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ABSTRACT

We describe a method of correcting noisy output of a machine translation system. Our idea
is to consider different phrases of a given sentence, and find appropriate replacements of
some of these from the frequently occurring similar phrases in the monolingual corpus. The
frequent phrases in the monolingual corpus are indexed by a search engine. When looking
for similar phrases we consider phrases containing words that are spelling variations of or
are similar in meaning to the words in the input phrase. We use a framework where we
can consider different ways of splitting a sentence into short phrases and combining them
so as to get the best replacement sentence that tries to preserve the meaning meant to be
conveyed by the original sentence.

1 Introduction

A sentence may contain a number of mistakes in the word level, phrase level and sentence
level. These mistakes may be referred to as noise. Spelling mistakes, wrong lexical usage,
use of inappropriate function words (like determiner, preposition, article, etc.), grammatical
errors, wrong ordering of words in a sentence are some of the commonly encountered noises.

Noisy sentences are widely prevalent both in human generated sentences as well as sentences
generated by a Natural Language Processing (NLP) system. The generation of noisy
sentences by humans may be due to carelessness, lack of good language writing ability
or lack of knowledge of spelling, vocabulary or grammar of the language. The systems
which return natural language sentences as output, for example Machine Translation (MT)
systems often make mistakes in the sentence. In this work, we have used a method to handle
spelling errors, word choice errors, extra or missing word errors and reordering errors in
the sentence using a monolingual corpus, a synonym dictionary, and a stemmer.

We have incorporated this method as a post-processing system for our Bengali to Hindi and
Hindi to Bengali machine translation systems. Our base translation systems are imperfect
and generate imperfect sentences. We analyzed the outputs of these systems and observed
that a lot of noise can be corrected by applying this method. The evaluation results show
that we are able to improve the performance of machine translation systems.

2 Related Work

Some work have also been done on the correction of errors of noisy sentence by finding
the most appropriate replacement for each word or phrase. Willett and Angell (1983) have
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corrected the spellings of the words by finding the closest replacement candidate from the
dictionary. The closeness of the dictionary word and the misspelled word is calculated
using the count of the common trigram characters. Yannakoudakis and Fawthrop (1983)
have divided the misspelled words into elements of spellings and replaced wrong elements
by corrected elements.

Dahlmeier and Ng (2011) used Alternating Structure Optimization (ASO) technique for
correcting grammatical errors in English article and preposition. Helping Our Own(HOO)
shared task has been carried out in 2010, 2011 and 2012 to correct some particular classes
of words like article, preposition, determiner, etc. of the English text and is reported by
Dale and Kilgarriff (2010, 2011) and Dale et al. (2012).

The correction module has been used as pre-processing and post-processing stages of some
machine translation systems. The rule based post-editing module proposed by Knight and
Chander (1994) has used online resources for learning rules to correct the output of a
Japanese-English machine translation system. Xia and Mccord (2004) has used automati-
cally learned reordering rules in a hybrid English-French machine translation system.

3 Motivation

For correcting noisy sentences, similar to the approaches used in Statistical Machine Trans-
lation (SMT) systems, e.g., the IBM model (Brown et al., 1993; Koehn et al., 2003), may
be used. But the development of a parallel corpus of noisy phrases and corresponding
correct phrases is a time consuming task. However, instead of developing a parallel corpus,
we wish to use monolingual corpus to improve the fluency of noisy sentences. For faithful-
ness, a synonym dictionary, a stemmer and phonetic mappings may be used in finding the
phrases which preserves the actual meaning of the noisy phrases. The algorithm should
have the ability to account for different classes of errors such as, Preposition, Postpossition
or suffix errors, Spelling errors, Word form, Redundancy, Missing Word, Word Choice,
Word ordering, etc.

4 Our Approach

Our approach to correcting noise in the sentences consists of correcting noise in the phrases
of the sentence. For this, we split the sentence into small phrases. We make use of a n-gram
language model obtained from a monolingual corpus. Frequent phrases in the language
model that are similar to an input phrase are considered as candidates replacement for
that phrase.

The function used to split the sentence into small phrases and for combining their candi-
dates is discussed in Subsection 4.1 and the searching of the suitable candidate phrases in
the corpus for the small phrases of the sentence is discussed in Subsection 4.2.

4.1 Spliting and Combining Phrases

Consider a sentence of N words: S = wiws . .. wy; where w; is the i*” word of the sentence.
A phrase in the sentence is of the form P;; = w;w(y1) ... wj, where 1 <i < j < n. The
length of P;; phrase is (j —i4-1). This phrase can be split into two phrases Py and P(1);
in different ways for i < [ < j. A m-word phrase can thus be split in 2 sub-phrases in
m — 1 ways. Each of these sub-phrases may be further split in the same way.

While considering each phrase of the sentence if the phrase is a short phrase its replacement
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candidates (candidates) can be found from the language model created from the monolin-
gual corpus. For any phrase (short or long), we also consider combining the candidates of
sub-phrases of every possible decompositions of that phrase. All these possible candidates
will be considered for selecting the best candidate of the phrase. This module can be im-
plemented using a dynamic programming method and a triangular matrix data structure.
Each cell in the triangular matrix is a placeholder of a phrase of the sentence. An example
triangular matrix for a four word sentence is shown in Figure 1.

Full Sentence
W1.W4 ]
]
WIW2W3 W2W3w4 ]
Double Words
wiwz waw3 Waw4
w1 w2 w3 w4 Single Words

Figure 1: Triangular Matrix for a 4-word Sentence.

In the cell corresponding to a phrase, we store a list of candidates for that phrase. Can-
didate lists for lower length phrases of the sentence are stored at the lower level. In our
bottom-up approach, members of the lower level cells are used to find the members of
higher level cells. The basic algorithm is presented in Algorithm 1.

Algorithm 1 DynamicFind(Sentence) // Finds corrected forms of the Sentence.

INPUT: Sentence S = w1, wa, ..., wN
Data Structure: R = Upper Triangle of a Square Matrix, K =5
for n=1 to N do {/*n indicates the length of the phrase*/}
for start=1 to N —n + 1 do {/*start is the starting index of the n length phrase*/}
if n == 1 then {/* Phrase of length 1 */}
R[start][start] = FIND_BEST_SUB((Pstart,start, KX); /* Returns K candidates of
RsLaTt,staTL phrase */
else
end = start+n — 1; /* end is the ending index of the n length phrase */
if n <k then {/*Short phrase*/}
Ristart]jend] <~ FIND BEST SUB(Pitart.end, K)
end if
for j=start to end-1 do
P1 «+ Rjstart][j]; P2 < R[j+1][end]; P3 + COMBINE(P1,P2)
R[start||end] <~ KBEST(P3, R|start][end],K)
end for
end if
end for
end for
Return R[1][N]

COMBINE(P1,P2): Concatenates all the phrases of P1 with all the phrases of P2 and combine
their corresponding values.
KBEST(L1,L2,K): Finds K best members among the members of two lists: L; and Lo.

In this algorithm, S is an input noisy sentence of N words. Pgtartend is a phrase, where
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start and end are starting and ending indices in the sentence. n is the length of the phrase,
where n = end — start + 1. For each short phrases the candidates along with their values
computed by the substitute method discussed in the next subsection are stored in the
corresponding bottom level cells of R.

Each multi word phrase is broken into a pair of sub-phrases. The variable j indicates the
intermediate point or partition point of the phrase. So, two sub-phrases of Py4rt,end are:
one of index start to j and another of index j + 1 to end. A pair of candidate lists for
each pair of sub-phrases are taken from previous level cells of the triangular matrix and
stored in P1 and P2, respectively. The COMBINE function concatenates all the members of
P1 with all the members of P2 and combine their values and store in P3.

For each short multi-word phrases, two candidate lists computed by substitute method
and COMBINE function are sorted and top K are selected by the KBEST function. These are
stored into the corresponding cells of the R matrix. The algorithm returns the members
of the top cell of the R matrix as the most relevant corrected sentence.

4.2 Computing the Phrase Substitutes

All phrases of length 1 to K of monolingual corpus are stored in a language model along
with their frequencies. Given a short phrase from the noisy sentence, we have to search
for the short phrases in the language model which are frequent and similar to the noisy
sentence phrase. These searched phrases are candidates of the noisy sentence phrase.

4.2.1 Scoring Function

For each short phrase of the sentence, we define the following scoring function, based on
the practical scoring function defined by Hatcher et al. (2010) in Lucene search engine, to
find suitable candidate phrases from the language model.

score(q,p) = coord(q,p) Z {tf(t,p) idf(t)*} BoostValue(p,l) (1)

Here, ¢ is the query phrase of the sentence. p is a phrase of length [ in language model,
which is being considered currently. The components of equation 1 are explained below.

(i) Coordination factor coord(q, p) indicates how many of query terms (words) are found
in p. Length of query phrases and values of this function are both between 1 to k.

(ii) For term frequency ¢f(t,p) we use square root of frequency of the query term ¢ in p.

(iii) For inverse document frequency idf(t) we have used the inverse of the number of
phrases in which the query term t appears.

(iv) As we have mentioned earlier, we want to find those similar phrases which have
highest frequency in the language model. So, we want to boost the score according
to the frequency of the phrase. However, frequencies of the shorter phrases are not
directly comparable with that of the longer phrases. Therefore, boost of a phrase is
calculated with the help of the frequency of that phrase in the corpus and the length
of the phrase.
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4.2.2 Handling Variations

For finding suitable candidate phrases for each short phrase of noisy sentence, it does not
suffice to only search for the frequent exact phrases in the language model which are similar
to the input phrase. We need to search other variations of the words of this short phrase,
e.g., spelling variation, morphological variation and lexical variation. We have developed
a unified approach to handle all these effectively. This approach consisting of indexing
several variations of each input phrase, and considering these variations for retrieval.

Indexing

This is done by indexing each phrase at several different levels, apart from indexing the
original phrase. At the phonetic level, a phrase consisting of phonetically normalized
words of the original phrase is indexed. At the morphological level, the phrase consisting
of stemmed words of the original phrase is indexed, and at the lexical level, the phrase
consisting of the synonym group IDs of the words in the original phrase is indexed.

Retrieval

Given an input phrase, K similar phrases are retrieved at various levels — unaltered, mor-
phological, phonetic, and lexical. We define four coefficients: cyords Cstem, Cpm and c;q for
these four searches, respectively and multiplied the scores of the searches with the corre-
sponding coefficients. The top K phrases at each level are identified by using the scoring
function shown in equation 1.

5 Experimental Results

In our experiments, we have considered that the length of short phrases is between 1 and
5. Further, the length of the indexed phrases is between 1 and 5. The values of cyora,
Cstem, Cpm and c;q coefficients are experimentally set as 10, 8, 6, and 6, respectively. The
value of K is considered as 10.

5.1 Experimental Setup
The proposed approach is implemented for Hindi and Bengali languages. We have used

following resources and modules for this task.

(i) Hindi and Bengali monolingual corpus crawled from the web and cleaned. The size
of these two corpus are 300K and 430K sentences, respectively.

(ii) Hindi and Bengali synonym dictionaries divide words into some groups of synonyms.
(iii) Hindi and Bengali longest suffix stripper for stemming.
(iv) Hindi and Bengali words to phonetic word map table similar to the one proposed by

UzZaman and Khan (2005).

5.2 Analysis with example

We now show how the system performed on some Hindi written sentences. The Hindi
sentences are represented in itrans format with the word by word translation in square
bracket. For every Hindi sentence, we show the English translation of the intended sentence.
Then, the final sentence output by our system is given where the correct modifications are
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shown in boldface, and the incorrect modifications are underlined. Finally, we present a
summary of the modifications.

1. Original Hindi sentence (OH) : mujhe le.DakA ko pasanda AYA. [To-Me Boy
To Like Came]
Intended meaning in English (E) : I liked the boy.
Final sentence (FH) : mujhe le.DakA pasanda AyA. [To-Me Boy Like Came |
Summary of Modifications(SM) : Deleted postposition ‘ko’. Changed spelling
of ‘AYA’.

2. OH: merA hindI AchchhA nahl. [My Hindi Good Not|
E: My Hindi is not good.
FH: merA ye hindl achchhA nahl hai. [My This Hindi Good Not is]
SM: Inserted pronoun ‘ye’ and verb ‘hai’. Changed spelling of ‘AchchhA’.

3. OH: mere yahA.N Ane kA kAraNa hai mai.N khAnA chAhatA hai. [My Here Come
’s Reason Is I Eat Want Is|
E: The reason why I came here is I wanted to eat something.
FH: mere yahA.N Ane kA kAraNa yaha hai ki jo mai.N khAnA chAhatA thA. [My
Here Come ’s Reason This Is That What T Eat Want Was]
SM: Inserted ‘yaha’, ‘ki’ and ‘jo’. Replace ‘hai’ by ‘thA’.

5.3 An Application to postprocessing of sentences obtained
through Machine Translation

The proposed approach is applied to correct the output of two imperfect transfer based
Machine Translation systems, the BHMT system translates Bengali sentences to Hindi,
whereas the HBMT system translates from Hindi to Bengali. The proposed approach has
improved the quality of the output of both the systems in terms of both perplexity and
BLEU scores. The results can be seen in Table 1.

BHMT system | Modified System | HBMT system | Modified System
Perplexity 34.243 27.811 39.612 35.862
BLEU 0.232 0.243 0.218 0.227

Table 1: Scores of MT output and proposed modifications.
6 Conclusion

We have presented a unified approach for correcting different types of noise in a sentence.
We are able to handle major classes of noise, though we are not able to handle long range
re-orderings. This approach is general and can be used for any language. The resources
needed are minimal and can be easily obtained.

There is a need for more experiments, better tuning of the scoring model, and testing on
different sources of noisy sentences.
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