samples. Thus, we can calculate the gradient of G(vI)
as below,

∂G(vI)
∂vI

=(1− σ(v′Tw0
· vI)) ·

∂(v′Tw0
· vI)

∂vI
+

t0∑
j=1

(1− σ(v′Tm0,j
· vI)) ·

∂(v′Tm0,j
· vI)

∂vI

−
k∑

i=1
ui 6=w0

ui 6=∀m0,j

[σ(v′Tui
· vI) ·

∂(v′Tui
· vI)

∂vI
].

In the back-propagation process, the weights in the matricesM andM ′ are updated. When the training
process converges, we take the matrix M as the learned word embeddings and morpheme embeddings.
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Figure 2: The proposed neural network model.

4 Experimental Evaluation

In this section we test the effectiveness of our model in generating high-quality word embeddings. We
first introduce the experimental settings, and then we report the results on one analogical reasoning task
and several word similarity tasks.

4.1 Datasets

We used two datasets for training: enwiki92 and wiki20103.

1http://www.cs.bgu.ac.il/˜yoavg/publications/negative-sampling.pdf
2http://mattmahoney.ent/dc/enwik9.zip
3http://www.psych.ualberta.ca/˜westburylab/downloads/westburylab.wikicorp.

download.html
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• The enwiki9 dataset contains about 123.4 million words. We used Matt Mahoney’s text pre-
processing script4 to process the corpus. Thus, we removed all non-Roman characters and mapped
all digits to English words. In addition, words occurred less than 5 times in the training corpus were
discarded. We used the learned word embeddings from enwiki9 to test an analogical reasoning task
described in (Mikolov et al., 2013a).

• The wiki2010 dataset contains about 990 million words. The learned embeddings from this dataset
were used on word similarity tasks as it was convenient to compare with the csmRNN model (Luong
et al., 2013). We did the same data pre-processing as csmRNN did. That is, we removed all non-
Roman characters and mapped all digits to zero.

4.2 Settings

In the analogical reasoning task, we used the CBOW model as the baseline. In both CBOW and our
proposed model, we set the context window size to be 5, and generated three dimension sizes (100, 200,
and 300) of word embeddings. We used negative sampling (Mikolov et al., 2013b) in the output layer
and the number of negative samples is chosen as 3.

In the word similarity tasks, we used the csmRNN model as the baseline. The context window size of
our model was set to be 5. To make a fair comparison with the csmRNN model, we conducted the same
settings in our experiments as csmRNN. First, as csmRNN used the Morfessor (Creutz and Lagus, 2007)
method to segment words into morphemes, we also used Morfessor as one of our word segmentation
methods to avoid the influence caused by the segmentation methods. Second, as csmRNN used two
existing embeddings C&W5 (Collobert et al., 2011) and HSMN6 (Huang et al., 2012) to initialize the
training process, we also used the two embeddings as the initial weights of M in our experiments. Third,
we set the dimension of the embedding space to 50 as csmRNN did.

In our model, we employed three methods to segment a word into morphemes. The first method is
called Morfessor, which is a public tool implemented based on the minimum descriptions length algo-
rithm (Creutz and Lagus, 2007). The second method is called Root, which segments a word into roots
and affixes according to a predefined list in Longman Dictionaries. The third method is called Syllable,
which is implemented based on the hyphenation tool proposed by Liang (Liang, 1983). Besides, the ar-
chitecture of the proposed model can be specified into four types: MorphemeCBOW, MorphemeCBOW*,
MorphemeCBOW+, and MorphemeCBOW++. For the model MorphemeCBOW and MorphemeCBOW+
with fixed tradeoff coefficients, we set the weights φw and φm to be 0.8 and 0.2 respectively; while for
the other two models with updated tradeoff weights, the weights φw and φm are initialized as 1. These
weight settings are chosen empirically.

4.3 Evaluation Tasks

4.3.1 Analogical reasoning task
The analogical reasoning task was introduced by Mikolov et al (Mikolov et al., 2013a). All the questions
are in the form “a is to b is as c is to ?”, denoted as a : b→ c : ?. The task consists of 19,544 questions
involving semantic analogies (e.g., England: London → China: Beijing) and syntactic analogies (e.g.,
amazing: amazingly→ unfortunate: unfortunately). Suppose that the corresponding vectors are −→a ,

−→
b ,

and −→c , we will answer the question by finding the word with the representation having the maximum
cosine similarity to vector

−→
b −−→a +−→c , i.e,

max
x∈V,x 6=b,x 6=c

(
−→
b −−→a +−→c )T−→x

where V is the vocabulary. Only when the computed word is exactly the answer word in evaluation set
can the question be regarded as answered correctly.

4http://mattmahoney.net/dc/textdata.html
5http://ronan.collobert.com/senna/
6http://ai.stanford.edu/˜ehhuang/
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4.3.2 Word similarity task
The word similarity task was tested on five evaluation sets: WS353 (Finkelstein et al., 2002),
SCWS* (Huang et al., 2012), MC (Miller and Charles, 1991), RG (Rubenstein and Goodenough, 1965)
and RW (Luong et al., 2013), which contain 353, 1,762, 30, 65 and 2,034 pairs of words respectively.
Table 1 shows some statistics about the datasets. Furthermore, the words in WS353, MC, RG are mostly
frequent words, while SCWS* and RW have much more rare words and unknown words (i.e., unseen
words in the training corpus) than the first three sets. The word distributions of these datasets are shown
in Figure 3, from which we can see that RW contains the largest number of rare and unknown words.
For the unknown words, we segmented them into morphemes, and calculated their word embeddings by
summing up their corresponding morpheme embeddings. Each word pair in these datasets is associated
with several human judgments on similarity and relatedness on a scale from 0 to 10 or 0 to 4. For ex-
ample, (cup, drink) received an average score of 7.25, while (cup, substance) received an average score
of 1.92. To evaluate the quality of the learned word embeddings, we computed Spearman’s ρ correlation
between the similarity scores calculated on the learned word embeddings and the human judgments.

Figure 3: Word distribution by frequency. Distinct words in each test dataset are grouped according
to frequencies. The figure shows the percentage of words in each bin.

Table 1: Statistics on the word similarity evaluation sets.

Dataset Number of pairs Number of words Percentage of multi-segments words by Morfessor
WS353 353 437 28.15%
SCWS* 1726 1703 34.00%

RW 2034 2951 69.06%

4.4 Experimental Results

4.4.1 Results on analogical reasoning task
The experimental results on the analogical reasoning task are shown in Table 2, including semantic
accuracy, syntactic accuracy, and total accuracy of all competition settings. Semantic/syntactic accuracy
refers to the number of correct answers over the total number of all semantic/syntactic questions. From
the results, we have the following observations:

• In MorphemeCBOW, we used the surrounding words and their morphemes to predict the central
word. The total accuracies are all improved compared with baseline using the three word segmen-
tation methods across three different dimensions of the embedding space. Generally, the improve-
ments on semantic accuracies are less than those on syntactic accuracies. The reason is that the
morphological information favors more for the syntactic tasks than the semantic tasks. Further-
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more, the Root method achieved the best among the three segmentation methods, showing that the
roots and affixes from the dictionary can help produce a high-quality morpheme segmentation tool.

• In MorphemeCBOW*, we predicted the central word, and updated the tradeoff coefficients in
the learning process. We can see that the results are comparable or slightly better than Morphe-
meCBOW using the three word segmentation methods across three different dimensions of the
embedding space, showing that updating the tradeoff coefficients may further boost the model per-
formance under some specific settings.

• In MorphemeCBOW+, we predicted both the central word and its morphemes. MorphemeCBOW+
can provide slightly better results compared with MorphemeCBOW and MorphemeCBOW*, indi-
cating that putting morphemes (especially roots) in the output layer can do extra help in generating
high-quality word embeddings.

• In MorphemeCBOW++, we predicted the central word and its morphemes, and updated the trade-
off coefficients in the learning process. The performance under all of the three word segmentation
methods got further improved compared with MorphemeCBOW+. It tells that the contributions
from words and morphemes are different to the analogical reasoning task. According to our obser-
vations, the weight for words is usually higher than that for morphemes.

• By comparing MorphemeCBOW with MorphemeCBOW* as well as MorphemeCBOW+ with Mor-
phemeCBOW++, we can observe that updating the weights of tradeoff coefficients seem to essen-
tially boost syntactic accuracy by trading off a bit of semantic accuracy. As introduced in Section
4.2, in the fixed weight model the ratio of weight of morphemes to the weight of word is 0.25; while
our experiment records show that the averaged ratio are 0.43 if the two weights are updated, mean-
ing that the weight of the combination of morphemes increases and the contribution of the original
word to the final combined embedding decreased. As a result, the syntactic accuracy which largely
reflected in the morphological structure of a word increased, but the semantic accuracy hurts a little.

4.4.2 Results on word similarity task
Experimental results on the word similarity tasks are shown in Table 37,where the labels of C&W + csm-
RNN and HSMN + csmRNN mean that using C&W and HSMN to initialize csmRNN model as what had
been introduced in the paper of Luong et al. In our experiments, the architecture of MorphemeCBOW*
performs the best, so we only show the results related to MorphemeCBOW* in the table. We have the
following observations from the results:

• On WS353, MC, RG, and SCWS*, MorphemeCBOW* performs consistently better than the csm-
RNN model, showing that our model can achieve better representations for common words.

7csmRNN embeddings are available on http://www-nlp.stanford.edu/˜lmthang/morphoNLM/, Perfor-
mances are tested based on the two embeddings.

Table 2: Performance of leveraging morphological information on the analogical reasoning task.

(a) Baseline

Dimension (%) CBOW

100 Total 26.49

Semantic 17.51

Syntactic 33.96

200 Total 30.50

Semantic 19.71

Syntactic 39.46

300 Total 29.04

Semantic 17.58

Syntactic 38.56

(b) MorphemeCBOW

Morfessor Syllable Root

31.99 31.28 32.49

19.44 18.76 21.77

42.42 41.68 41.40

34.04 34.71 36.29

19.10 19.13 22.45

46.45 47.65 47.79

31.27 32.45 36.12

15.45 15.63 20.79

44.41 46.44 48.86

(c) MorphemeCBOW*

Morfessor Syllable Root

33.07 31.16 34.04

15.20 15.68 17.87

47.92 44.02 47.48

34.69 33.13 36.50

11.53 15.91 18.92

53.92 47.44 51.10

31.21 32.16 35.63

8.85 12.54 15.75

49.79 48.47 52.14

(d) MorphemeCBOW+

Morfessor Syllable Root

33.26 31.12 32.77

22.82 20.80 22.79

41.93 39.70 41.07

38.28 39.32 39.53

25.94 27.99 28.29

48.52 48.74 48.86

38.01 39.56 39.70

25.11 26.94 27.80

48.72 50.05 49.58

(e) MorphemeCBOW++

Morfessor Syllable Root

38.86 34.42 35.78

21.12 22.58 22.43

53.59 44.26 46.87

40.32 41.79 43.29

24.20 24.05 25.04

53.72 56.53 58.45

37.65 41.64 41.96

13.97 26.64 25.82

57.32 54.10 55.36
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Table 3: Performance of leveraging morphological information on the word similarity task.

Model WS353 (%) SCWS* (%) MC(%) RG(%) RW(%)

C&W 49.73 48.45 57.33 48.22 21.93

C&W + csmRNN 58.27 49.09 60.22 58.92 31.77

C&W + MorphemeCBOW* 63.81 53.30 74.33 61.22 31.14

HSMN 62.58 32.09 66.18 64.51 1.97

HSMN + csmRNN 64.58 44.08 71.88 65.15 22.31

HSMN + MorphemeCBOW* 65.19 53.40 81.62 67.41 32.13

MorphemeCBOW* 63.45 53.40 77.40 63.78 32.88

• On RW, MorphemeCBOW* performs better than the csmRNN model when using the HSMN em-
beddings as the initialization. When using the C&W embeddings as the initialization, the perfor-
mance of MorphemeCBOW* is also comparable with that of csmRNN. In particular, if we do not
use any pre-trained embeddings to initialize our mode, it performed the best (32.88%), and it even
beats the best performance of csmRNN with initializations (31.77%)8. The initialization is very im-
portant to a neural network. Suitable initialization will help increase the embedding quality which
works like training with multi-epochs. However, as there are two matrix M and M ′ in our network
structure, the initialization of both of them are more sensible. Furthermore, considering that the
recursive structure of csmRNN will bring higher computation complexity, we can conclude that our
model has excellent ability in learning the embeddings of rare words from pure scratch.

• The improvement on RW is more significant than those on the other four datasets. Considering that
RW contains more rare and unknown words (See Figure 3), we verified our idea that leveraging
morphological information will especially benefit the embedding of low-frequency words. More
specifically, without sufficient context information for the rare words in the training data, building
connections between words using morphemes will provide additional evidence for the model to
generate effective embeddings for these rare words; and, by combining the high-quality morpheme
embeddings to obtain the representations of the unknown words, the model does a good job in
dealing with the new emerging words.

5 Conclusions and Future Work

We proposed a novel neural network model to learn word representations from text. The model can lever-
age several types of morphological information to produce high-quality word embeddings, especially for
rare words and unknown words. Empirical experiments on an analogical reasoning task and several word
similarity tasks have shown that the proposed model can generate better word representations compared
with several state-of-the-art approaches.

For the future work, we plan to separate words and morphemes into several buckets according to their
frequencies. Different buckets will be associated with different coefficients, so that we can tune the
coefficients to approach even better word embeddings. We also plan to run our model on more training
corpus to obtain the embedding vectors for rare words, especially those new words invented out recently.
These emerging new words usually do not exist in standard training corpus such as Wikipedia, but exists
in some noisy data such as news articles and web pages. How well our model performs on these new
training corpus is an interesting question to explore.
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