
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 37–47, Dublin, Ireland, August 23-29 2014.

Hierarchical Topical Segmentation with Affinity Propagation

Anna Kazantseva & Stan Szpakowicz
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Ontario, Canada

{ankazant,szpak}@eecs.uottawa.ca

Abstract

We present a hierarchical topical segmenter for free text. Hierarchical Affinity Propagation for
Segmentation (HAPS) is derived from a clustering algorithm Affinity Propagation. Given a doc-
ument, HAPS builds a topical tree. The nodes at the top level correspond to the most prominent
shifts of topic in the document. Nodes at lower levels correspond to finer topical fluctuations.
For each segment in the tree, HAPS identifies a segment centre – a sentence or a paragraph which
best describes its contents. We evaluate the segmenter on a subset of a novel manually segmented
by several annotators, and on a dataset of Wikipedia articles. The results suggest that hierarchical
segmentations produced by HAPS are better than those obtained by iteratively running several
one-level segmenters. An additional advantage of HAPS is that it does not require the “gold
standard” number of segments in advance.

1 Introduction

When an NLP application works with a document, it may benefit from knowing something about this
document’s high-level structure. Text summarization (Haghighi and Vanderwende, 2009), question an-
swering (Oh et al., 2007) and information retrieval (Ponte and Croft, 1998) are some of the examples
of such applications. Topical segmentation is a lightweight form of such structural analysis: given a
sequence of sentences or paragraphs, split it into a sequence of topical segments, each characterized by
a certain degree of topical unity. This is particularly useful for texts with little structure imposed by the
author, such as speech transcripts, meeting notes or literature.

The past decade has witnessed significant progress in the area of text segmentation. Most of the topical
segmenters (Malioutov and Barzilay, 2006; Eisenstein and Barzilay, 2008; Kazantseva and Szpakowicz,
2011; Misra et al., 2011; Du et al., 2013) can only produce single-level segmentation, a worthy endeavour
in and of itself. Yet, to view the structure of a document linearly, as a sequence of segments, is in certain
discord with most theories of discourse structure, where it is more customary to consider documents as
trees (Mann and Thompson, 1988; Marcu, 2000; Hernault et al., 2010; Feng and Hirst, 2012) or graphs
(Wolf and Gibson, 2006). Regardless of the theory, we hypothesize that it may be useful to have an idea
about fluctuations of topic in documents beyond the coarsest level. It is the contribution of this work that
we develop such a hierarchical segmenter, implement it and do our best to evaluate it.

The segmenter described here is HAPS – Hierarchical Affinity Propagation for Segmentation. It is
closely based on a graphical model for hierarchical clustering called Hierarchical Affinity Propagation
(Givoni et al., 2011). It is a similarity-based segmenter. It takes as input a matrix of similarities between
atomic units of text in the sequence to be segmented (sentences or paragraphs), the desired number of
levels in the topical tree and a preference value for each data point and each level. This value captures
a priori belief about how likely it is that this data point is a segment centre at that level. The preference
values also control the granularity of segmentation: how many segments are to be identified at each level.
The output is a topical tree. For each segment at every level, HAPS also finds a segment centre, a data
point which best describes the segment.
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The objective function maximized by the segmenter is net similarity – the sum of similarities between
all segment centres and their children for all levels of the tree. This function is similar to the objective
function of the well-known k-means algorithm, except that here it is computed hierarchically.

It is not easy to evaluate HAPS. We are not aware of comparable hierarchical segmenters other than
that in (Eisenstein, 2009) which, unfortunately, is no longer publicly available. Therefore we compared
the trees built by HAPS to the results of running iteratively two state-of-the-art flat segmenters. The
results are compared on two datasets. A set of Wikipedia articles was automatically compiled by Carroll
(2010). The other set, created to evaluate HAPS, consists of nine chapters from the novel Moonstone by
Wilkie Collins. Each chapter was annotated for hierarchical structure by 3-6 people.

The evaluation is based on two metrics, windowDiff (Pevzner and Hearst, 2002) and evalHDS (Car-
roll, 2010). Both metrics are less then ideal. They do not give a complete picture of the quality of
topical segmentations, but the preliminary results suggest that running a global model for hierarchical
segmentation produces better results then iteratively running flat segmenters. Compared to the baseline
segmenters, HAPS has an important practical advantage. It does not require the number of segments as
an input; this requirement is customary for most flat segmenters.

We also made a rough attempt to evaluate the quality of the segment centres identified by HAPS. Using
20 chapters from several novels of Jane Austen, we compared the centres identified for each chapter
against summaries produces by a recent automatic summarizer CohSum (Smith et al., 2012). The basis
of comparison was the ROUGE metric (Lin, 2004). While far from conclusive, the results suggest that
segment centres identified by HAPS are rather comparable with the summaries produced by an automatic
summarizer.

A Java implementation of HAPS and the corpus of hierarchical segmentations for nine chapters of
Moonstone are publicly available. We consider these to be the main contributions of this research.

2 Related work

Most work on topical text segmentation has been done for single-level segmentation. Contemporary
approaches usually rely on the idea that topic shifts can be identified by finding shifts in the vocabulary
(Youmans, 1991). We can distinguish between local and global models for topical text segmentation.
Local algorithms have a limited view of the document. For example, TextTiling (Hearst, 1997) operates
by sliding a window through the input sequence and computing similarity between adjacent units. By
identifying “valleys” in similarities, TextTiling identifies topic shifts. More recently, Marathe (2010)
used lexical chains and Blei and Moreno (2001) used Hidden Markov Models. Such methods are usually
very fast, but can be thrown off by small digressions in the text.

Among global algorithms, we can distinguish generative probabilistic models and similarity-based
models. Eisenstein and Barzilay (2008) model a document as a sequence of segments generated by latent
topic variables. Misra et al. (2011) and Du et al. (2013) have similar models. Malioutov and Barzilay
(2006) and (Kazantseva and Szpakowicz, 2011) use similarity-based representations. Both algorithms
take as input a matrix of similarities between sentences of the input document; the former uses graph
cuts to find cohesive segments, while the latter modifies a clustering algorithm to perform segmentation.

Research on hierarchical segmentation has been more scarce. Yaari (1997) produced hierarchical
segmentation by agglomerative clustering. Eisenstein (2009) used a Bayesian model to create topical
trees, but the system is regrettably no longer publicly available. Song et al. (2011) develop an algorithm
for hierarchical segmentation which iteratively splits a document in two at a place where cohesion links
are the weakest. A second pass transforms a deep binary tree into a shallow and broad structure.

Any flat segmenter can certainly be used iteratively to create trees of segments by subdividing each
segment, but this may be problematic. Topical segmenters are not perfect, so running them iteratively is
likely to compound the error. Most segmenters also require the number of segments as an input. This
estimate is feasible for flat segmentation. To know in advance the number of segments and sub-segments
at each level is not a realistic requirement when building a tree.

This work describes a hierarchical model of text segmentation. It takes a global view of the document
and of the topical hierarchy. Each iteration attempts to find the best assignment of segments for the
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whole tree. It does not need to know the exact number of segments. Instead, it takes a more abstract
parameter, preference values, to specify the granularity of segmentation at each level. For each segment
it also outputs a segment centre, a unit of text which best captures the contents of the segment.

3 Creating a corpus of hierarchical segmentations

Before embarking on the task of building a hierarchical segmenter, we wanted to study how people
perform such a task. We also needed a benchmark corpus which could be used to evaluate the quality of
segmentations produced by HAPS.

To this end, we annotated nine chapters of the novel Moonstone for hierarchical structure. We settled
on these data because it is a subset of a publicly available dataset for flat segmentation (Kazantseva
and Szpakowicz, 2012). In our study, each chapter was annotated by 3-6 people (4.8 on average). The
annotators, undergraduate students of English, were paid $50 dollars each.

Procedure. The instructions asked the annotator to read the chapter and split it into top-level segments
according to where there is a perceptible shift of topic. She had to provide a one-sentence description of
what the segment is about. The procedure had to be repeated for each segment all the way down to the
level of individual paragraphs. Effectively, the annotators were building a detailed hierarchical outline
for each chapter.

Metrics. Two different metrics helped estimate the quality of our hierarchical dataset: windowDiff
(Pevzner and Hearst, 2002) and S (Fournier and Inkpen, 2012).

windowDiff is computed by sliding a window across the input sequence and checking, for each window
position, whether the number of reference breaks is the same as the number of breaks in the hypothetical
segmentation. The number of erroneous windows is then normalized by the total number of windows. In
Equation 1, N is the length of the input sequence and k is the size of the sliding window.

windowDiff =
1

N − k
N−k∑
i=1

(|ref − hyp| 6= 0) (1)

windowDiff is designed to compare sequences of segments, not trees. That is why we compute it for
each level between each pair of annotators who worked on the same chapter. It should be noted that
windowDiff is a penalty metric: higher values indicate less agreement (windowDiff = 0 corresponds to
two identical segmentations).

The S metric allows us to compare trees and take into account situations when the segmenter places a
boundary at a correct position but at a wrong level. S is an edit-distance metric. It computes the number
of operations necessary to turn one segmentation into another. There are three types of editing operations:
add/delete, transpose and substitute (change the level in the tree). The sum is normalized by the number
of possible boundaries in the sequence. S has an unfortunate downside of being too optimistic, but it
allows the breakdown of error types and it explicitly compares trees.

Unlike windowDiff, S is a similarity metric: higher values correspond to more similar segmentations.
The value of S between two identical segmentations is 1.

S(bsa, bsb, n) =
1− |boundary distance(bsa, bsb, n)|

pb(D)
(2)

Here boundary distance(bsa, bsb, n) is the total number of edit operations needed to turn a segmen-
tation bsa into bsb, n is the threshold defining the maximum distance of transpositions. pb(D) is the
maximum possible number of edits. Segmentations bsa and bsa are represented as strings of sets of
boundary positions. For example bsa = ({2}, {1,2}, {1,2}) corresponds to a hierarchical segmentation of
a three-unit sequence in the following manner: a segment boundary at level 1 after the first unit, segment
boundaries at levels 1 and 2 after the second unit and the third unit.

Corpus Analysis. On average, the annotators took 3.5 hours to complete the task (σ = 1.6). The
average depth of the tree is 3.00 levels (σ = 0.65), suggesting that the annotators prefer shallow but broad
structures. Table 1 reports the average breadth of the tree at different levels. In the Table and further
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in this paper we refer to the bottom level of the tree (i.e., the leaves of the tree or the most fine-grained
level of segmentation) as level 1. In Table 1, level 4 refers to the top level of the tree (the coarsest
segmentations). The values were computed using only the breaks explicitly specified by the annotators
(i.e., we did not assume that a break at a coarse level implies a break at a more detailed level).

The average breadth of the trees at the bottom (level 1) is lower than that at level 2, indicating that only
a small percentage of the entire tree was annotated more than three levels deep. The table also shows the
average values of windowDiff computed for each possible pair of annotators. The values worsen toward
the bottom of the tree, suggesting that the annotators agree more about top-level segments and less and
less about finer fluctuations of topic.

We hypothesize that these shallow broad structures are due to the fact that it is difficult for people to
create deep recursive structures in their mental representations. We do not, however, have any hard data
to support this hypothesis. Many of the annotators specifically commented on the difficulty of the task. 9
out of 23 people included comments ranging from notes about specific places to general comments about
their lack of confidence. 4 annotators found several (specific) passages they had trouble with.

The average value of pairwise S is 0.79. We have noted earlier that the S metric tends to be optimistic
(that is due to its normalization factor) but it provides a breakdown of disagreements between the anno-
tators. According to S, 46.14% of disagreements are errors of omission (some of the annotators did not
include segment breaks where others did), 47.56% are disagreements about the level of segmentation
(the annotators placed boundaries in the same place but at different levels) and only 6.31% are errors
of transposition (the annotators do not agree about the exact placement but place boundaries within 1
position of each other). This distribution is more interesting than the overall value of S. Among other
things, it shows why it is so important to take into account adjacent levels when evaluating topical trees.

4 The HAPS algorithm1

4.1 Factor graphs

The HAPS segmenter is based on factor graphs, a unifying formalism for such graphical models as
Markov or Bayesian networks. A factor graph is a bi-partite graph with two types of nodes, factor or
function nodes and variable nodes. Each factor node is connected to those variable nodes which are
its arguments. Running the well-known Max-Sum algorithm (Bishop, 2006) on a factor graph finds a
configuration of variables which maximizes the sum of all component functions. This is a message-
passing algorithm. All variable nodes send messages to their factor neighbours (functions in which those
nodes are variables) and all factor nodes send messages to their variable neighbours (their arguments).
A message µx→f sent from a variable node x to a function node f is computed as a sum of all incoming
messages to x, except the message from the recipient function f :

µx→f =
∑

f ′∈N(x)\f
µf ′→x (3)

N(x) is the set of all function nodes which are x’s neighbours. Intuitively, the message reflects evi-
dence about the distribution of x from all functions which have x as an argument, except the function
corresponding to the receiving node f . A message µf(x,...)→x sent from the factor node f(x, ...) to the

1The derivation of the HAPS algorithm, quite involved, is unlikely to interest many readers. We only present the bare
minimum of facts about the algorithm, the framework of factor graphs and the derivation of HAPS from the underlying model
of Affinity Propagation. A detailed account appears in (Kazantseva, 2014).

Table 1: Average breadth of manually created topical trees and windowDiff value across different levels

Level Average breadth windowDiff
4 (top) 6.53 0.35
3 17.55 0.46
2 17.63 0.47
1 (bottom) 8.80 0.50
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Figure 1: Factor graph for HAPS – Hierarchical Affinity Propagation for Segmentation

variable node x is computed as a maximum of the value of f(x) plus all messages incoming to f(x, ...)
other than the message from the recipient node x:

µf→x = max
N(f)\x

(f(x1, . . . , xm) +
∑

x′∈N(f)\x
µx′→f ) (4)

N(f) is the set of all variable nodes which are f ’s neighbours. The message reflects the evidence about
the distribution of x from function f and its neighbours other than x.

4.2 Hierarchical Affinity Propagation for Segmentation

This work aims to build trees of topical segments. Each segment is characterized by a centre which best
describes its content. The objective function is net similarity, the sum of similarities between all centres
and the data points which they exemplify. The complete sequence of data points is to be segmented at
each level of the tree, subject to the following constraint: centres at each level l, l > 1, must be a subset
of the centres from the previous level l − 1. Figure 1a shows a fragment of the factor graph describing
HAPS corresponding to levels l and l−1. The tree has L levels, from the root (l = L) down to the leaves
(l = 1). The superscripts of factor and variable nodes denote the level.

At each level, there areN2 variable nodes clij andN variable nodes elj (N is the number of data points
in the sequence to segment). A variable’s value is 0 or 1: clij = 1⇔ the data point i at level l belongs to
the segment centred around data point j; elj = 1⇔ there is a segment centred around j at level l.

Four types of factor nodes in Figure 1a are I , E, C and S. The I factors ensure that each data point
is assigned to exactly one segment and that segment centres at level l are a subset of those from level
l − 1. The E nodes ensure that segments are centred around the segment centres in solid blocks (rather
than unordered clusters). The values of I and E are 0 for valid configurations and -∞ otherwise. The S
factors capture similarities between data points. Sl

ij = sim(i, j) if clij = 1; Sl
ij = 0 if clij = 0.2 The C

factors handle preferences in an analogous manner. Running the Max-Sum algorithm on the factor graph
in Figure 1a maximizes the net similarity between all segment centres and their children at all levels:

max
{cl

ij},{el
j}

S({cl
ij}, {el

j}) =
∑
i,j,l

Sl
i,j(c

l
ij) +

∑
i,l

Il
i(c

l
i1, . . . , c

l
iN , el−1

i ) +
∑
j,l

El
j(c

l
1j , . . . , c

l
Nj , e

l
j) +

∑
j,l

Cl
j(e

l
j) (5)

2The value sim(i, j) is specified in the input matrix.

41



Figure 1b shows a close-up view of the messages that must be sent to find the optimizing configuration
of variables. Messages β, η, ρ̂ do not need to be sent explicitly: their values are subsumed by other types
of messages. We only need to compute explicitly and send four types of messages: α, ρ, φ and τ .

Algorithm 1 shows the pseudo-code for the HAPS algorithm.3 Intuitively, different parts of the update
messages in Algorithm 1 correspond to likelihood ratios between two hypotheses: whether a data point i
is or is not part of a segment centred around another data point j at a given level l. For example, here is
the availability (α) message sent from a potential segment centre j to itself at level l:

αl
ij = pl

j + φl
j +

j
max
s=1

(
j−1∑
k=s

ρl
kj) +

N
max
e=j

(
e∑

k=j+1

ρl
kj) (6)

Here pl
j incorporates the information about the preference value for the data point j at the level l. φl

j

brings in the information from the coarser level of the tree. The summand maxj
s=1(

∑j−1
k=s ρ

l
kj) encodes

the likelihood that there is a segment starting before j given the values of responsibility messages for all
data points i such that i < j — hence the information from a more detailed level of the tree as well as
the similarities between all data points i (i < j) and j. The summand maxN

e=j(
∑e

k=j+1 ρ
l
kj) does the

same for the tail-end of the segment (all data points i such that i > j).
Complexity analysis. The HAPS model contains N2 clij nodes at each level. In practice, however, the

matrix of similarities SIM does not need to be fully specified. It is customary to compute this matrix
with a large sliding window; the size should be at least twice the anticipated average length. On each
iteration, we need to send L*M*N messages α and ρ, resulting in the complexity O(L*M*N). Here L is
the number of levels, N is the number of data points in the sequence and M (M ≤ N ) is the size of the
sliding window used for computing similarities. The computation of ρ and α messages is independent
for each row and column respectively, so the algorithm would be easy to parallelize.

Parameter settings. An important advantage of HAPS is that it does not require the number of
segments in advance. Instead, the user needs to set the preference values for each level. However, HAPS
is fairly resistant to changes in preferences and this generic parameter is a convenient knob for fine-tuning
the desired granularity of segmentation, as opposed to specifying the exact number of segments at each
level of the tree. In this work we set preferences uniformly, but it is possible to incorporate additional
knowledge through more discriminative settings.

In all our experiments, preference values are set uniformly for each level of the tree, so effectively
all data points are equally likely to be chosen as segment centres at each level. As a starting point,
the preference value for the most detailed level of the tree should be about approximately equal to the
median similarity value (as specified in the input matrix). A near-zero preference value tends to result in
a medium number of segments and is thus suitable to the middle levels of the tree. A negative preference
value results in a small number of segments and is appropriate for identifying the most pronounced
segment breaks.

5 Experimental evaluation

In order to evaluate the quality of topical trees produced by HAPS, we ran the system on two datasets.
We compared the results obtained by HAPS against topical trees obtained by iteratively running two
high-performance single-level segmenters.

Datasets. We used the Moonstone corpus described in Section 2, and the Wikipedia dataset com-
piled by Carroll (2010). Created automatically from metadata on Web pages, the dataset consists of 66
Wikipedia entries on various topics; the annotations and the results concern sentences. In the Moonstone
corpus we work with paragraphs. To simplify evaluation and interpretation, we produced three-tier trees.
This is in line with the average depths of manual annotations in the Moonstone data.

3It is not possible to include a detailed derivation of the new update messages in the space allowed here. The interested reader
can find these details in (Kazantseva, 2014). The derivation follows the same logic as (Givoni et al., 2011) and (Kazantseva and
Szpakowicz, 2011).
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Algorithm 1 Hierarchical Affinity Propagation for Segmentation

1: input: 1) L pairwise similarity matrices {SIMl(i, j)}(i,j)∈{1,...,N}2 ; 2) L preferences pl (one per
level l) indicating a priori likelihood of point i being a segment centre at level l

2: initialization: ∀i, j : αij = 0 (set all availabilities to 0)
3: repeat
4: iteratively update ρ, α, φ and τ messages
5:

∀i, l : φl−1
i = max[0, αii −max

k 6=i
(sl

ik + αl
ik)]

6:

∀i, j, l : ρl
ij =


min(0, τ l

i )−max
k 6=i

(sl
ik + αl

ik) if i = j

sl
ij + min[max(0,−τ l

i )− αl
ii,−max

k*i,j
(sl

ik + αl
ik)] if i 6= j

7:

∀i, j, l : αl
ij =



pl
j + φl

j +
j

max
s=1

(
j−1∑
k=s

ρl
kj) +

N
max
e=j

(
e∑

k=j+1

ρl
kj) if i = j

αl
ij,i<j = min[(

i
max
s=1

i−1∑
k=s

ρl
kj +

j∑
k=i+1

ρl
kj +

N
max
e=j

e∑
k=j+1

ρl
kj) + pl

j + φl
j ,

i
max
s=1

i−1∑
k=s

ρl
kj +

j

min
s=i+1

s−1∑
k=i+1

ρl
kj ] if i < j

min[(
j

max
s=1

j−1∑
k=s

ρl
kj +

i−1∑
k=j

ρl
kj +

N
max
e=i

e∑
k=i+1

ρl
kj) + pl

j + φl
j ,

i−1
min
e=j

i−1∑
k=e+1

ρl
kj +

N
max
e=i

e∑
k=i+1

ρl
kj ]

8:

∀j, l : τ l+1
j = pl(j) + ρl

jj +
j

max
s=1

(
j−1∑
k=s

ρl
kj) +

N
max
e=j

(
e∑

k=j+1

ρl
kj)

9: until convergence
10: compute optimal configuration: ∀i, j i is in the segment centred around j iff ρij + αij > 0
11: output: segment centres and segment boundaries

Baselines. Regrettably, we are not aware of another publicly available hierarchical segmenter. That is
why we used as baselines two recent flat segmenters: MCSeg (Malioutov and Barzilay, 2006) and BSeg
(Eisenstein and Barzilay, 2008). Both were first run to produce top-level segmentations. Each segment
thus computed was a new input document for segmentation. We repeated the procedure twice to obtain
three-tiered trees. MCSeg cannot be run without knowing the number of segments in advance. Therefore,
on each iteration, we had to specify the correct number of segments in the reference segmentation. BSeg
does not need the exact number of segments, so we had two settings: with and without knowing the
number of segments.

Evaluation metrics. We did our best to obtain a realistic picture of the results, but each metric has
its shortcomings. We compared topical trees using windowDiff and evalHDS (Carroll, 2010). Both
metrics are penalties: the higher the values, the worse the hypothetical segmentation. evalHDS computes
windowDiff for each level of the tree in isolation and weighs the errors according to their prominence in
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the tree. We computed evalHDS using the publicly available Python implementation (Carroll, 2010).4

When computing windowDiff, we treated each level of the tree as a separate segmentation and com-
pared each hypothetical level against a corresponding level in the reference segmentation.

To ensure that evaluations are well-defined at all levels, we propagated the more pronounced reference
breaks to lower levels (in both annotations and in the results). In effect, the whole sequence is segmented
at each level – otherwise windowDiff would not be not well-defined. Conceptually this means that if
there is a topical shift of noticeable magnitude (e.g., at the top level), there must be at least a shift of less
pronounced magnitude (e.g., at an intermediate level).

The Moonstone dataset has on average 4.8 annotations per chapter. It is not obvious how to combine
these multiple annotations. We evaluated separately each hypothetical segmentation against each avail-
able gold standard. We report the averages across all annotators – for both evalHDS and windowDiff –
per level.

Preprocessing. The representations used by HAPS and the MCSeg are very similar. Both systems
compute a matrix of similarities between atomic units of the document (sentences or paragraphs). Each
unit was represented as a bag of words. The vectors were further weighted by the tf.idf value of the term
and also smoothed in the same manner as in (Malioutov and Barzilay, 2006). We computed cosine simi-
larity between vectors corresponding to each sentence or paragraph. We used tenfold cross-validation on
the Wikipedia dataset and fourfold cross-validation on the smaller Moonstone data.

The quality of the segment centres. In addition to finding topical shifts, HAPS identifies segment
centres – sentences or paragraphs which best capture what each segment is about. In order to get a rough
estimate of the quality of the centres, we extracted paragraphs identified as segment centres at the second
(middle) level of HAPS trees. These pseudo-summaries were then compared to summaries created by
an automatic summarizer CohSum. We used ROUGE-1 and ROUGE-L metrics (Lin, 2004) as a basis
for comparison. CohSum identifies the most salient sentences in a document by running a variant of the
TextRank algorithm (Mihalcea and Tarau, 2004) on the entire document. In addition to using lexical
similarity, the summarizer takes into account coreference links between sentences. We ran CohSum at
10% compression rate.

The summarization experiment was performed on the Moonstone corpus. We also collected 20 chap-
ters from several other XIX century novels and used it in a separate experiment. The ROUGE package
requires manually written summaries to compare with the automatically created ones. We obtained the
summaries from the SparkNotes website.5

6 Results and discussion

Table 2 shows the results of comparing HAPS with two baseline segmenters using windowDiff and
evalHDS. HAPS was run without knowing the number of segments. MCSeg required that the exact
number be specified. BSeg was tested with and without that parameter. Therefore, rows 3 and 4 in
Table 2 correspond to baselines considerably more informed than HAPS. This is especially true of the
bottom levels where sometimes knowing the exact number of segments unambiguously determines the
only possible segmentation.

The results suggest that HAPS performs well on the Moonstone data even when compared to more
informed baselines. This applies to both metrics, windowDiff and evalHDS. BSeg performs slightly
better at the bottom levels of the tree when it has the information about the exact number of segments.
We hypothesize that the advantage may be due to this additional information, especially when segmenting
already small segments at level 1 into a predefined number of segments. Another explanation may be
that when using windowDiff as the evaluation metric, HAPS was fine-tuned so as to maximize the value
of windowDiff at the top level, effectively disregarding lower levels of segmentation.

4When working with the Moonstone dataset, we realized that the software produces very low values, almost too good to be
true. That is because the bottommost annotations are very fine-grained. Sometimes each paragraph corresponds to a separate
segment. This causes problems for the software. So, when we report evalHDS values for the Moonstone dataset, we only
consider two top levels of the tree, disregarding the leaves. We also remove the “too good to be true” outliers, though the “bad”
tail is left intact. We applied the same procedure to all three segmenters, only for the Moonstone dataset.

5http://www.sparknotes.com/
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Level Moonstone Wikipedia Moonstone Wikipedia
windowDiff windowDiff evalHDS evalHDS

HAPS
3 (top) 0.337 (± 0.060) 0.421 (± 0.060) 0.353 0.450
2 (middle) 0.422 (± 0.060) 0.447 (± 0.070) (± 0.072) (± 0.015)
1 (bottom) 0.556 (± 0.070) 0.617 (± 0.080)

MinCutSeg-iter. 3 (top) 0.375 0.440 (± 0.075) 0.377 0.444
2 (middle) 0.541 0.424 (± 0.064) (± 0.002) (± 0.002)

segm. known 1 (bottom) 0.601 0.471 (± 0.057)

BayesSeg-iter. 3 (top) 0.353 (± 0.071) 0.391 (± 0.070) 0.367 0.370
2 (middle) 0.406 (± 0.053) 0.344 (± 0.033) (± 0.089) (± 0.019)

segm. known 1 (bottom) 0.504 (± 0.064) 0.354 (± 0.033)

BayesSeg-iter. 3 (top) 0.600 (± 0.071) 0.637 (± 0.070) 0.453 0.437
2 (middle) 0.447 (± 0.053) 0.877 (± 0.033) (± 0.089) (± 0.022)

segm. unknown 1 (bottom) 0.545 (± 0.064) 0.952 (± 0.033)

Table 2: Evaluation of HAPS and iterative versions of APS, MCSeg and BSeg using windowDiff per level
(mean windowDiff and standard deviation for cross-validation)

Moonstone corpus Austen corpus
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

Segment centres 0.341 0.321 0.291 0.301
(0.312, 0.370) (0.298, 0.346) (0.272, 0.311) (0.293, 0.330)

CohSum 0.294 0.269 0.305 0.307
summaries (0.243, 0.334) (0.226, 0.306) (0.290, 0.320) (0.287, 0.327)

Table 3: HAPS segment centres compared to CohSum summaries: ROUGE scores and 95% confidence
intervals

All segmenters perform worse on the Wikipedia dataset. Using that scale, informed BSeg performs the
best, but it is interesting to note a significant drop in performance when the number of segments is not
specified.

Overall, HAPS appears to perform better than, or comparably to, the more informed baselines, and
much better than the baseline not given information about the number of segments.

We also made a preliminary attempt to evaluate the quality of segment centres by comparing them to
the summaries created by the CohSum summarizer. In addition to working with the Moonstone corpus,
we collected a corpus of 20 chapters from various novels by Jane Austen.

Table 3 shows the results. They are not conclusive because there is no evidence that ROUGE scores
correlate with the quality of automatically created summaries for literature. According to the scores in
Table 3, however, the summaries created by CohSum cannot be distinguished from simple summaries
composed of segment centres identified by HAPS. We interpret this as a sign that the centres identified
by HAPS are approximately as informative as those created by an automatic summarizer.

7 A brief conclusion

This paper presented HAPS, a hierarchical segmenter for free text. Given an input document, HAPS
creates a topical tree and identifies a segment centre for each segment. One of the advantages of HAPS
is that it does not require the exact number of segments in advance. Instead, it estimates the number
of segments given information on generic preferences with regard to segmentation granularity. We also
created a corpus of hierarchical segmentations which has been annotated by 3-6 people per chapter.

A Java implementation of HAPS and the Moonstone corpus are publicly available.6
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