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Abstract

This paper addresses implicit opinions expressed via inference over explicit sentiments and
events that positively/negatively affect entities (goodFor/badFor, gfbf events). We incorporate
the inferences developed by implicature rules into an optimization framework, to jointly improve
sentiment detection toward entities and disambiguate components of gfbf events. The framework
simultaneously beats the baselines by more than 10 points in F-measure on sentiment detection
and more than 7 points in accuracy on gfbf polarity disambiguation.

1 Introduction

Previous work in NLP on sentiment analysis has mainly focused on explicit sentiments. However, as
noted in (Deng and Wiebe, 2014), many opinions are expressed implicitly, as shown by this example:

Ex(1) The reform would lower health care costs, which would be a tremendous positive change across the entire
health-care system.

There is an explicit positive sentiment toward the event of “reform lower costs”. However, in expressing
this sentiment, the writer also implies he is negative toward the “costs”, since he’s happy to see the costs
being decreased. Moreover, the writer may be positive toward “reform” since it contributes to the “lower”
event. Such inferences may be seen as opinion-oriented implicatures (i.e., defeasible inferences)1.

We develop a set of rules for inferring and detecting implicit sentiments from explicit sentiments and
events such as “lower” (Wiebe and Deng, 2014). In (Deng et al., 2013), we investigate such events,
defining a badFor (bf) event to be an event that negatively affects the theme and a goodFor (gf) event to
be an event that positively affects the theme of the event.2 Here, “lower” is a bf event. According to their
annotation scheme, goodFor/badFor (gfbf) events have NP agents and themes (though the agent may be
implicit), and the polarity of a gf event may be changed to bf by a reverser (and vice versa).

The ultimate goal of this work is to utilize gfbf information to improve detection of the writer’s senti-
ments toward entities mentioned in the text. However, this requires resolving several ambiguities: (Q1)
Given a document, which spans are gfbf events? (Q2) Given a gfbf text span, what is its polarity, gf
or bf? (Q3) Is the polarity of a gfbf event being reversed? (Q4) Which NP in the sentence is the agent
and which is the theme? (Q5) What are the writer’s sentiments toward the agent and theme, positive
or negative? Fortunately, the implicature rules in (Deng and Wiebe, 2014) define dependencies among
these ambiguities. As in Ex(1), the sentiments toward the agent and theme, the sentiment toward the gfbf
event (positive or negative), and the polarity of the gfbf event (gf or bf) are all interdependent. Thus,
rather than having to take a pipeline approach, we are able to develop an optimization framework which
exploits these interdependencies to jointly resolve the ambiguities.

Specifically, we develop local detectors to analyze the four individual components of gfbf events,
(Q2)-(Q5) above. Then, we propose an Integer Linear Programming (ILP) framework to conduct global

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1Specifically, we focus on generalized conversational implicature (Grice, 1967; Grice, 1989).
2Compared to (Deng et al., 2013), we change the term “object” to “theme” as the later is more appropriate for this task.
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inference, where the gfbf events and their components are variables and the interdependencies defined by
the implicature rules are encoded as constraints over relevant variables in the framework. The reason we
do not address (Q1) is that the gold standard we use for evaluation contains sentiment annotations only
toward the agents and themes of gfbf events. We are only able to evaluate true hits of gfbf events. Thus,
the input to the system is the set of the text spans marked as gfbf events in the corpus. The results show
that, compared to the local detectors, the ILP framework improves sentiment detection by more than 10
points in F-measure and disambiguating gfbf polarity by more than 7 points in the accuracy, without any
loss in accuracy for other two components.

2 Related Work

Most work in sentiment analysis focuses on classifying explicit sentiments and extracting explicit opinion
expressions, holders and targets (Wiebe et al., 2005; Johansson and Moschitti, 2013; Yang and Cardie,
2013). There is some work investigating features that directly indicate implicit sentiments (Zhang and
Liu, 2011; Feng et al., 2013). In contrast, we focus on how we can bridge between explicit and implicit
sentiments via inference. To infer the implicit sentiments related to gfbf events, some work mines various
syntactic patterns (Choi and Cardie, 2008), proposes linguistic templates (Zhang and Liu, 2011; Anand
and Reschke, 2010; Reschke and Anand, 2011), or generates a lexicon of patient polarity verbs (Goyal
et al., 2013). Different from their work, which do not cover all cases relevant to gfbf events, (Deng and
Wiebe, 2014) defines a generalized set of implicature rules and proposes a graph-based model to achieve
sentiment propagation between the agents and themes of gfbf events. However, that system requires
all of the gfbf information (Q1)-(Q4) to be input from the manual annotations; the only ambiguity it
resolves is sentiments toward entities. In contrast, the method in this paper tackles four ambiguities
simultaneously. Further, as we will see below in Section 6, the improvement over the local detectors by
the current method is greater than that by the previous method, even though it operates over the noisy
output of local components automatically.

Different from pipeline architectures, where each step is computed independently, joint inference has
often achieved better results. Roth and Yih (2004) formulate the task of information extraction using
Integer Linear Programming (ILP). Since then, ILP has been widely used in various tasks in NLP, in-
cluding semantic role labeling (Punyakanok et al., 2004; Punyakanok et al., 2008; Das et al., 2012),
joint extraction of opinion entities and relations (Choi et al., 2006; Yang and Cardie, 2013), co-reference
resolution (Denis and Baldridge, 2007), and summarization (Martins and Smith, 2009). The most similar
ILP model to ours is (Somasundaran and Wiebe, 2009), which improves opinion polarity classification
using discourse constraints in an ILP model. However, their work addresses discourse relations among
explicit opinions in different sentences.

3 GoodFor/BadFor Event and Implicature

This work addresses sentiments toward, in general, states and events which positively or negatively
affect entities. Deng et al. (2013) (hereafter DCW) identify a clear case that occurs frequently in opinion
sentences, namely the gfbf events mentioned above. As defined in DCW, a gf event is an event that
positively affects the theme of the event and a bf event is an event that negatively affects the theme.
According to the annotation schema, gfbf events have NP agents and themes (though the agent may be
implicit). In the sentence “President Obama passed the bill”, the agent of the gf “passed” is “President
Obama” and the theme is “the bill”. In the sentence “The bill was denied”, the agent of the bf “was
denied” is implicit. The polarity of a gf event may be changed to bf by a reverser (and vice versa). For
example, in “The reform will not worsen the economy,” “not” is a reverser and it reverses the polarity
from bf to gf.3

The constraints we encode in the ILP framework described below are based on implicature rules in
(Deng and Wiebe, 2014). Table 1 gives two rule schemas, each of which defines four specific rules. In

3DCW also introduce retainers. We don’t analyze retainers in this work since they do not affect the polarity of gfbfs, and
only 2.5% of gfbfs have retainers in the corpus.
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s(gfbf) gfbf → s(agent) s(theme) s(gfbf) gfbf → s(agent) s(theme)
1 positive gf → positive positive 3 positive bf → positive negative
2 negative gf → negative negative 4 negative bf → negative positive

Table 1: Rule Schema 1 & Rule Schema 3 (Deng and Wiebe, 2014)

the table, s(α) = β means that the writer’s sentiment toward α is β, where α is a gfbf event, or the agent
or theme of a gfbf event, and β is either positive or negative. P→ Q means to infer Q from P.

Applying the rules to Ex(1): the writer expresses a positive sentiment (“positive”) toward a bf event
(“lower”), thus matching Case 3 in Table 1. We infer that the writer is positive toward the agent (“re-
form”) and negative toward the theme (“costs”). Two other rule schemas (not shown) make the same
inferences as Rule Schemas 1 and 3 but in the opposite direction. As we can see, if two entities partic-
ipate in a gf event, the writer has the same sentiment toward the agent and theme, while if two entities
participate in a bf event, the writer has opposite sentiments toward them. Later we use this observation
in our experiments.

4 Global Optimization Framework

Optimization is performed over two sets of variables. The first set is GFBF, containing a variable for
each gfbf event in the document. The other set is Entity, containing a variable for each agent or theme
candidate. Each variable k in GFBF has its corresponding agent and theme variables, i and j, in Entity.
The three form a triple unit, 〈i, k, j〉. The set Triple consists of each 〈i, k, j〉, recording the correspon-
dence between variables in GFBF and Entity. The goal of the framework is to assign optimal labels to
variables in Entity and GFBF. We first introduce how we recognize candidates for agents and themes,
then introduce the optimization framework, and then define local scores that are input to the framework.

4.1 Local Agents and Theme Candidates Detector
We extract two agent candidates and two theme candidates for each gfbf event (one each will ultimately
be chosen by the ILP model).4 We use syntax, and the output of the SENNA (Collobert et al., 2011)
semantic role labeling tool. SENNA labels the A0 (subject), A1 (object), and A2 (indirect object) spans
for each predicate, if possible. To extract the semantic agent candidate: If SENNA labels a span as A0
of the gfbf event, we consider it as the semantic agent; if there is no A0 but A1 is labeled, we consider
A1; if there is no A0 or A1 but A2 is labeled, we consider A2. To extract the syntactic agent candidate,
we find the nearest noun in front of the gfbf span, and then extract any other word that depends on the
noun according to the dependency parse. Similarly, to extract the semantic theme candidate, we consider
A1, A2, A0 in order. To extract the syntactic theme candidate, the same procedure is conducted as for
the syntactic agent, but the nearest noun should be after the gfbf. If there is no A0, A1 or A2, then there
is only one agent candidate, implicit and only one theme candidate, null. We treat a null theme as an
incorrect span in the later evaluations. If the two agent (theme) candidate spans are the same, there is
only one candidate.

4.2 Integer Linear Programming Framework
We use Integer Linear Programming (ILP) to assign labels to variables. Variables in Entity will be
assigned positive or negative, representing the writer’s sentiments toward them. We may have two candi-
date agents for a gfbf and that we will choose between them. Thus, only one agent is assigned a positive
or negative label; the other is considered to be an incorrect agent of the gfbf (similarly for the theme can-
didates). Each variable in GFBF will be assigned the label gf or bf. Optionally, it may also be assigned
the label reversed. Label gf or bf is the polarity of the gfbf event; reversed is assigned if the polarity is
reversed (e.g., for “not harmed”, the labels are bf and reversed).

The objective function of the ILP is:
4This framework is able to handle any number of candidates. The methods we tried using more candidates did not perform

as well - the gain in recall was offset by larger losses in precision.
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min
u1gf ,u1bf ...

(
− 1 ∗

∑
i∈GFBF∪Entity

∑
c∈Li

picuic

)
+

∑
〈i,k,j〉∈Triple

ξikj +
∑

〈i,k,j〉∈Triple

δikj (1)

subject to

uic ∈ {0, 1}, ∀i, c ξikj , δikj ∈ {0, 1},∀〈i, k, j〉 ∈ Triple (2)

where Li is the set of labels given to ∀i ∈ GFBF ∪ Entity. If i ∈ GFBF, Li is {gf, bf, reversed} ({gf,
bf, r}, for short). If i ∈ Entity, Li is {positive, negative} ({pos, neg}, for short). uic is a binary in-
dicator representing whether the label c is assigned to the variable i. When an indicator variable is 1,
the corresponding label is selected. pic is the score given by local detectors, introduced in the following
sections. Variables ξikj and δikj are binary slack variables that correspond to the gfbf implicature con-
straints of 〈i, k, j〉. When a given slack variable is 1, the corresponding triple violates the implicature
constraints. Minimizing the objective function could achieve two goals at the same time. The first part
(−1 ∗∑

i

∑
c picuic) tries to select a set of labels that maximize the scores given by the local detectors.

The second part (
∑

ikj ξikj +
∑

ikj δikj) aims at minimizing the cases where gfbf implicature constraints
are violated. Here we do not force each triple to obey the implicature constraints, but to minimize the
violating cases. For each variable, we have defined constraints:∑

c∈LGF BF ′

ukc = 1, ∀k ∈ GFBF (3)

∑
i∈Entity

〈i,k,j〉∈Triple

∑
c∈LEntity

uic = 1,∀k ∈ GFBF (4)
∑

j∈Entity,
〈i,k,j〉∈Triple

∑
c∈LEntity

ujc = 1,∀k ∈ GFBF (5)

where LGFBF ′ in Equation (3) is a subset of LGFBF , consisting of {gf, bf}. Equation (3) means a
gfbf must be either gf or bf. But it is free to choose whether it is being reversed. Recall that we have two
agent candidates (a1,a2) for a gfbf. Thus we have four agent indicators in Equation (4): ua1,pos, ua1,neg,
ua2,pos and ua2,neg. Equation (4) ensures that three of them are 0 and one of them is 1. For instance,
ua1,pos assigned 1 means that candidate a1 is selected to be the agent span and pos is selected to be its
polarity. In this way, the framework disambiguates the agent span and sentiment polarity simultaneously.
(Similar comments apply for the theme candidates in Equation (5).)

According to the implicature rules in Table 1 in Section 3, the writer has the same sentiment toward
entities in a gf relation. Thus, for each triple unit 〈i, k, j〉, the gf constraints are applied via the following:

|
∑

i,〈i,k,j〉
ui,pos −

∑
j,〈i,k,j〉

uj,pos|+ |uk,gf − uk,r| <= 1 + ξikj , ∀k ∈ GFBF (6)

|
∑

i,〈i,k,j〉
ui,neg −

∑
j,〈i,k,j〉

uj,neg|+ |uk,gf − uk,r| <= 1 + ξikj , ∀k ∈ GFBF (7)

We use |uk,gf − uk,r| to represent whether this triple is gf. In Equation (6), if this value is 1, then the
triple should follow the gf constraints. In that case, ξikj = 0 means that the triple doesn’t violate the
gf constraints, and |∑i ui,pos −

∑
j uj,pos| must be 0. Further, in this case,

∑
i ui,pos and

∑
j uj,pos are

constrained to be of the same value (both 1 or 0) – that is, entities i and j must be both positive or both
not positive. However, if ξikj = 1, Equation (6) does not constrain the values of the variables at all. If
|uk,gf − uk,r| is 0, representing that the triple is not gf, then Equation (6) does not constrain the values
of the variables. Similar comments apply to Equation (7).

In contrast, the writer has opposite sentiments toward entities in a bf relation.

|
∑

i,〈i,k,j〉
ui,pos +

∑
j,〈i,k,j〉

uj,pos − 1|+ |uk,bf − uk,r| <= 1 + δikj , ∀k ∈ GFBF (8)

|
∑

i,〈i,k,j〉
ui,neg +

∑
j,〈i,k,j〉

uj,neg − 1|+ |uk,bf − uk,r| <= 1 + δikj ,∀k ∈ GFBF (9)

We use |uk,bf − uk,r| to represent whether this triple is bf. In Equation (8), if a triple is bf and the
constraints are not violated, then |∑i ui,pos +

∑
j uj,pos − 1| must be 0. Further, in this case,

∑
i ui,pos
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ugf ubf ur |ugf − ur| |ubf − ur| ugf ubf ur |ugf − ur| |ubf − ur|
A 1 0 0 1 0 C 0 1 0 0 1
B 0 1 1 1 0 D 1 0 1 0 1

Table 2: Truth table of being reversed or not (k is omitted)

and
∑

j uj,pos are constrained to be of the opposite value – that is, if entity i is positive then entity j must
not be positive. Similar comments apply to Equation (9).

Note that above we use |uk,gf−uk,r| and |uk,bf−uk,r| to represent whether a triple is gf or bf. In Table
2, we show that they always take opposite values and that they are consistent with the actual polarities.
In Table 2, Case A means the triple is gf and Case B means the triple is bf but it is reversed. In both
cases, |ugf − ur| = 1, indicating that the triple should follow the gf constraints. Similarly for Case C
and Case D to follow the bf constraints.

4.3 Local GoodFor/BadFor Score: pk,gf , pk,bf

We utilize a sense-level gfbf lexicon by (Choi et al., 2014). In total there are 6,622 gf senses and 3,290
bf senses. The gf lexicon covers 64% of the gf words in the corpus and the bf lexicon covers 42% of the
bf words. We then look up the gfbf span k in the gfbf lexicon. If k only appears in the gf lexicon, then
pk,gf = 1 − ε and pk,bf = ε. Here ε = 0.0001, to prevent there being any 0 scores in our computation.
If k only appears in the bf lexicon, then pk,bf = 1 − ε and pi,gf = ε. If k appears in both the gf and bf
lexicon, and there are a senses in the gf lexicon and b senses in the bf lexicon, then pk,gf = a/(a + b)
and pk,bf = b/(a + b). If k is not in either lexicon, then pk,gf = pk,bf = ε. If there is more than one
word in the gfbf span, we take the maximum score.

4.4 Local Reversed Score: pk,r

As introduced in Section 3, a reverser changes the polarity of a gfbf. First, we build reverser lexicons
from Wilson’s shifter lexicon (2008), namely the entries labeled as genshifter, negation, and shiftneg.
We create two lexicons: one with the verbs and the other with the non-verb entries, excluding nouns,
adjectives, and adverbs, since most non-verb reversers are prepositions or subordinating conjunctions.
There are 219 reversers in the entire corpus; 134 (61.19%) are instances of words in one of the two
lexicons. Based on the lexicon, we categorize reversers into three classes. Examples are shown below.

Ex(2) They will not be able to water down your coverage.
Ex(3) ... how a massive new bureaucracy will cut costs without hurting the old and the helpless.
Ex(4) The new law includes new rules to prevent insurance companies from overcharging patients.

Negation: An instance in this category is “not” in Ex(2). If any word in the gfbf span has a neg
dependency relation according to the Stanford dependency parser, then we consider the gfbf to be negated
(i.e., reversed). In this case the path between the negator and the gfbf is labeled neg and the length of the
path is one.

Other Non-Verb: This category consists of words such as “without” in Ex(3) (others are “never” and
“few”, etc). These words lower the extent of the gfbf event. We look in the sentence for instances of
words in the non-verb reverser lexicon, which are not tagged as noun, verb, adj, or adv. For any found,
we examine the path in the dependency parse between the potential reverser and the gfbf span. If the
path has at least one of advmod, pcomp, cc, xcomp, nsubj, neg and the length of the path is less than four
(learnt from development set), the event is considered to be reversed.

Verb: In Ex(4), the verb “prevent” stops the gfbf event “overcharging” from happening. We call such
words Verb reverser (others are “prohibit” and “ban”, etc). We look in the sentence for instances of words
in the verb reverser lexicon. For any that appear before the gfbf span in the sentence, if the path has at
least one of xcomp, pcomp, obj and the length of the path is less than four, then the event is reversed.
For the triple 〈companies, overcharging, patients〉 in Ex(4), though it is reversed by “prevent”, the agent
of the reverser, which is “law”, is different from the agent of the gfbf, which is “companies”, so the bf
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within the “overcharging” event is not reversed.5 Though we extract the Verb reversers to evaluate the
performance of recognizing a reverser, in the optimization framework, gfbf events with Verb reversers
are not considered to be reversed, since almost all Verb reversers introduce new agents.

Different from other scores, pk,r could be negative. According to the heuristics above, the probability
of a gfbf event being reversed decreases as the length of the path increases. We define pk,r so it is
inversely proportional to the length of the path. Further, to make sense of a gfbf triple 〈agent, gfbf,
theme〉, where, e.g., the local detectors label it 〈pos, bf, pos〉, the framework is choosing the smaller
one from (a) −1 ∗ pk,r ∗ uk,r (it has a reverser) versus (b) 1 ∗ ξikj (it is an exception to the rules). The
framework assigns uk,r = 0 and ξikj = 1 if −1 ∗ pk,r > 1. It assigns uk,r = 1 and ξikj = 0 if
−1 ∗ pk,r <= 1. For gfbf events which have Negation or Other Non-verb reversers, since we use the
length four as a threshold in the heuristics above, we define pk,r = 1

d − 5
4 , so that −1 ∗ pk,r = 5

4 − 1
d > 1

if d > 4. For gfbf events for which no reverser word appears in the sentence, or those which only have
Verb reversers, pk,r = −1 ∗ 5

4 (so −1 ∗ pk,r > 1), so that the framework chooses case (b) (choosing the
gfbf event to be not reversed).

4.5 Local Sentiment Score: pi,pos, pi,neg

In the corpus of DCW, only the writer’s sentiments toward the agents and the themes of gfbf events are
annotated. Thus, since there are many false negatives of sentiments toward entities, the corpus does
not support training a classifier. Therefore, we adopt the same local sentiment detector from (Deng
and Wiebe, 2014), using available resources to detect writer’s sentiments toward all agent and theme
candidates.6 The sentiment scores range from 0.5 to 1.

5 Co-reference In the Framework

So far the constraints in the framework are within a gfbf triple. Consider the following example:

Ex(5) The reform will decrease the healthcare costs and improve the medical qualify as expected.

The two gfbfs, “decrease” and “improve” have the same agent, “reform”. Thus, if there is more than
one gfbf in a sentence, and the path between the two gfbfs in dependency parse contains only conj or
xcomp, and there is no other noun between the latter gfbf and the conjunction, we assume the two agents
are the same and the sentiments toward them should be the same. Thus, for any i, j ∈ Entity, if i, j
co-refer7, or they are the same agent as described above, Coref(i, j) = 1 (otherwise 0). We add two
more constraints, similar to the gf constraints in Equations (6) and (7), as shown in Equation (10) and
(11). where νij is a slack variable, e(i) is the set of agent/theme candidates linked to the same gfbf as i
is. If Coref(i, j) = 0, Equations (10) and (11) do not constrain the variables. The objective function in
Equation (12) is updated to incorporate these new constraints.

|
∑
e(i)

ui,pos −
∑
e(j)

uj,pos|+ Coref(i, j) <= 1 + νij ,∀i, j ∈ Entity (10)

|
∑
e(i)

ui,neg −
∑
e(j)

uj,neg|+ Coref(i, j) <= 1 + νij , ∀i, j ∈ Entity (11)

min
u1gf ,u1bf ...

(
− 1 ∗

∑
i∈GFBF∪Entity

∑
c∈Li

picuic

)
+

∑
〈i,k,j〉∈Triple

ξikj +
∑

〈i,k,j〉∈Triple

δikj +
∑

i,j∈Entity

νij (12)

6 Experiment and Performance

In this section we introduce the data we use, the baseline methods, the evaluations and the results. In
addition, we give examples illustrating how opinion inference may improve performances.

5DCW defines here is a triple chain: 〈law, prevent 〈companies, overcharging, patients〉〉. The reverser is changing the
polarity between “law” and “patients”, but it does not change the polarity between “companies” and “patients”.

6We use Opinion Extractor (Johansson and Moschitti, 2013) , opinionFinder (Wilson et al., 2005), MPQA subjectivity
lexicon (Wilson et al., 2005), General Inquirer (Stone et al., 1966) and a connotation lexicon (Feng et al., 2013), to detect
writer’s sentiments toward all agent and theme candidates, and all gfbf events. We adopt Rule 1 and Rule 3 to infer from the
sentiment toward event to the sentiment toward theme. Then we conduct a majority voting based on the results.

7We use the co-reference resolution system from (Stoyanov et al., 2010).
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6.1 Experiment Data

We use the “Affordable Care Act” corpus of DCW, consisting of 134 online editorials and blogs. In total,
there are 1,762 annotated triples, out of which 692 are gf or retainers and 1,070 are bf or reversers. From
the writer’s perspective, 1,495 noun phrases are annotated positive, 1,114 noun phrases are negative
and the remaining 8 are neutral. This indicates that there are many opinions in the corpus. Out of 134
documents in the corpus, 3 do not have any annotation. 6 are used as a development set to develop the
heuristics in Sections 4 and 5. We use the remaining 125 for the experiments.

6.2 Baseline Methods and Evaluation Metrics

We compare the output of the global optimization framework with the outputs of baseline systems built
from the local detectors in Section 4. For the gfbf polarity and reverser ambiguities, the local detectors
directly provide a disambiguation result. For the agent/theme span and sentiment ambiguities, the local
sentiment detector assigns positive and negative scores to each candidate. The framework chooses among
the combined options. Thus, for comparison, we build a baseline system that combines the outputs of
the local agent/theme candidate detector and the local sentiment detector.

Recall from Section 4, a variable k ∈ GFBF has two agent candidates, a1 and a2 ∈ Entity. Together
there are four binary indicator variables: ua1,pos, ua1,neg, ua2,pos and ua2,neg. Among these indicator
variables whose corresponding local scores (e.g., pa1,pos is the score of ua1,pos) are larger than 0.5,
the baseline system (denoted Local) chooses the one with the largest local sentiment score. If there is
a tie, it prefers the variable representing the semantic candidate. If there is still a tie, it chooses the
variable representing the majority polarity (positive). If all the local scores of the four variables are
0.5 (neutral), Local fails to recognize any sentiment for that entity, so it assigns 0 to all the indicator
variables. Local+coref takes the maximum local score of the entities if they co-ref, and assigns each
entity the maximum score before disambiguation.

Another baseline, Majority, always chooses the semantic candidate and the majority polarity.
To evaluate the performance in detecting sentiment, we use precision, recall, and F-measure. We do

not take into account any agent or theme manually annotated as neutral (there are only 8).

P =
#(auto=gold & gold!=neutral)

#auto!=neutral
Accuracy = R =

#(auto=gold & gold!=neutral)
#gold!=neutral

F =
2*P*R
P+R

(13)

In the equations, auto is the system’s output and gold is the gold-standard label from annotations. Since
we don’t take into account any neutral agent or theme, #gold!=neutral equals to all nodes in the exper-
iment set. Thus accuracy is equal to recall. We only report recall here. Here we have two definitions
of auto=gold: (1) Strict evaluation means that, by saying auto=gold, the agent/theme must have the
same polarity and must be the same NP as the gold standard, and (2) Relaxed evaluation means the
agent/theme has the same polarity as the gold standard, regardless whether the span is correct or not.

Note that according to DCW, an implicit agent isn’t annotated with any sentiment. Thus, for an
implicit agent in gold, if auto outputs the span “implicit”, we treat it as a correct span with correct
polarity, regardless what sentiment auto gives to it. If auto outputs any span other than “implicit”, we
treat it as a wrong span with wrong polarity, regardless of its sentiment as well. For the theme span, if
auto outputs a “null” theme candidate, we treat it as a wrong span but we evaluate its sentiment according
to gold.

To evaluate extracting candidate span, we use accuracy. The baseline for this task always chooses the
semantic candidate. To evaluate gfbf polarity and reverser, we also use accuracy.

Note that although we evaluate the performance in different tasks separately, the framework resolves
all the ambiguities at the same time.

6.3 Results

We report the performance results for (A) sentiment detection in Table 3, on two sets. One is the subset
containing the agents and themes where auto has the correct spans with gold. The other is the set of
all agents and themes. As shown in Table 3, ILP significantly improves performance, approximately
10-20 points on F-measure over different baselines. Though Local has a competitive precision with
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correct span subset whole set, strict eval whole set, relaxed eval
P R F P R F P R F

1 ILP 0.6421 0.6421 0.6421 0.4401 0.4401 0.4401 0.5939 0.5939 0.5939
2 Local 0.6409 0.3332 0.4384 0.4956 0.2891 0.3652 0.5983 0.3490 0.4408
3 ILP+coref 0.6945 0.6945 0.6945 0.4660 0.4660 0.4660 0.6471 0.6471 0.6471
4 Local+coref 0.6575 0.3631 0.4678 0.5025 0.3103 0.3836 0.6210 0.3834 0.4741
5 Majority 0.5792 0.5792 0.5792 0.3862 0.3862 0.3862 0.5462 0.5462 0.5462

Table 3: Performances of sentiment detection

ILP, it has a much lower recall. That means the local sentiment detector cannot recognize implicit
sentiments toward most entities. But ILP is able to recognize more entities correctly. By adding coref,
performance improves for both ILP and Local. In comparison to (Deng and Wiebe, 2014), our current
method improves more in F-measure (2.43 points more) over local sentiment detector than the earlier
work, even though the earlier work takes the manual annotations of all the gfbf information as input.

In terms of the other tasks: For (B) agent/theme span, the baseline achieves 66.67% in accuracy, com-
pared to 68.54% and 67.10% for ILP and ILP+coref, respectively. For (C) gfbf polarity, the baseline
has an accuracy of 70.68%, whereas ILP achieves 77.25% and ILP+coref achieves 77.47%, respectively,
both 7 points higher. This improvement is interesting because it represents cases in which the optimiza-
tion framework is able to infer the correct polarity even though the gfbf span is not recognized by the
local detector (i.e., the span isn’t in the gfbf lexicon). For (D) reverser, the baseline is 88.07% in accu-
racy. ILP and ILP+coref are competitive with the baseline: 89% and 88.07% respectively. Note that both
our local detector and ILP surpass the majority class (not reversed) which has an accuracy of 86.60%.

Following (Akkaya et al., 2009), since ILP is unsupervised without multiple runs, we adopt McNe-
mar’s test to measure statistical significance of our improvements (Dietterich, 1998). In Table 3, the
improvements in recalls of Line 1 over 2, Line 3 over 4, and Lines 1&3 over 5 are statistically significant
at the p < .001 level. The improvements of Line 3 over 1 are statistically significant at the p < .005
level. For accuracy of gfbf polarity, the improvement is significant at the p < .001 level.

6.4 Examples
This sections gives simplified examples to illustrate how the framework can improve over the local
detectors. The explicit sentiment clues referred to in this section are from MPQA lexicon.

Ex(6) The reform would curb skyrocketing costs in the long run.

The local sentiment detector assigns “costs” negative due to the single sentiment clue, “skyrocketing”.
Since the agent and theme are in a bf triple, and the writer is negative toward that theme, we can infer
the writer is positive toward the agent. This illustrates how we improve recall on sentiments.

Ex(7) The supposedly costly reform will curb skyrocketing costs in the long run.

In Ex(7), agent “reform” is labeled negative because “costly” is a negative clue in the lexicon. (“sup-
posedly” is not in it.) However, in Ex(7), it is actually positive. The agent’s negative score is 0.6, and
its positive score is 0.5 due to the absence of a positive clue. Since the theme is negative too, by the bf
constraints, we expect to see a positive agent. If we were to assign negative to the agent, the objective
function would have -0.6 subjectivity score and +1 in violation penalty, together giving +0.4. If we as-
sign positive, the subjectivity score is -0.5, and there is no violation, resulting in a total score of -0.5.
Thus, the framework correctly chooses the positive label. This shows how we can improve precision on
sentiments.

Ex(8) The great reform will curb skyrocketing costs in the long run.

In this case, the agent is positive and the theme is negative. If the gfbf word “curb” is not in the lexicon,
we could still infer its polarity. Given that the entities in the triple have different sentiments, to not violate
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the implicature rules, the framework will assign it bf, or assign it gf along with reversed. However, there
is no reverser word in the sentence, so the reversed score pr = −5

4 . The framework will assign the
reverser indicator ur = 0, in order to avoid a gain in the objective function by −1 ∗ pr ∗ ur. Thus
the framework assigns the label bf to “curb”. This is how the framework can improve the accuracy of
recognizing gfbf polarity.

7 Conclusion

The ultimate goal of this work is to utilize gfbf information to improve detection of the writer’s
sentiments toward entities mentioned in the text. Using an unsupervised optimization framework that
incorporates gfbf implicature rules as constraints, our method improves over local sentiment recognition
by almost 20 points in F-measure and over all sentiment baselines by over 10 points in F-measure. The
global optimization framework jointly infers the polarity of gfbf events, whether or not they are reversed,
which candidate NPs are the agent and theme, and the writer’s sentiments toward them. In addition
to beating the baselines for sentiment detection, the framework significantly improves the accuracy of
gfbf polarity disambiguation. This work not only automatically utilizes gfbf information to improve
sentiment detection, it also proposes a framework for jointly solving various ambiguities related to gfbf
events.
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