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Abstract
This paper presents a temporal relation identification method optimizing relations at
sentence and document levels. Temporal relation identification is to identify temporal
orders between events and time expressions. Various approaches of this task have been
studied through the shared tasks TempEval (Verhagen et al., 2007, 2010). Not only
identifying each temporal relation independently, some works also try to find multiple
temporal relations jointly by logical constraints in Integer Linear Programming (Chambers
and Jurafsky, 2008; Do et al., 2012) or Markov Logic Networks (Yoshikawa et al., 2009;
Ling and Weld, 2010; Ha et al., 2010).

Though previous joint approaches optimize temporal relations in an entire document, we
first optimize our model at sentence level and then extend it to document level. We
consider that different types of temporal relations require different types of optimizations.
By evaluating our sentence and document optimized model on the TempEval-2 data, we
show that our approaches can achieve competitive performance in comparison to other
state-of-the-art systems. We find that the sentence and document optimized model has
strong tasks in TempEval-2, respectively.
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1 Introduction
Recent work on temporal analysis has focused on several sub-tasks, such as event (time)
recognition, event (time) classification, time normalization, and temporal relation identifica-
tion. Temporal relation identification (or temporal ordering) has especially been given much
attention among studies in recent years. Since temporal orders often effect causal relations
(cause and effect), identifying them is an essential task for deep language understanding.

Various approaches to temporal ordering have been proposed through shared tasks called
TempEval (Verhagen et al., 2007, 2010). TempEval-2 involved four temporal ordering tasks
corresponding to four types of temporal relations: between events and time expressions in a
sentence (Task C), 1 between events of a document and the document creation time (DCT)
(Task D), between two main events in two consecutive sentences (Task E), and between
two events where one event syntactically dominates the other event (Task F).

Figure 1 shows an example of temporal relations. This example has five events and one
time expression and includes the four types of relations corresponding to Tasks C, D, E,
and F of TempEval-2. The temporal relations (TLINKs) are annotated as shown in Table 1
and we have to estimate these TLINK labels such as BEFORE, OVERLAP, and AFTER.

task relation
Task C e53 (change) OVERLAP t10 (a couple of years)
Task D e50 (think) OVERLAP t0 (DCT)
Task D e52 (think) OVERLAP t0 (DCT)
Task D e53 (change) AFTER t0 (DCT)
Task E e50 (think) OVERLAP e57 (reposition)
Task F e50 (think) OVERLAP e51 (gloomy)
Task F e52 (think) BEFORE e53 (change)

Table 1: Temporal Relations (TLINKs) in Figure 1

While the first studies handled this task as local classification problems (Boguraev and
Ando, 2005; Mani et al., 2006), some recent works regard temporal relation identification as
a global optimization problem in an entire document. Global optimization approaches take
into account several relations and jointly identify all relations within a document. In order
to ensure the consistencies among relations, previous work exploited global approaches with
transitivity constraints in Integer Linear Programming (Chambers and Jurafsky, 2008; Do
et al., 2012) or Markov Logic (Yoshikawa et al., 2009; Ling and Weld, 2010).

In this paper, we propose a new approach to temporal relation identification by optimizing
temporal relations at sentence or document levels. We have two motivations to improve
conventional global approaches. First, we consider that identifying each type of temporal
relations requires different type of optimization. Optimizing at sentence level are suitable
for some types of TLINKs rather than optimizing at document level. In addition, optimizing
at sentence level allows us to effectively utilize rich syntactic and semantic features.

Secondly, it is difficult to construct global model by controlling many global constraints
simultaneously. It is well-known that overly strong constraints hurt the performance of

1Note, Task C of TempEval-2 is further restricted by requiring that either the event syntactically
dominates the time expression or the event and time expression occur in the same noun phrase.
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Figure 1: Temporal Relations
identification. Ha et al. adopted a Markov Logic for identifying temporal relations in
TempEval-2 (Ha et al., 2010), but their global model at document level could not improve
upon their local model in the majority of tasks. Especially in Tasks D and F, the results of
their global model were much worse than those of their local model. According to their
analysis, utilizing hard constraints caused many errors. Though Markov Logic (Richardson
and Domingos, 2006) makes it possible to utilize both hard and soft constraints, both
types of constraints are very sensitive and hard to be controlled well. It is possible for
even a soft constraint to drastically improve (or hurt) the performance of temporal relation
identification. Thus, finding effective constraints sometimes becomes more difficult task
than feature selection for general machine learning.
To effectively control the sensitivity of constraints, we need first to reduce our large problem
down to a smaller one. We construct our models optimized at two levels, sentence and
document. First, we create a model which optimizes temporal relations at sentence level
and then extend it to a model for document optimization. The sentence-optimized model
focuses on only the temporal relations within the same sentence. The document-optimized
model covers all relations in a document. For both models, we employ Markov Logic and
control sensitive soft constraints. Each optimized model has respective advantages. The
sentence-optimized model is good at handling TLINKs inside sentences (Tasks C and F) by
exploiting rich syntactic and semantic features. The document-optimized model is strong
at solving TLINKs beyond sentence boundaries (Task E). We evaluate our models on
TempEval-2 data. As a result of advantages above, our sentence and document-optimized
models outperform TempEval-2 participants on Tasks C and E, respectively.

2 Proposed Method
In this section we introduce the Markov Logic Network designed for our global models.
Marlov Logic is a combination of first-order logic and Markov Networks (Richardson and
Domingos, 2006). It can be understood as a formalism that extends first-order logic to allow
formulae that can be violated with some penalties. From an alternative point of view, it is
an expressive template language that uses first order logic formulae to instantiate Markov
Networks of repetitive structure. Unfortunately, we do not have enough space to explain
the details about Markov Logic. Since we can refer various previous works with Markov
Logic (Singla and Domingos, 2006; Poon and Domingos, 2007, 2008), this section focuses
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on model constructions by Markov Logic Network.

First, we define four hidden predicates, corresponding to Tasks C, D, E, and F listed in
Table 2. We do not know their extensions at test time. Our observed predicates reflect
observed information extracted from the corpus (such as words, POS, etc.). Note that the
TempEval data also contains temporal relations that were not supposed to be predicted.
These relations are represented using an observed predicate: dctOrder(t, R) for the relation
R between a time expression t and a fixed DCT. An illustration of all “temporal” predicates
can be seen in Figure 1.

In the following parts, we describe our three models: (1) local model which solves each
task independently, (2) sentence-optimized model which targets Tasks C, D and F by
sentence level optimization, and (3) document-optimized model which solves Tasks C-F by
document level optimization. The sentence-optimized model also includes local features
same as local model. The document-optimized model utilizes both features of local and
sentence-optimized. So, the document-optimized model is a full version which contains all
the local and global features.

2.1 Local Model
Our local model utilizes only local features and solves each task independently as a local
classification problem. In the Markov Logic framework, local features are represented as
local formulae. We say that a formula is local if it only considers the hidden temporal
relation of a single event-event, event-time or event-DCT pair. The formulae in the second
class are global: they involve two or more temporal relations at the same time.

The local features are based on features employed in previous work (UzZaman and Allen,
2010; Llorens et al., 2010) and are listed in Table 3. In order to illustrate how we implement
each feature as a formula, we show a simple example. Consider the tense-feature for Task F.
For this feature we introduce a predicate tense(e, te) that denotes the tense te for an event
e. In Table 3, this feature corresponds to the second row “EVENT-tense”. For Task F, we
employ the tense combinations of two events (e1 x e2). Then we add a formula such as

tense(e1, +te1) ∧ tense(e2, +te2) ⇒ e2s(e1, e2, +R) (1)
which represents the properties of combinations between tense and event-event relations.
Note, “+” sign means that the ground formulae derived from this formula have different
weights for each label. Formula (1) are grounded for all possible combinations of tenses and
temporal relations such as

tense(e1, PRESENT) ∧ tense(e2, FUTURE) ⇒ e2s(e1, e2, BEFORE) (2a)
tense(e1, PRESENT) ∧ tense(e2, PRESENT) ⇒ e2s(e1, e2, BEFORE). (2b)

This type of “template-based” formulae generation can be performed automatically by the
Markov Logic Engine. Markov Logic Engine assigns different weights to Formulae (2a)
and (2b). For example, Formula (2a) possibly obtains higher weight than Formula (2b).
Actually, Formula (2a) matches the example in Figure 1 (Consider it replacing e1 with e52
and e2 with e53, respectively).

For Tasks E and F, there is no time expression directly related to the targeted events. So,
we employ the time expressions which are syntactically dominated by the events or which
are identified as arguments of them by a semantic role labeler. We also apply semantic role
features (SR-Label) as a rich semantic feature introduced in (Llorens et al., 2010).
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Task predicate description
Task C e2t(e, t, R) temporal relation between an event e and a time expression

t is R
Task D e2d(e, R) temporal relation between an event e and DCT is R
Task E e2e(e1, e2, R) temporal relation between two main events of the adjacent

sentences, e1 and e2 is R
Task F e2s(e1, e2, R) temporal relation between two events where one event e1

syntactically dominates the other event e2 is R
Table 2: Hidden Predicates and Targeted Temporal Relations

Feature MLN predicate C D E F
EVENT-class class(e, c) Y Y e1 x e2 e1 x e2
EVENT-tense tense(e, te) Y Y e1 x e2 e1 x e2
EVENT-aspect aspect(e, a) Y Y e1 x e2 e1 x e2
EVENT-tense-aspect tense(e, te)&aspect(e, a) Y Y e1 x e2 e1 x e2
EVENT-polarity polarity(e, p) Y Y e1 x e2 e1 x e2
EVENT-stem stem(e, s) Y Y e1 x e2 e1 x e2
EVENT-word wordEvent(e, w) Y Y Y Y
EVENT-POS eventPos(e, p) Y Y e1 x e2 e1 x e2
TIME-type type(t, ty) Y Y Y Y
TIME-value value(t, ty) Y Y Y Y
TIME-word wordT ime(t, w) Y
TIME-POS posT ime(t, p) Y
TIME-DCT order dctOrder(t, r) Y Y Y Y
Dependency-Word depWord(e(or t), w) Y Y Y
Dependency-POS depPos(e(or t), p) Y Y Y
Dependency-Label dep(e1, e2(or t), l) Y Y
SR-Word srlWord(e(or t), w) Y Y Y Y
SR-POS srlPOS(e, (or t), p) Y Y Y Y
SR-Label srl(e1, e2(or t), l) Y Y

Table 3: Local Features
2.2 Sentence-optimized Model
The original Markov Logic approach to temporal relation identification solves problems
in a document-by-document manner (Yoshikawa et al., 2009). On the other hand, our
sentence-optimized model is a global model optimized at sentence level and solves problems
in a sentence-by-sentence manner. Optimizing at sentence level gives us at least two
advantages: (1) it allows us to keep a problem simple and control sensitive constraints well,
(2) we can exploit rich syntactic and semantic features and constraints. The first advantage
is an original motivation of sentence-optimized model. Even though our models have only
several global formulae, they are very sensitive and it is difficult for us to control them well.
In addition, since the optimization at document level is sometimes computationally hard,
we cannot employ large number of features. The sentence-optimized model provides us
with a solution to overcome these difficulties.

Though we need to solve four types of relations in TempEval-2, the sentence-optimized
model focuses on only three of them corresponding to Tasks C, D, and F. Our global
formulae are designed to enforce consistency between the three hidden predicates e2t, e2d,
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and e2s. In the following parts, we show the set of formula templates we use to generate the
global formulae. Here each template produces several instantiations, one for each assignment
of temporal relation classes to the variables R1, R2, etc.

Our global formulae mainly employ DCT as a reference time. First, the global formulae
between Tasks C and D are,

dctOrder(t, +R1) ∧ e2t(e, t, +R2) ⇒ e2d(e, +R3) (3)
dctOrder(t, +R1) ∧ e2d(e, +R2) ⇒ e2t(e, t, +R3) (4)

which ensure the consistency between e2t and e2d. We implement these formulae as soft
constraints. If a possible world violates some soft constraints, they give it some penalties
with corresponding weights. In contrast to hard constraints, a possible world which causes
some violation of soft constraints is less probable (not prohibited). Soft constraints are good
way to control ambiguous transition rules. For example, Formula (4) can be instantiated as,

dctOrder(t, BEFORE) ∧ e2d(e, AFTER) ⇒ e2t(e, t, AFTER), (5a)
dctOrder(t, BEFORE) ∧ e2d(e, AFTER) ⇒ e2t(e, t, OVERLAP) (5b)

which possibly hold but not always do. 2 Fortunately, this type of soft rule poses no problem
for Markov Logic: after training, Formula (5b) will have a lower weight than Formula (5a).

The global formulae for Tasks D and F are,
e2d(e1, +R1) ∧ e2d(e2, +R2) ⇒ e2s(e1, e2, +R3), (6)
e2d(e1, +R1) ∧ e2s(e1, e2, +R2) ⇒ e2d(e2, +R3) (7)

which enforce the consistency between e2d and e2s. Formula (6) is especially effective
because the results of e2d (Task D) are much higher than e2s (Task F).

Since some events share the same time expression, we add the following global formulae,
e2t(e1, t, +R1) ∧ e2t(e2, t, +R2) ⇒ e2s(e1, e2, +R3), (8)
e2t(e1, t, +R1) ∧ e2s(e1, e2, +R2) ⇒ e2t(e2, t, +R3) (9)

which ensure the consistency between Tasks C and F.

With event-argument relations (semantic roles), we construct some more global formulae.
For e2d, we assume that the relations sharing the same time expression have the same
relations. Such properties can be expressed as,

srl(e1, t, AM-TMP) ∧ srl(e2, t, AM-TMP) ⇒ e2d(e1, R1) ∧ e2d(e2, R2) ∧ R1 = R2. (10)

Likewise, for e2t, we assume that the relations sharing the same time expression affect each
other:

srl(e1, t, AM-TMP) ∧ srl(e2, t, AM-TMP) ∧ e2t(e1, t, +R1) ⇒ e2t(e2, t, +R2). (11)
It is easy for the sentence-optimized model to implement much more features and constraints
as in other tasks (Meza-Ruiz and Riedel, 2009; Yoshikawa et al., 2011).

2.3 Document-optimized Model
The last model is the method which optimizes problems at document level. We add another
hidden predicate e2e which handles Task E of TempEval-2. Note, in order to pursue
computational efficiency, we should deal with e2t, e2d, and e2s as observed predicates and
solve only e2e in this phase. However, we only add a few global formulae and can construct

2Formula (5b) is instantiated by the relations in Figure 1
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a global model which jointly optimizes four tasks. We no longer change the formulae we
constructed for the sentence-optimized model. So, what we have to make is constructing
global formulae for only e2e. Transition rules also apply to e2e in a similar way to e2s.

e2d(e1, +R1) ∧ e2d(e2, +R2) ⇒ e2e(e1, e2, +R3) (12)
e2d(e1, +R1) ∧ e2e(e1, e2, +R2) ⇒ e2d(e2, +R3) (13)

which represent the transitive relations between e2e and e2d. We can add more constraints
such as relations between e2e and e2t or e2s. However, these constraints sometimes cause
error propagations because e2t and e2s are difficult to solve and possibly include many
errors. Thus, we add only the two formulae above for document-optimized model.

3 Experiments and Results
With our experiments we want to answer two questions: (1) do optimizations at sentence
and document levels help to increase the overall accuracy of temporal relation identification?
(2) How does our approach compare to the state-of-the-art results? In the following we will
first present the experimental set-up we chose to answer these questions.

In our experiments we used the test and training sets provided by the TempEval-2 shared
task. The language we target is only English. We further split the original training data
into a training and a development set, used for optimizing parameters and formulae. We
employ 147 documents for training, 15 for development, and 20 for testing.

For feature generation we use the following tools. POS tagging is performed with the
stanford-POS-tagger; 3 as parser and semantic role labeler for our syntactic and semantic
features we employ LTH semantic parser. 4 As a Markov Logic Engine, we employ Markov
thebeast, which is tailored for NLP applications. For evaluation of temporal relation
identification, we employ an accuracy-based scoring of TempEval-2. It is a simple metric:
the number of correct answers divided by the number of answers.

3.1 Impact of Sentence and Document Optimizations
Here we present our comparison of three models. Let us show the results on TEST set in
Table 4. We can find four columns corresponding to Tasks C–F, for our models of “Local”,
“Sentence-optimized” and “Document-optimized”.

Both optimized models outperform the local model (Local). The scores with bold characters
are the best scores of the tasks. The sentence-optimized model got the best position
in Task C and the document-optimized model won the other tasks D–F. The sentence-
optimized model also outputs competitive results to the document-optimized model in Task
F. Unfortunately, our improvements are not statistically significant. But can our joint
modelling help to reach or improve state-of-the-art results? We will try to answer this
question in the next section.

3.2 Comparison to State-of-the-art
In order to put our results into context, Table 5 shows them alongside those of other
TempEval-2 participants. We show only five teams: the winners of Tasks C–F in TempEval-
2 and NCSU-joint which a global model with Markov Logic. The best result of each task is

3http://nlp.stanford.edu/software/tagger.shtml
4http://nlp.cs.lth.se/
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C D E F
Local 0.652 0.745 0.553 0.520
Sentence-optimized 0.674 0.742 - 0.546
Document-optimized 0.652 0.759 0.569 0.556

Table 4: Results of the All Models

team C D E F
TRIOS* 0.65 0.79 0.56 0.60
TIPSem 0.55 0.82 0.55 0.59
TRIPS* 0.63 0.76 0.58 0.59
NCSU-indi 0.63 0.68 0.48 0.66
NCSU-joint 0.62 0.21 0.51 0.25
Sentence-optimized 0.67 0.74 - 0.55
Document-optimized 0.65 0.76 0.57 0.56

Table 5: Results with Other Systems (Systems with * have recall errors)
shown with bold characters. As shown in the last two rows, our Sentence and Document-
optimized won Tasks C and E, respectively. Note, for Task E TRIPS (UzZaman and Allen,
2010) got 0.58 on precision but 0.50 on recall. Hence our Document-optimized outperforms
TRIPS system on F-measure (0.57 vs 0.54). These results fit our intuitions that Task C
requires rich linguistic knowledge inside sentences and Task E requires global knowledge such
as inter-sentential logical constraints or ontological features. In TempEval-2’s final report,
it is not clear why the results on Task C (event-time) have not improved compared with
the corresponding task in TempEval-1, notwithstanding TempEval-2 is added restriction
that the event and time expression had to be syntactically adjacent. However, our system
achieved over 0.67 pt and was better than TempEval-1’s participants.

For Tasks D and F our results cannot reach the best TempEval-2 scores. But our results
have some interesting points compared with the best results. TIPSem (Llorens et al., 2010),
the best team of Task D, also employed semantic roles as features. Their learning classifiers
are CRF with local features. So, a global joint approach is not always advantageous
for event-DCT classifications. NCSU-indi (Ha et al., 2010), the best system for Task F,
outperformed other participants (at more than 6 pt margins for all). This point suggests
that ontological features NCSU-indi applied are more effective than global optimization.
Compared with NCSU-joint which is a global model applied hard constraints in Markov
Logic, we can find that our Markov Logic approach successfully controls soft constraints.

4 Conclusion
In this paper we presented a novel global approach to temporal relation identification. Our
approach first optimized our model at sentence level and then extended it at document level.
We revealed that the sentence-optimized model is better than the document-optimized
model at least for identifying event-time relations (Task C) in TempEval-2 data. The
document-optimized model is also strong at identifying relations between two events (Task
E). As future work we are planning to use external or untagged data along with methods
for unsupervised learning in Markov Logic (Poon and Domingos, 2008). We would also like
to investigate the utility of our models for multilingual temporal ordering.
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