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Abstract

Despite the overwhelming use of statistical language models in speech recognition, machine
translation, and several other domains, few high probability guarantees exist on their generaliza-
tion error. In this paper, we bound the test set perplexity of two popular language models – the
n-gram model and class-based n-grams – using PAC-Bayesian theorems for unsupervised learn-
ing. We extend the bound to sequence clustering, wherein classes represent longer context such
as phrases. The new bound is dominated by the maximum number of sequences represented by
each cluster, which is polynomial in the vocabulary size. We show that we can still encourage
small sample generalization by sparsifying the cluster assignment probabilities. We incorporate
our bound into an efficient HMM-based sequence clustering algorithm and validate the theory
with empirical results on the resource management corpus.

1 Introduction

The ability to predict unseen events from a few training examples is the holy grail of statistical language
modeling (SLM). Although the final test for any language model is its contribution to the performance of
a real system, task-independent metrics such as perplexity are popular for evaluating the general quality
of a model. Standard algorithms therefore attempt to minimize perplexity on some previously unobserved
test set, assumed to be drawn from the same distribution as the training set. This begets the question of
how the test set perplexity is related to training set perplexity – every paper on SLM has an answer, with
varying levels of theoretical and empirical justification.

The problem of data sparsity and generalization can be traced back to at least as early as Good (1953),
and possibly Laplace, who recognizes that the maximum likelihood (ML) estimate of event frequencies
(n-grams) cannot handle unseen events. Smoothing techniques such as the add-one estimator (Lidstone,
1920) and the Good-Turing estimator (Good, 1953) assign a non-zero probability to events that have
never been observed in the training set. Recently, Ohannessian and Dahleh (2012) strengthened the
theory by showing that Good-Turing estimation is consistent when the data generating process is heavy-
tailed. In the context of this paper, smoothing was perhaps the first attempt to bound generalization error,
in that it successfully guarantees a finite test set perplexity.

It is evident that smoothing of the n-gram estimate alone is not sufficient. Techniques that incorporate
lower and higher order n-grams, such as Katz (1987) smoothing, Jelinek-Mercer (1980) interpolation,
and Kneser-Ney (1995) smoothing, have become standard (Rosenfeld, 2000). Chen and Goodman (1999)
provide a thorough empirical comparison of smoothing methods and uncover useful relationships be-
tween the test set cross-entropy (log perplexity) and the size of the training set, model order, etc. A
Bayesian interpretation further explains why some of the techniques (don’t) work. Teh (2006) discusses
fundamental limitations of the Dirichlet process (Mackay and Peto, 1995) and proposes the hierarchi-
cal Pitman-Yor language model as a better way of generating the heavy-tailed (power law) distributions
exhibited in natural language.
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Instead of directly modeling a heavy-tailed distribution over words, class-based models address data
sparsity by estimating n-grams over clusters of words. Intuitively, clustering is a transformation of the
event space from the space of word n-grams, in which most events are rare, to the space of class n-grams,
which is more densely measured and therefore requires fewer training examples. Brown et al. (1992)
show that the clustering function that maximizes the training data likelihood must also maximize mu-
tual information between adjacent clusters; although several useful clustering algorithms are based on
this principle, no provable guarantees currently exist. Moreover, word transitions are never completely
captured by the underlying class transitions, and some tradeoff between accurate estimation of frequent
events (word n-grams) and generalization to unseen events (class n-grams) is desired – class-based mod-
els are therefore often interpolated with word n-grams using some of the previously described Bayesian
methods (Rosenfeld, 2000).

Our survey of SLM techniques and their treatment of generalization error has been rather brief and
certainly not comprehensive. We focus primarily on n-grams and related models since they have domi-
nated SLM over the last several decades (Rosenfeld, 2000), and therefore serve as a good starting point
for further analysis. The existing literature suggests that apart from empirical validation and intuition,
no provable guarantees exist on the generalization error of language models. Bayesian techniques work
well only to the extent the prior assumptions are valid; in this paper, we present theoretical guarantees
that hold irrespective of the correctness of the prior.

Model selection approaches such as the Akaike Information Criterion (AIC) (Akaike, 1973) and its
variants (Burnham and Anderson, 2002) quantify the tradeoff between complexity and goodness of fit. In
the context of a language model, it can be shown that test set cross entropy is approximately the training
set cross entropy plus the number of model parameters. Unfortunately, such bounds are loose and do
not provide significant algorithmic insight – at best, they recommend the smallest model that works well
on the training set. Chen (2009) obtained a very accurate relationship for exponential language models
by estimating the test set performance with linear regression. Although empirical, his approximation
leads to better models based on l1 + l22 regularization. Exponential models are often motivated with
the minimum discrimination information (MDI) principle, which roughly states that of all distributions
satisfying a particular set of features, the exponential family is the centroid (minimizes distortion relative
to the farthest possible true distribution) (Rosenfeld, 1996). This does not bound the generalization error
in the manner we wish to, but it is nevertheless a useful property that complements Chen’s observations.

In this paper, we strive for the best of both worlds – we present PAC-Bayesian theory as a powerful tool
for deriving high probability guarantees as well as efficient and well-motivated algorithms. In the next
section, we state some useful PAC-Bayesian theorems. In Section 3, we present our main results. We
apply the PAC-Bayesian bounds to n-grams, class-based n-grams, and also sequence clustering, where
classes represent longer context such as phrases. We show that for sequence clustering, the bound is
dominated by the maximum number of sequences represented by each cluster, and consequently requires
many more training examples than a class-based model over words. We address this issue by sparsifying
the cluster assignment probabilities using the lα norm, 0 < α < 1, an effective proxy for the intractable
l0 norm. In Section 4, we show how our bound can be incorporated into an HMM-based clustering
algorithm. In Section 5, we validate the theory presented in this paper with some empirical results on the
resource management corpus.

2 PAC-Bayesian Bounds

PAC-Bayesian theory is a useful framework for combining frequentist bounds with the notion of a prior.
Probably approximately correct (PAC) learning bounds the worst case generalization error of the best hy-
pothesis selected from a hypothesis space – and therefore treats all hypotheses uniformly (Valiant, 1984).
PAC-Bayesian bounds, however, place a prior over the hypothesis space while making no assumptions on
the data generating distribution (McAllester, 1998). Thus, PAC-Bayesian bounds can both 1) incorporate
prior information, and 2) provide frequentist guarantees on the expected performance. They have been
successfully applied to classification settings such as the support vector machine (SVM) (McAllester,
2003; Langford, 2005), yielding significantly tighter bounds. Seldin and Tishby (2010) extend the frame-

131



work to include unsupervised learning tasks such as density estimation and clustering. Since statistical
language modeling at its core is a discrete density estimation problem, we focus on the bounds developed
by Seldin and Tishby (2010) and summarize key results in the following subsection.

2.1 Unsupervised Learning
Given a d-dimensional product space X (1) × ... × X (d) and a collection of N samples, S, independent
and identically distributed (i.i.d.) according to some unknown distribution p(x1, ..., xd) over the product
space, we want to estimate p(x1, ..., xd) with some model q(x1, ..., xd). In the case of clustering (e.g.
class-based models), we make the following assumption on q(x1, ..., xd) [Note: we make no assumptions
on the true distribution p(x1, ..., xd)]:

q(x1, ..., xd) =
∑

c1,...,cd

q(c1, ..., cd)
d∏
i=1

q(xi|ci) (1)

where ci = hi(xi) for some clustering function hi : X (i) 7→ C(i). We refer to them collectively as a
clustering function h, h = {hi}di=1; hence h : X (1)× ...×X (d) 7→ C(1)× ...×C(d). We assume that the
original space X (1) × ... × X (d) has finite cardinality, with ni = |X (i)|, and likewise for the clustered
space C(1) × ...× C(d), where mi = |C(i)| is the number of clusters. We define a hypothesis space,H, to
be the space of all possible clustering functions h εH.

For h ε H, we define the distributions ph(c1, ..., cd) =
∑

x1,...,xd
p(x1, ..., xd)

∏d
i=1 δ(hi(xi) = ci)

and p̂h(c1, ..., cd) =
∑

x1,...,xd
p̂(x1, ..., xd)

∏d
i=1 δ(hi(xi) = ci), where p(x1, ..., xd) is the unknown

true distribution, and p̂(x1, ..., xd) is the empirical (maximum likelihood) estimate. The delta func-
tion, δ(arg), takes a value of 1 only when arg is true, and 0 otherwise. We can extend to
the original space with the model assumption in Equation (1). For example, ph(x1, ..., xd) =∑

c1,...,cd
ph(c1, ..., cd)

∏d
i=1 q(xi|ci).

The key difference between PAC learning and the PAC-Bayesian framework is the following notion
of a random predictor, which is a distributionQ(h), learnt over the hypothesis spaceH. Inference works
as follows: for a new sample (x1, ..., xd), we first draw a hypothesis h from H at random according to
the distribution Q(h). We then return q(x1, ..., xd) according to the model described by Equation (1)
and the clustering function h. The PAC-Bayesian framework therefore allows for a second level of aver-
aging over Q, and we can define the induced distributions: pQ(c1, ..., cd) =

∑
hQ(h)ph(c1, ..., cd) and

p̂Q(c1, ..., cd) =
∑

hQ(h)p̂h(c1, ..., cd). Again, we can extend to the original space with pQ(x1, ..., xd)
and p̂Q(x1, ..., xd) using the model assumption in Equation (1). Note that pQ(x1, ..., xd) is unknown
since p(x1, ..., xd) is unknown; but the goal is to bound some notion of generalization error, such as the
KL-divergence KL(p̂Q(x1, ..., xd)||pQ(x1, ..., xd)).
The Change of Measure Inequality (CMI) (Seldin and Tishby, 2010) is central to almost every PAC-
Bayesian bound, so we briefly state it here. For any measurable function φ(h) on H and for any distri-
butions Q(h) and P(h):

EQ(h)[φ(h)] ≤ KL(Q||P) + ln EP(h)

[
eφ(h)

]
(2)

where KL(Q||P) = EQ(h)

[
ln Q(h)
P(h)

]
is the KL-divergence betweenQ andP . The proof is fairly straight-

forward and is a direct consequence of rewriting φ(h) as ln
(
eφ(h)Q(h)

P(h)
P(h)
Q(h)

)
.

Seldin and Tishby (2010) apply the CMI with φ(h) = N · KL(p̂h(x1, ..., xd)||ph(x1, ..., xd)) and
simplify the KL-divergence term by recognizing that 1) {q(ci|xi)}di=1 defines a distribution over all
possible clusterings, and hence Q = {q(ci|xi)}di=1; and 2) a specific P , which they call the prior, can be
defined without making any assumptions on the true distribution p(x1, ..., xd). Note that P is not a prior
in the Bayesian sense: 1) it indicates preference on the structure of the hypothesis, not an assumption
on the data generating distribution, although the latter could be a consequence of the former; 2) the
bound holds regardless of P; and 3) the bound holds regardless ofQ, which is not necessarily the Bayes
posterior.
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The following prior on H makes no assumptions on p(x1, ..., xd). We present a simplified version of
the prior developed by Seldin and Tishby (2010):

P(h) ≥ 1

exp
[∑d

i=1mi lnni + ni lnmi

] (3)

The prior is based on a combinatorial argument. In order to select a clustering function hi for some
i, we first need to pick a cardinality profile (number of elements per cluster) for the mi clusters; there
are nmi

i such profiles, hence the first term in the sum. Next, given a cardinality profile, we need to
bound the number of ways in which each of the ni elements can be assigned to the clusters given their
sizes; there are at most mni

i possibilities, hence the second term in the sum. The CMI with φ(h) =
N · KL(p̂h(x1, ..., xd)||ph(x1, ..., xd)), our modified prior, and a few information theoretic results lead
to the following bound.
PAC-Bayesian Clustering: For any distribution p over X (1)× ...×X (d) and an i.i.d. sample S of sizeN
according to p, with probability at least 1−δ, for all distributions of cluster functionsQ = {q(ci|xi)}di=1,
the following holds:

KL(p̂Q(x1, ..., xd)||pQ(x1, ..., xd)) ≤
∑d

i=1 ni lnmi +K1

N
(4)

where K1 =
∑d

i=1mi lnni + (M − 1) ln(N + 1) + ln d+1
δ , and M =

∏d
i=1mi. Although this

shows convergence, in applications such as language modeling, we are interested in directly bound-
ing the test set perplexity or cross-entropy. Seldin and Tishby (2010) smooth p̂Q(x1, ..., xd) to bound
Ep(x1,...,xd)[− ln p̂Q(x1,...,xd)] and provide the following useful result based on Equation (4).
Bound on Cross-Entropy: For any probability measure p overX (1)×...×X (d) and an i.i.d. sample S of
size N according to p, with probability 1− δ for all distributions of cluster functionsQ = {q(ci|xi)}di=1:

Ep(x1,...,xd)[− ln p̂Q(x1, ..., xd)] ≤ −I(p̂Q(c1, ..., cd)) + ln(M)

√∑d
i=1 ni lnmi +K1

2N
+K2 (5)

where p̂Q(x1, ..., xd) is now the smoothed empirical estimate induced by Q, I(p̂Q(c1, ..., cd)) =∑d
i=1H(p̂Q(ci))−H(p̂Q(c1, ..., cd)) is the multi-information of the clustering,M andK1 are as defined

in Equation (4), and K2 is an additional term, K2 ≥ I(p̂Q(c1, ..., cd)), and the bound is non-negative.

3 Language Models

Since language modeling is yet another density estimation problem in which we want to minimize the test
set perplexity, the bound in Equation (5) readily applies to both word n-grams and class-based n-grams.
Note that the bounds are on cross-entropy, which is log perplexity, but we use the two terms almost
interchangeably. We are now interested in estimating the unknown true distribution p(v1, ..., vn) over
the space Vn, where V is some vocabulary consisting of V = |V| words. The degenerate case, d = 1,
X (1) = Vn, is the case of word n-grams and results in a bound that is dominated by n1 = |X (1)| = V n.
This suggests that the number of training samples, N , must be on the same order as V n for the bound
(and hence the estimate) to be meaningful.

It is also clear why class-based models are favored whenever they work. In this case, d = n, X (i) = V
for all 1 ≤ i ≤ d, and the bound in Equation (5) reduces to something linear in V (since ∀i, ni =
|X (i)| = V ). Moreover, the clustering function is the same for all i – that is, word clusters do not depend
on the position in the n-gram. Assuming K word clusters, the number of training examples, N , only
needs to be on the order of Kn + nV , achieving effective small sample generalization especially when
K << V . In the following subsections, we extend the bound to sequences and present a unique approach
to regularize the bound.
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3.1 Sequence Clustering
We have discussed two extreme cases, namely d = 1 and d = n, that correspond to word n-grams and
class-based n-grams, respectively. In practice, they are often interpolated to retain the advantages of
both, as shown in the following model:

q(v1, ..., vn) = αq(v1, ..., vn) + (1− α)
∑

c1,...,cn

q(c1, ..., cn)
n∏
i=1

q(vi|ci) (6)

for some 0 < α < 1. A Bayesian interpretation of the above model is to select between the n-gram
and the class-based model with probabilities α and 1 − α, respectively. In other words, for each n-
gram (v1, ..., vn), we simply flip an α-biased coin to decide on one of the two models. In this paper,
we interpolate across the entire spectrum, 1 ≤ d ≤ n, instead of just the extreme cases – that is, we
capture clusters over not just words, but also sequences of words (phrases). Previous results by Deligne
and Bimbot (1995), Ries et al. (1996), and Justo and Torres (2007) indicate that clustering over phrases
is practically useful and leads to significant improvements.

Suppose our goal is to estimate the probability of a trigram, for example, “the cat sat.”
In the case of d = 1, we directly estimate the joint probability p(the, cat, sat). In the
standard class-based model, where d = 3, we estimate with the model p(the, cat, sat) =∑

c1,c2,c3
p(c1, c2, c3)p(the|c1)p(cat|c2)p(sat|c3). The intermediate cases, such as d = 2 in this ex-

ample, are often neglected. The theory we subsequently develop interpolates over all four segmenta-
tions, including the missing ones: p(the, cat, sat) =

∑
c1,c2

p(c1, c2)p(the cat|c1)p(sat|c2) as well as
p(the, cat, sat) =

∑
c1,c2

p(c1, c2)p(the|c1)p(cat sat|c2).
In general, an n-gram has 2n−1 possible segmentations, as illustrated in the previous example. Sup-

pose f ε F is a particular segmentation from the space of all possible segmentations, and we explicitly
define it as the following mapping:

f : Vn 7→ X (1) × ...×X (d) (7)

where 1 ≤ d ≤ n and f is simply a segmentation that does not modify the joint distribution; that is,
p(v1, ..., vn) = p(x1, ..., xd). If f is fixed a priori, we can immediately apply the bounds derived in
Equation (5) over the segmented space X (1) × ...× X (d). This is the case where we decide on a model,
such as the standard class-based model (d = n), and simply use it.

An extension to the case of interpolated models is straightforward. We modify the hypothesis space
H to not only include all possible clusterings, but also all possible segmentations. The new random pre-
diction Q over H works as follows: given an n-gram (v1, ..., vn), draw a segmentation f ε F according
to the distribution π = (π1, ..., π2n−1), where the segmentations are indexed by j = 1, ..., 2n−1 (the
ordering does not matter), and πj is the probability of drawing segmentation j; pick a clustering as in
the random classifier described in Equation (5) for the new segmented space; and estimate q(v1, ..., vn)
according to the model described by the previous steps. The bound, in terms of π, is given below.
PAC-Bayes Sequence Clustering: For any probability measure p over Vn, and an i.i.d. sample S of
size N drawn according to p, with probability 1 − δ for all distributions of segmentations π and for all
distributions of cluster functions Q:

Ep(v1,...,vn)[− ln p̂Q(v1, ..., vn)] ≤
2n−1∑
j=1

K3(j) + ln(M(j))

√∑d(j)
i=1 V

ai(j) lnmi(j) +K1(j)
2N

πj

(8)
K3(j) = −I(p̂Q(c1, ..., cd(j))) +K2(j)

where ∀j ∀i, 1 ≤ ai(j) ≤ n, and ∀j, ∑d(j)
i=1 ai(j) = n, and V ai(j) simply replaces ni in Equation (5)

for a given j. The term K2(j) is from Equation (5). Note that all terms such as mi(j), the number of
clusters corresponding to the space, their product M(j), and additional terms K1(j), K2(j) now depend
on the segmentation j since X(i) and d(j) depend on j.
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We can favor certain segmentations (e.g. those that require few training examples), but note that the
bound above is true regardless of the distribution over possible segmentations, π. Also, the bound is
dominated by the exponent ai(j) and the constraint

∑d(j)
i=1 ai(j) = n. Hence, the bound is polyno-

mial in V for all segmentations except the standard class-based setting where d(j) = n, in which case
∀i, ai(j) = 1. For example, if d(j) = n − 1 for some segmentation j, there exists some i such that
ai(j) = 2 and hence represents clusters of bigrams. If d(j) = n − 2, there exists some segmentation j,
and a space i such that ai(j) = 3, and so on until d(j) = 1, and this is the case of word n-grams where
a1(j) = n.

3.2 Bound Minimization

Imposing the restriction ∀j ∀i, ai(j) = 1 is simple, and although it can guarantee the small-sample
benefits of a standard class-based model, it is not a useful strategy for incorporating the constraint. Since
ai(j) corresponds to the original space X (i) for a given j, restricting ai(j) would restrict X (i) to an
a priori, fixed set of V elements. To learn the best possible set of V elements, however, we need to
minimize the effective size of X (i). For example, suppose we are estimating trigrams over V3 using the
following segmentation: X (1) = V and X (2) = V2 – i.e. a bigram over clusters of words and clusters of
word bigrams. The unconstrained bound is dominated by X (2). We can restrict the effective size of X (2)

by assigning zero probability to the vast majority of its elements, by constraining the hypothesis space
to consider only cluster assignment functions q(xi|ci) in which n2 << V 2 of the elements have nonzero
probability. Thus, every word sequence in Vd can be generated by the d = n segmentation, but every
other segmentation is constrained to generate at most a subset of Vd with nonzero probability.

We achieve this by imposing the restriction on the random predictor Q. By Bayes rule, q(ci|xi) =
q(xi|ci)q(ci)

q(xi)
and we can alternatively define Q as Q = {q(ci), q(xi), q(xi|ci)}di=1. Our goal is to learn

a Q that minimizes the RHS of Equation (5), which includes maximizing the multi-information term,
as well as constraining ni. As expected, q(xi) controls the absolute size of X (i) and q(xi|ci) controls
the effective size based on the clustering. The dominant term in all of our bounds is ni (or ai, with
ni = V ai), which results from the second term in the prior defined in Equation (3), since it bounds the
number of ways in which the ni items can be assigned to the mi clusters. Alternatively, we can represent
this quantity with an upper bound,

(∑
ci
‖q(xi|ci)‖0

)
lnmi. We can write q(xi) =

∑
ci
q(xi|ci)q(ci),

and ni = ‖q(xi)‖0 = ‖∑ci
q(xi|ci)q(ci)‖0; by the triangle inequality and scale invariance of the l0

norm, this is less than or equal to
∑

ci
‖q(xi|ci)‖0. We therefore limit the upper bound,

∑
ci
‖q(xi|ci)‖0,

by sparsifying q(xi|ci) for every cluster ci.
The Optimization Problem: Given some segmentation, we want to find a random predictorQ – a class-
based model over the fixed segmentation – such that the bound in Equation (5) is minimized, which is
given by the following optimization problem:

maximize
Q

I(p̂Q(c1, ..., cd))

subject to ‖q(xi|ci)‖0 ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(9)

Since such optimization problems are known to be NP-complete, we use a computationally tractable
proxy. The standard practice is to use the l1 norm instead of the l0 norm; although non-convex, we resort
to the lα norm, 0 < α < 1, since q(xi|ci) is a probability vector with a fixed l1 norm. We therefore solve
the following problem:

maximize
Q

I(p̂Q(c1, ..., cd))

subject to ‖q(xi|ci)‖α ≤ V, ∀ ci ε C(i), i = 1, . . . , d
(10)

We have shown that one way to regularize the bound for a non-trivial sequence clustering problem,
regardless of whether the segmentation is fixed or if we are interpolating across all segmentations, is
to sparsify the cluster assignment probabilities for every cluster. There are many ways to sparsify a
probability vector (Pilanci et al., 2012; Kyrillidis et al., 2013), and we select the lα norm, 0 < α <
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1, for its simplicity and success in other applications (Chartrand and Staneva, 2008). Our approach
guarantees manageable bounds on the test set cross-entropy for a general class of SLMs, without making
any assumptions on the true distribution p(v1, ..., vn).
The Bayesian Connection A Bayesian interpretation of our regularization provides additional insight
into other successful models, such as the hierarchical Pitman-Yor language model (HPYLM). In our
approach, we impose the restriction ‖q(xi|ci)‖α ≤ V , 0 < α < 1, for every cluster ci. It can be
shown that this is equivalent to a sub-exponential prior on q(xi|ci) (Hastie et al., 2009). Since q(xi) =∑

ci
q(xi|ci)q(ci) and we make the assumption that q(xi|ci) is sub-exponential for every ci, we are

consequently assuming that q(xi) is also sub-exponential. Although the PAC-Bayesian bounds hold
regardless of the true distribution, our regularization technique implicitly assumes that it is heavy-tailed.

The key to HPYLM’s success within the Bayesian setting is a better prior that matches the heavy-
tailed distribution of natural language (Teh, 2006) – the regularization approach developed in this paper
reassuringly corresponds to the assumption that the true distribution is heavy-tailed (sub-exponential).
On the other hand, it may be possible to derive provable guarantees for HPYLM within the context of
our clustering model. The main difference between HPYLM and the less successful Dirichlet process
(DP) is the Chinese restaurant process, which assigns new tables (clusters) to customers (samples) much
more aggressively in the former model than in the latter (Teh, 2006). HPYLM therefore has far fewer
customers (samples) per table (cluster) than DP, resulting in significantly sparser q(xi|ci).

4 An Efficient HMM Algorithm

The hidden Markov model (HMM) is a popular tool for modeling sequences and has been used in several
speech and language clustering tasks (Rabiner, 1989; Smyth, 1997; Li and Biswas, 1999). Over its rich
history, several techniques, including regularization and sparsification of the HMM parameters, have
been developed (Bicego et al., 2007; Bharadwaj et al., 2013). The goal of this section is to show how our
bound easily fits into a well-established model such as the HMM.

We can rewrite the standard class-based model by making a Markov assumption on q(c1, ..., cn):

q(x1, ..., xd, c1, ..., cd) =
d∏
i=1

q(xi|ci)q(ci|ci−1) (11)

where {xi}di=1 is some segmentation of (v1, ..., vn) ε Vn. The HMM literature refers to ci as the hidden
state, q(xi|ci) as the observation probability, and q(ci|ci−1) as the state transition probability (Rabiner,
1989). If we consider each state of the HMM to be a cluster, then as before, q(ci|xi) = q(xi|ci) q(ci)q(xi)
is a distribution over all possible clustering functions. To solve the optimization problem described in
Equation (10), we need to maximize the multi-information I(q(c1, ..., cn)) while satisfying the constraint
‖q(xi|ci)‖α ≤ V . We can rewrite the constrained optimization problem as an unconstrained problem
using a Lagrangian, and solve for q(xi|ci) with an lα regularized version of the expectation maximization
(EM) algorithm, similar to Bharadwaj et al. (2013).

To maximize the multi-information term I(q(c1, ..., cd)) in Equation (10), we sparsify the state tran-
sition probabilities q(ci|ci−1). This provably works when we use lα regularization, 0 < α < 1 for
sparsifying q(ci|ci−1). The Renyi α-entropy of a random variable with some probability distribution
q is defined to be Hα(q) = α

1−α log ‖q‖α and there are two useful results we use (Principe, 2010): 1)
limα→1Hα(q) = H(q), whereH(q) is the Shannon entropy; and 2)Hα(q) is non-increasing in α. Thus,
for α < 1,Hα(q) is an upper bound on the Shannon entropy. Since lα regularization minimizes the Renyi
α-entropy, which for 0 < α < 1 is an upper bound on the Shannon entropy, it effectively maximizes the
mutual information between ci and ci−1, given that I(q̂Q(ci, ci−1)) = H(q̂Q(ci))−H(q̂Q(ci|ci−1)).

Thus, we have shown that at least in the context of clustering, sparsifying both the observation prob-
abilities and the state transition probabilities of an HMM using the lα prior directly minimizes general-
ization error.
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Figure 1: Test set cross-entropy of HMM vs lα-regularized (sparse) HMM as a function of the number
of training sentences

5 Experiments

We test our approach on a subset of the resource management (RM) corpus (Price et al., 1993), which
consists of naval commands that span approximately V = 1000 words. First, we show that lα regular-
ization works. Figure 1 shows the estimated test set cross-entropy of an unregularized HMM and of an
lα-regularized HMM as a function of the number of training sentences. We vary the training set size from
10 to 2000 sentences and test the models on 800 sentences; Figure 1 reports the average cross-entropy
on brackets of training sizes – 10-100, 110-200, and so on. The lα-regularized HMM requires additional
tunable parameters such as the value of α. To simplify the search on a separate 300 sentence development
set, we make a (rather restrictive) assumption that α for both the transition and observation probabilities
is the same, and that α is independent of the size of the training set. Our solutions are therefore not opti-
mal, but adequate to demonstrate our claims. To ensure that the cross-entropy is bounded, we smooth all
estimates with add-one smoothing. For small training datasets, the unregularized HMM learns models
that assign near-zero likelihood to some of the test sentences; hence, we only present results for training
set sizes greater than 500 sentences.

Like many other model selection results, Figure 1 suggests that model sparsity is essential when train-
ing datasets are small. In this example, about 900 sentences are required for the unregularized HMM
to outperform the sparse HMM. In the context of the theory developed in earlier sections, it was shown
that test set cross-entropy is proportional to ni

N , where N is the number of training examples. In practical
settings, N is fixed; hence, the only strategy for minimizing cross-entropy is to minimize ni. Figure 1
confirms that lα regularization successfully sparsifies q(xi|ci), the observation probabilities of the HMM,
thereby minimizing ni.

We also compare how the test set cross-entropy improves as a function of the training set size for four
different models: 1) a baseline bigram model estimated over words; 2) a baseline class-based model
using Brown’s algorithm (Brown et al., 1992) with K = 20 clusters, learnt over the entire dataset so that
it is also representative of knowledge-based approaches in which the true clusters are known a priori;
3) lα-regularized HMM with 20 ergodic states; and 4) a special case of 3) in which the state transitions
are constrained to artificially form m1 = 10 word clusters (10 states) and m2 = 5 clusters that represent
word bigrams (10 states, where the 5 clusters are modeled with 2 left-to-right states each); therefore, the
model represents an interpolation between the standard class-based model and word bigrams, but is of
the exact same complexity as 2) and 3).

Figure 2 shows the estimated test set cross-entropy for each of the four models. The values of α
used in our experiments are α = 0.7 for the words only case and α = 0.9 for sequences. It is clear
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Figure 2: Test set cross-entropy as a function of the number of training sentences for the four settings

from Figure 2 that lα regularization helps even in the case of a standard class-based model, the bound
for which is already linear in V . With fewer than 100 sentences, lα regularization can both learn the
clusters and estimate their transitions reasonably well, and surpasses Brown for training set sizes of
N ≥ 800 sentences. Brown’s algorithm in 2) finds clusters such that pairwise mutual information
terms are maximized; in 3), we not only maximize the mutual information, but we also reduce the
effective V by ensuring that each cluster (or state) specializes and represents as few words as possible.
As the number of training examples increases, estimates of class transitions indeed improve, but the
class-based assumption itself becomes too restrictive. In 4), which represents an interpolated model,
we see the tradeoff achieved by incorporating sequences: for small training sets, the model achieves
better generalization than word bigrams, but is worse than the class-based model; and for larger training
sets, the interpolated model learns better representations of high frequency events and outperforms the
class-based models represented by 2) and 3).

The value of α in 3) is 0.7, whereas α in 4) is 0.9; this seems counter-intuitive at first, but note that
a smaller α does not necessarily imply sparser observation probabilities; however, it implies a heavier
distribution in a Bayesian setting. A Bayesian interpretation therefore suggests that in 4), the model itself
is better equipped to cope with heavy tails, whereas a more aggressive α is required in 3).

6 Conclusion

By defining a random clustering model (a model in which there is a distribution over possible cluster
assignments, e.g. an HMM), it is possible to specialize published PAC-Bayesian cross-entropy bounds
to the cases of n-gram and class-based n-gram estimation. A distribution over segmentations allows
derivation of a cross-entropy bound on sequence clustering algorithms, which can be made useful by
sparsifying the sequence cluster observation probabilities. An efficient lα regularization technique can
be used to maximize sparsity, thereby minimizing the test set cross-entropy.
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