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ABSTRACT
This paper attempts to deal with a ranking problem with a collection of financial reports. By
using the text information in the reports, we apply learning-to-rank techniques to rank a set of
companies to keep them in line with their relative risk levels. The experimental results show
that our ranking approach significantly outperforms the regression-based one. Furthermore,
our ranking models not only identify some financially meaningful words but suggest interesting
relations between the text information in financial reports and the risk levels among companies.
Finally, we provide a visualization interface to demonstrate the relations between financial risk
and text information in the reports. This demonstration enables users to easily obtain useful
information from a number of financial reports.
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1 Introduction

Financial risk is the chance that a chosen investment instruments (e.g., stock) will lead to a loss.
In finance, volatility is an empirical measure of risk and will vary based on a number of factors.
This paper attempts to use text information in financial reports as factors to rank the risk of
stock returns.

Considering such a problem is a text ranking problem, we attempt to use learning-to-rank
techniques to deal with the problem. Unlike the previous study (Kogan et al., 2009), in which a
regression model is employed to predict stock return volatilities via text information, our work
utilizes learning-to-rank methods to model the ranking of relative risk levels directly. The reason
of this practice is that, via text information only, predicting ranks among real-world quantities
should be more reasonable than predicting their real values. The difficulty of predicting the
values is partially because of the huge amount of noise within texts (Kogan et al., 2009) and
partially because of the weak connection between texts and the quantities. Regarding these
issues, we turn to rank the relative risk levels of the companies (their stock returns).

By means of learning-to-ranking techniques, we attempt to identify some key factors behind the
text ranking problem. Our experimental results show that in terms of two different ranking
correlation metrics, our ranking approach significantly outperforms the regression-based method
with a confidence level over 95%. In addition to the improvements, through the learned ranking
models, we also discover meaningful words that are financially risk-related, some of which
were not identified in (Kogan et al., 2009). These words enable us to get more insight and
understanding into financial reports.

Finally, in this paper, a visualization interface is provided to demonstrate the learned relations
between financial risk and text information in the reports. This demonstration not only enables
users to easily obtain useful information from a number of financial reports but offer a novel
way to understand these reports.

The remainder of this paper is organized as follows. In Section 2, we briefly review some
previous work. Section 3 presents the proposed ranking approach to the financial risk ranking
problem. Section 4 reports experimental results and provides some discussions and analyses on
the results. We finally conclude our paper and provide several directions for future work.

2 Related Work

In the literature, most text ranking studies are related to information retrieval (Manning
et al., 2008). Given a query, an information retrieval system ranks documents with respect to
their relative relevances to the given query. Traditional models include Vector Space Model
(Salton et al., 1975), Probabilistic Relevance Model (Robertson and Sparck Jones, 1988), and
Language Model (Ponte and Croft, 1998). In addition to the conventional models, in recent
years there have also been some attempts of using learning-based methods to solve the text
ranking problem, such as (Freund et al., 2003; Burges et al., 2005; Joachims, 2006), which
subsequently brings about a new area of learning to rank in the fields of information retrieval
and machine learning. Considering the prevalence of learning-to-rank techniques, this paper
attempts to use such techniques to deal with the ranking problem of financial risk.

In recent year, there have been some studies conducted on mining financial reports, such as (Lin
et al., 2008; Kogan et al., 2009; Leidner and Schilder, 2010). (Lin et al., 2008) use a weighting
scheme to combine both qualitative and quantitative features of financial reports together, and
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propose a method to predict short-term stock price movements. In the work, a Hierarchical
Agglomerative Clustering (HAC) method with K-means updating is employed to improve the
purity of the prototypes of financial reports, and then the generated prototypes are used to
predict stock price movements. (Leidner and Schilder, 2010) use text mining techniques to
detect whether there is a risk within a company, and classify the detected risk into several types.
The above two studies both use a classification manner to mine financial reports. (Kogan et al.,
2009) apply a regression approach to predict stock return volatilities of companies via their
financial reports; in specific, the Support Vector Regression (SVR) model is applied to conduct
mining on text information.

3 Our Ranking Approach

In finance, volatility is a common risk metric, which is measured by the standard deviation of a
stock’s returns over a period of time. Let St be the price of a stock at time t. Holding the stock
for one period from time t−1 to time t would result in a simple net return: Rt = St/St−1 (Tsay,
2005). The volatility of returns for a stock from time t − n to t can be defined as

v[t−n,t] =

È∑t
i=t−n(Ri − R̄)2

n
, (1)

where R̄=
∑t

i=t−n Ri/(n+ 1).

We now proceed to classify the volatilities of n stocks into 2ℓ+ 1 risk levels, where n,ℓ ∈
{1, 2, 3, · · · }. Let m be the sample mean and s be the sample standard deviation of the logarithm
of volatilities of n stocks (denoted as ln(v)). The distribution over ln(v) across companies tends
to have a bell shape (Kogan et al., 2009). Therefore, given a volatility v, we derive the risk level
r via:

r =




ℓ− k if ln(v) ∈ (a, m− sk],
ℓ if ln(v) ∈ (m− s, m+ s),
ℓ+ k if ln(v) ∈ [m+ sk, b),

(2)

where a = m− s(k+ 1) when k ∈ {1, · · · ,ℓ− 1}, a = −∞ when k = ℓ, b = m+ s(k+ 1) when
k ∈ {1, · · · ,ℓ− 1}, and b =∞ when k = ℓ. Note that r stands for the concept of relative risk
among n stocks; for instance, the stock with r = 4 is much more risky than that with r = 0.

After classifying the volatilities of stock returns (of companies) into different risk levels, we
now proceed to formulate our text ranking problem. Given a collection of financial reports
D = {d1,d2,d3, · · · ,dn}, in which each di ∈ Rd and is associated with a company ci , we aim
to rank the companies via a ranking model f : Rd → R such that the rank order of the set of
companies is specified by the real value that the model f takes. In specific, f (di) > f (dj) is
taken to mean that the model asserts that ci ≻ c j , where ci ≻ c j means that ci is ranked higher
than c j; that is, the company ci is more risky than c j in this work.

This paper adopts Ranking SVM (Joachims, 2006) for our text ranking problem. Within a year,
if the ground truth (i.e., the relative risk level) asserts that the company ci is more risky than c j ,
the constraint of Ranking SVM is 〈w,di〉> 〈w,dj〉, where w,di,dj ∈ Rd , and di and dj are two
word vectors. Then, the text ranking problem can be expressed as the following constrained
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Method 2001 2002 2003 2004 2005 2006 Average

Feature: TFIDF Kendall’s Tau (Kendall, 1938)

SVR (baseline) 0.517 0.536 0.531 0.515 0.515 0.514 0.521
Ranking SVM 0.539 0.549 0.543 0.526 0.539 0.525 0.537* (6.57E-4)

Feature: TFIDF Spearman’s Rho (Myers and Well, 2003)

SVR (baseline) 0.549 0.567 0.562 0.545 0.544 0.540 0.551
Ranking SVM 0.571 0.580 0.575 0.556 0.568 0.551 0.567* (6.97E-4)

Numbers in brackets indicate the p-value from a paired t-test. Bold faced numbers denote improve-
ments over the baseline, and * indicates that the entry is statistically significant from the baseline at
95% confidence level.

Table 1: Experimental Results of Different Methods.

optimization problem.

min
w

V (w,ξ) =
1

2
〈w,w〉+ C
∑
ξi, j,k

s.t.





∀(di,dj) ∈ Y1 : 〈w,di〉 ≥ 〈w,dj〉+ 1− ξi, j,1
. . .
∀(di,dj) ∈ Yn : 〈w,di〉 ≥ 〈w,dj〉+ 1− ξi, j,n
∀i∀ j∀k : ξi, j,k ≥ 0,

(3)

where w is a learned weight vector, C is the trade-off parameter, ξi, j,k is a slack variable, and Yk
is a set of pairs of financial reports within a year.

4 Experiments and Analysis

In this paper, the 10-K Corpus (Kogan et al., 2009) is used to conduct the experiments;
only Section 7 “management’s discussion and analysis of financial conditions and results of
operations” (MD&A) is included in the experiments since typically Section 7 contains the most
important forward-looking statements. In the experiments, all documents were stemmed by
the Porter stemmer, and the documents in each year are indexed separately. In addition to the
reports, the twelve months after the report volatility for each company can be calculated by
Equation (1), where the price return series can be obtained from the Center for Research in
Security Prices (CRSP) US Stocks Database. The company in each year is then classified into 5
risk levels (ℓ= 2) via Equation (2). For regression, linear kernel is adopted with ε= 0.1 and
the trade-off C is set to the default choice of SVMlight, which are the similar settings of (Kogan
et al., 2009). For ranking, linear kernel is adopted with C = 1, all other parameters are left for
the default values of SVMRank.

Table 1 tabulates the experimental results, in which all reports from the five-year period
preceding the test year are used as the training data (we denote the training data from the
n-year period preceding the test year as Tn hereafter). For example, the reports from year 1996
to 2000 constitute a training data T5, and the resulting model is tested on the reports of year
2001. As shown in the table, with the feature of TF-IDF, our results are significantly better than
those of the baseline in terms of both two measures. In addition to using T5 as the training
data, we also conduct other 4 sets of experiments with T1,T2,T3,T4 to test the reports from
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Figure 1: Positive and Negative Weighted Terms Across Different Models.

year 2001 to 2006; 1 there are in total 30 testing instances including the experiments with T5.
The results show that in terms of both measures, our results with TF-IDF are significantly better
than the baseline.2

Figure 1 illustrates the top positive and negative weighted terms appearing more than twice
in the six T5 models trained on TF-IDF; these terms (8 positive and 8 negative) constitute the
radar chart in Figure 1. Almost all the terms found by our ranking approach are financially
meaningful; in addition, some of highly risk-correlated terms are not even reported in (Kogan
et al., 2009).

We now take the term defaut (only identified by our ranking approach) as an example. In
finance, a company “defaults” when it cannot meet its legal obligations according to the debt
contract; as a result, the term “default” is intuitively associated with a relative high risk level.
One piece of the paragraph quoted from the original report (from AFC Enterprises, Inc.) is
listed as follows:

As of December 25, 2005, approximately $3.0 million was borrowed under this program, of
which we were contingently liable for approximately $0.7 million in the event of default.

Conclusion

This paper adopts learning-to-rank techniques to rank the companies to keep them in line with
their relative risk levels via the text information in their financial reports. The experimental
results suggest interesting relations between the text information in financial reports and the
risk levels among companies; these findings may be of great value for providing us more
insight and understanding into financial reports. Finally, we provide a visualization interface
to demonstrate the relations between financial risk and text information in the reports. This
demonstration enables users to easily obtain useful information from a number of financial
reports.

1Due to the page limits, some of the results are not listed in the paper, but they are available from the authors upon request.
2The p-value from a paired t-test for Spearman’s Rho is 1.21E-4 and for Kendall’s Tau is 7.27E-5.
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Future directions include how to reduce the noise within texts, and how to incorporate Standard
Industrial Classification (SIC) into our ranking approach. In addition, a hybrid model consisting
of both financial and text information may be also one of our future directions.
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