
Proceedings of COLING 2012: Demonstration Papers, pages 313–320,
COLING 2012, Mumbai, December 2012.

An Omni-font Gurmukhi to Shahmukhi Transliteration 
System 

Gurpreet Singh LEHAL1  Tejinder Singh SAINI 2  Savleen Kaur CHOWDHARY 3 
(1) DCS, Punjabi University, Patiala 

(2) ACTDPL, Punjabi University, Patiala 
(3) CEC, Chandigarh Group of Colleges, Landran, Mohali 

gslehal@gmail.com, tej@pbi.ac.in, iridiumsavleen@gmail.com 

ABSTRACT 

This paper describes a font independent Gurmukhi-to-Shahmukhi transliteration system. Even 
though Unicode is gaining popularity, but still there is lot of material in Punjabi, which is 
available in ASCII based fonts. A problem with ASCII fonts for Punjabi is there is no 
standardisation of mapping of Punjabi characters and a Gurmukhi character may be internally 
mapped to different keys in different Punjabi fonts. In fact there are more than 40 mapping tables 
in use for the commonly used Punjabi fonts. Thus there is an urgent need to convert the ASCII 
fonts to standard mapping, such as Unicode without any loss of information. Already many such 
font converters have been developed and are available online. But one limitation is that, all these 
systems need manual intervention in which the user has to know the name of source font. In the 
first stage, we have proposed a statistical model for automatic font detection and conversion into 
Unicode. Our system supports around 225 popular Gurmukhi font encodings. The ASCII to 
Unicode conversion accuracy of the system is 99.73% at word level with TOP1 font detection. 
The second stage is conversion of Gurmukhi to Shahmukhi at high accuracy. The proposed 
Gurmukhi to Shahmukhi transliteration system can transliterate any Gurmukhi text to Shahmukhi 
at more than 98.6% accuracy at word level.  
KEYWORDS: n-gram language model, Shahmukhi, Gurmukhi, Machine Transliteration, Punjabi, 
Font, Font detection, font Conversion, Unicode  

313



1 Introduction 

There are thousands of fonts used for publishing text in Indian languages. Punjabi (Gurmukhi) 
alone has more than 225 popular fonts which are still in use along with Unicode. Though online 
web content has shown the sign of migration from legacy-font to Unicode but books, magazine, 
news paper and other publishing industry is still working with ASCII based fonts. They have not 
adopted Unicode due to following reasons: 

• Lack of awareness of Unicode standard 
• People resist to change, due to Unicode typing issues and little support of Unicode in 

publishing software they are working with  
• Less availability of Unicode fonts has shown very less verity of text representation   

A problem with ASCII fonts for Punjabi is there is no standardisation of mapping of Punjabi 
characters and a Gurmukhi character may be internally mapped to different keys in different 
Punjabi fonts. For example, the word ਪੰਜਾਬੀ is internally stored at different keys as shown in 
figure 1. Therefore, there is 
an urgent need to develop a 
converter to convert text in 
ASCII based fonts to 
Unicode without any loss 
of information. Already 
many such font converters 
have been developed and 
are available online. But 
one limitation with all these systems is that the user has to know the name of source font. This 
may not be a big issue but there are many occasions when a user may not be aware of the name 
of the ASCII font and in that case he cannot convert his text to Unicode. To overcome this 
hurdle, we have developed a font 
identification system, which 
automatically detects the font and 
then converts the text to Unicode.  

2 Omni-Font Detection and 
Conversion to Unicode 

Our system supports around 225 
popular Gurmukhi font encodings. 
Some of the popular fonts 
supported are Akhar, Anmol Lipi, 
Chatrik, Joy, Punjabi, Satluj etc. In 
fact, these fonts correspond to 41 
keyboard mappings. It means if 

4121 ....., kkk be the 41 keyboard 
mappings and 22521 ......, fff be the Gurmukhi fonts, then each of fonts if  will belong to one of the 
keyboard mapping ik . We could also have multiple fonts belonging to same keyboard map and 
fonts belonging to same keyboard map have same internal mappings for all the Gurmukhi 

0070+004D+006A+0077+0062+0049  in Akhar  
0066+002E+0075+006A+0057+0067  in Gold 
0070+00B5+006A+003B+0062+0049  in AnandpurSahib 
0067+007A+0069+006B+0070+0068  in Asees  
0050+005E+004A+0041+0042+0049  in Sukhmani 
00EA+00B3+00DC+00C5+00EC+00C6 in Satluj 

FIGURE 1– Internal representation of ਪੰਜਾਬੀ in different fonts 

Input 
ASCII 

Gurmukhi 
text 

Character-level 
Analysis 

Font Detection 
and Unicode 
Conversion Char Maps 

Unicode text

Trigram Language 
Model 

4121 ....., kkk  

11 Million 
Word Corpus 

Keyboard Mappings 

FIGURE 2– Model Components 

314



characters. For example, Akhar2010R and Joy font belong to same keyboard map family. The 
problem is now reduced from 225 distinct fonts to just 41 group classes corresponding to each 
keyboard map. Therefore, our font detection problem is to classify the input text to one of these 
41 keyboard mappings. It could be thought of as a 41 class pattern recognition problem. The 
proposed system is based on character-level trigram language model (see figure 2). We have 
trained the trigrams corresponding to each keyboard map. For training purpose a raw corpus of 
11 million words has been used. To identify the font of a text, all the character trigrams are 
extracted and their probability is determined in each of the keyboard map. The keyboard map 
having maximum product of trigram probability is identified as the keyboard map corresponding 
to the input text. 

2.1 Font Detection 
The omni font detection problem is 
formulated as character level trigram 
language model. The single font has 255 
character code points. Therefore, in a 
trigram model, we need to process 255x255x255=255³ code points for a single keyboard map. 
But we are dealing with 41 distinct keyboard maps so the memory requirement will be further 
increased to process and hold 41x 255³ code points. After detailed analysis we found that the 
array representation of this task is sparse in nature i.e. the majority of code points in omni fonts 
have zero values. We observed that each keyboard map has around 26,000 non-zero code points 
which is 0.156% of the original code points. Hence, to avoid sparse array formation, we have 
created trigram link list representation (see figure 3) having on an average 26,000 trigram nodes 
for only valid code points with respect to each keyboard map. The structure of the node is 
expressed in figure 2. The trigram probability of a word lw having length l is: 

   lw  = ∏
=

−−

l

i
iii cccP

1
21 ),|(      (1) 

The total probability of input text sentence is: 

nw ,1  =  ∑
n

lw
1

 and the keyboard map is detected by  K= arg max ∑∑
k n

lw
1 1

 (2) 

2.2 Font Conversion 
After the identification of the keyboard map, the handcrafted mapping table of identified font is 
used by the system to transform input text into Unicode characters and finally produce the output 
Unicode text. Special care has been given for transforming long vowels ਉ[ʊ], ਊ[u], ਓ[o], ਅ[ə], 

ਆ[ɑ], ਇ[ɪ], ਈ[i], ਏ[e], ਐ[æ], ਔ[Ɔ] and Gurmukhi short vowel sign ਿ◌[ɪ]. This is because in Unicode 

these nine independent vowels ਉ[ʊ], ਊ[u], ਓ[o], ਅ[ə], ਆ[ɑ], ਇ[ɪ], ਈ[i], ਏ[e], ਐ[æ], ਔ[Ɔ] with three 
bearer characters Ura ੳ[ʊ], Aira ਅ [ə] and Iri ੲ[ɪ] have single code points and need to be mapped 
accordingly as shown in figure 4. There are no explicit code points for half characters in Unicode. 
They will be generated automatically by the Unicode rendering system when it finds special 

0 105 58 0.86775  

Ch1    Ch2        Ch3    Probability     

ptr 

Data         next   

FIGURE 3– Tri-gram Character Node 

315



symbol called halant or Viram [◌੍]. Therefore, Gurmukhi transformation of subjoined consonants 
is performed by prefixing halant ◌੍ symbol along with the respective consonant. 

Long Vowels ਅ[ə] + ◌ਾ → ਆ[ɑ] ੳ + ◌ੁ→ ਉ[ʊ] ੲ + ਿ◌ → ਇ[ɪ] 

 ਅ[ə] + ◌ੈ→ਐ[æ] ੳ + ◌ੂ → ਊ[u] ੲ + ◌ੀ → ਈ[i] 

 ਅ[ə] + ◌ੌ → ਔ[Ɔ] ੳ + ◌ੋ → ਓ[o] ੲ + ◌ੇ → ਏ[e] 

Short Vowel [ਿ◌] ਕ[k] + ਿ◌ → ਿਕ   

Nukta Symbol ਸ + ◌਼ = ©; ਖ + ◌਼= ਖ਼  ਗ + ◌਼ = ਗ਼; ਜ + ◌਼ = ਜ਼;  ਫ + ◌਼ = ਫ਼; ਲ + ◌਼ = ਲ਼; 

Subjoined 
Consonants 

ਨ+◌੍+ਹ = ਨ�  [nh]  ਪ+◌੍+ਰ =ਪ� [pr] ਸ+◌੍+ਵ=ਸ� [sv] 

FIGURE 4– Unicode Transforming Rules 

The Unicode transformation 
becomes complex when Gurmukhi 
short vowel Sihari [ਿ◌] and 
subjoined consonants comes 
together at a single word position. 
For example, consider the word 
ਿਪ�ੰ ਸ. In omni font Sihari [ਿ◌] come as first character. But according to Unicode it must be after the 
bearing consonant.  Therefore, it must go after the subjoined consonant ◌੍+ਰ as shown in figure 5.  

3 Gurmukhi-to-Shahmukhi Transliteration System 

The overall transliteration process is divided into three tasks as shown in figure 6. 

3.1 Pre-Processing 
The integration of omni font detection and conversion module enhances the scope, usefulness and 
utilization of this transliteration system. The Gurmukhi word is cleaned and prepared for 
transliteration by passing it through the Gurmukhi spell-checker and normalizing it according to 
the Shahmukhi spellings and pronunciation as shown in Table 1. 

Sr. Gurmukhi Word Spell-Checker Normalized Shahmukhi 
1     ਖੁਦਗਰਜ /khudgaraj/ ਖ਼ੁਦਗ਼ਰਜ਼ /ḵẖudġaraz/ ਖ਼ੂਦਗ਼ਰਜ਼ /ḵẖūdġaraz/  ǔŴ⋻œ᨞ 
2 ਖੁਸ਼ੀ /khushī/ ਖ਼ੁਸ਼ੀ /ḵẖushī/ ਖ਼ੂਸ਼ੀ /ḵẖūshī/ ῝᨞ 
3 ਫਰੰਗੀ /pharṅgī/ ਫ਼ਰੰਗੀ /farṅgī/ ਫ਼ਰੰਗੀ /farṅgī/ 㫪ǁƒ 

TABLE 1– Spell-Checking and Normalization of Gurmukhi Words 

3.2 Transliteration Engine 
The normalised form of Gurmukhi word is first transliterated to Shahmukhi by using dictionary 
lookup. Dictionary lookup is a limited but effective and fast method for handling the complex 
spelling words of Shahmukhi and transliteration of proper nouns. Therefore, a one-to-one 

FIGURE 5– Complex Unicode Transformation 

316



Gurmukhi-Shahmukhi dictionary resource has been created and used for directly transliterating 
frequently occurring Gurmukhi words and transliterating Gurmukhi words with typical 
Shahmukhi spellings. 

Gurmukhi Stemmer: In our case, stemming is primarily a process of suffix removal. A list of 
common suffixes has been created. We have taken only the most common Gurmukhi suffixes 
such as ◌ੋ◌ਂ, �, ਿ◌�, ◌ੀ◌,ਂ ◌ੇ etc. The Shahmukhi transliteration of these suffixes is stored in the 
suffix list. Thus if the word ਸਕੂਲ�  is not found, we search the suffix list and find suffix ◌ੋ◌.ਂ This 
suffix ◌ੋ◌ਂ is removed from 
ਸਕੂਲ�  and the resultant word 
ਸਕੂਲ is then searched again in 
the dictionary. If found then 
the transliterated word ŉᰋĳ is 
then appended with ƻƫ, which is 
the Shahmukhi transliteration 
of the suffix ◌ੋ◌ਂ. Thus, the 
correct transliteration i.e. ィᰋĳƻ  
is achieved. 

3.2.1 Rule-base 
Transliteration 

The rule based transliteration 
is used when dictionary lookup 
and Gurmukhi stemmer failed 
to transliterate the input word. 
Using the direct grapheme 
based approach; Gurmukhi 
consonants and vowel are 
directly mapped to similar 
sounding Shahmukhi 
characters. In case of multiple 
equivalent Shahmukhi 
characters or one-to-many 
mappings, the most frequently 
occurring Shahmukhi character 
is selected. Thus, ਹ is mapped 
to ه and ਜ਼ is mapped to ز. Besides, these simple mapping rules, some special pronunciation based 
rules have also been developed. For example, if two vowels in Gurmukhi come together, then 
Shahmukhi symbol Hamza is placed in between them. After simple character based mapping we 
resolve character ambiguity. That is, the Gurmukhi characters with multiple Shahmukhi 
mappings, all word forms using all possible mappings are generated and the word with the 
highest frequency of occurrence in the Shahmukhi word frequency list is selected. For example, 
consider the Gurmukhi word ਸਾਿਹਬ. It has two ambiguous character ਸ[s] and ਹ[h]. The system 
will generate all the possible forms and then choose the most frequent  ǌƮţ’ (6432) unigram as 
output as shown in the figure 7. Finally, the output word is inspected for correct spelling using 
Shahmukhi resources. 

Gurmukhi Text 

Normalized Words 

Transliterated Words 

Gurmukhi, 
Shahmukhi 

Unigram, bi-
gram, trigram 

tables

Transliteration Engine 

Pre-Processing 

Post-Processing 

Text Normalization 

Omni font to Unicode Converter 

Spell-Checking 

Rule based Transliteration 

Check Shahmukhi Spellings 

Gurmukhi-Shahmukhi Dictionary 

Shahmukhi Text 

HMM Model for 
Shahmukhi 

Word Disambiguation  
Using HMM  

Gurmukhi  
Spell-Checker 

Gurmukhi Stemmer 

FIGURE 6– System Architecture 

317



Char1 ਸ → س ਸ → ص ਸ → ث All forms 
(with unigram frequency) 

Char2 ◌ਾ → ا   ǌƮǏ řĴƙ(0)  ǌƮţĴƙ(0) 
Char3 ਹ → ه ਹ → ح  ǌƮǏ ř’(0)  ǌƮţ’  (6432) 
Char4 ਿ◌ → nil   ǌƮǏ řĴǕ ư(0)  ǌƮţĴǕư(0) 
Char5 ਬ →ب   Selected → 

(most frequent)  ǌƮţ’ 

FIGURE 7– Steps for handling Multiple Character Mapping 

3.3 Post-Processing 
The transliteration of Gurmukhi word ਹਾਲ has two Shahmukhi spellings with different senses as 
 In post-processing we have .(Hall; big room) ہال and (state, condition, circumstance) حال
modelled 2nd order HMM for Shahmukhi word disambiguation where the number of HMM states 
are corresponding to each word in the sentence and their possible interpretations or ambiguity. 
The transition probabilities and inter-state observation probabilities are calculated as proposed by 
Thede and Harper (1999) for POS system. 

4 Evaluation and Results 

There are two main stages of our system first is font detection and Conversion of detected font to 
Unicode and the second stage is conversion of Gurmukhi text to Shahmukhi. The evaluation 
results of both the stages are: 

Font Detection and Conversion Accuracy: In order to test font detection module we have a set 
of 35 popular Gurmukhi fonts. A randomly selected test data of having 194 words and having 
962 characters (with spaces) is converted into different Gurmukhi fonts and used for system 
testing. The font detection module has correctly predicted 32 fonts. Hence, they have 100% 
conversion rate into Unicode. The remaining 3 fonts were not correctly recognized and confused 
with other fonts with which the character mapping table is almost similar. The fonts varied by 
only 2-3 code maps and hence the confusion. But this confusion did not create much problem in 
the subsequent Unicode and then Shahmukhi conversion.  

Transliteration Accuracy: We have tested our system on more that 100 pages of text compiled 
from newspapers, books and poetry. The overall transliteration accuracy of this system is 98.6% 
at word level, which is quite high. In the error analysis we found that this system fails to produce 
good transliteration when the input words have typical spellings. The accuracy of this system can 
be increased further by increasing the size of the training corpus and having plentiful of data 
covering maximum senses of all ambiguous words in the target script. 

Conclusion 

For the first time a high accuracy Gurmukhi-Shahmukhi transliteration system has been 
developed, which can accept data in any of the popular Punjabi font encoding. This will fulfil the 
demand from the users to develop such a system, where the Gurmukhi text in any font could be 
converted to Shahmukhi. 

318



References 

Lehal G.S. (2009), A Gurmukhi to Shahmukhi Transliteration System. In Proceedings of ICON: 
7th International Conference on Natural Language Procesing, pages 167-173, Hyderabad, India. 

Lehal, G. S. (2007). Design and Implementation of Punjabi Spell Checker, International 
Journal of Systemics, Cybernetics and Informatics, pages 70-75. 

Malik, M.G.A. (2006). Punjabi Machine Transliteration. In Proceedings of the 21st 
International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, 
pages 1137-1144. 

Saini, T. S., Lehal, G. S. and Kalra, V. S. (2008). Shahmukhi to Gurmukhi Transliteration 
System. In Proceedings of 22nd international Conference on Computational Linguistics 
(Coling), pages 177-180, Manchester, UK. 

Saini, T. S. and Lehal, G. S. (2008). Shahmukhi to Gurmukhi Transliteration System: A Corpus 
based Approach. Research in Computing Science, 33:151-162, Mexico. 

Thede, S.M., Harper, M.P. (1999). A Second-Order Hidden Markov Model for Part-of-speech 
Tagging, In Proceedings of the 37th annual meeting of the ACL on Computational Linguistics, 
pages 175-182. 

Davis, M., Whistler, K. (Eds.) (2010). Unicode Normalization Forms, Technical Reports, 
Unicode Standard Annex #15, Revision 33. Retrieved February 22, 2011, from 
http://www.unicode.org/reports/tr15/tr15-33.html 

319




