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ABSTRACT

While most recent work has focused on instances of opinion spam which are manually iden-
tifiable or deceptive opinion spam which are written by paid writers separately, in this work
we study both of these interesting topics and propose an effective framework which has good
performance on both datasets. Based on the golden-standard opinion spam dataset, we propose
a novel model which integrates some deep linguistic features derived from a syntactic depen-
dency parsing tree to discriminate deceptive opinions from normal ones. On a background of
multiple language tasks, our model is evaluated on both English (gold-standard) and Chinese
(non-gold) datasets. The experimental results show that our model produces state-of-the-art
results on both of the topics.
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1 Introduction

With the growing number of review websites where users can express opinions (e.g., TripAdvisor
1), there is an increasing potential to gain money through opinion spam-inappropriate or
fraudulent reviews. The large benefits of this result in the occurrence of a group of writers who
only write articles that deceive the users. Their comments always mislead readers to buy or use
their products. Our goal is to find the hidden features of the deceptive opinions written by these
writers. In Chinese, paid writers who flood websites are called "water army" and recognizing
them is called "Water Army detection".

Till now, considerable attentions have been paid to other kinds of spam, such as web spam,
e-mail spam and so on. Research focused on opinion spam is rarely reported till now. Jindal
and Liu (2007) was one of the earliest work about Internet review spam. Further more, most
previous work in this area focused on finding methods of detecting opinion spam which can be
identified by a human reader. Only detecting this kind of opinion spam is not enough, because
users can easily recognize the useless information by themselves and will not be misled. A much
more challenging task, detection of deceptive opinion has been proposed by (Yoo and Gretzel,
2009; Ott et al., 2011) which is based on a gold-standard dataset. They have done the data
selection and initial analysis work on this interesting topic.

Our work uses gold-standard dataset collected by (Ott et al., 2011) and non-gold standard
Chinese dataset collected by ourselves. We give a machine learning model which is about
2 percent better than previous works on gold standard dataset and is also very effective on
non-gold standard dataset. Later, we analyze the close relationship between sentence structure
and deceptive opinion. Finally, statistical methodologies have been used to analyze all the
feature sets and some theoretical contributions are summarized.

Our work mainly focuses on deceptive opinion spam. They are fictitious opinions that have
been deliberately written by paid writers to sound authentic, in order to deceive the reader. If a
deceptive opinion is mixed with a huge amount of truthful opinions, it is very hard for users to
ignore or even identify it. The existing study proved that even a native speaker cannot identify
most deceptive opinions. However, automatic classifiers have really good performance on these
disturbing texts.

To obtain better performance on this task, we optimize it in two parts. Firstly, we test some
other machine learning models. We use a support vector machine (SVM) as baseline to compare
with the maximum entropy model (MEM). The result is that MEM performs better. Secondly,
we try other approaches on this dataset and find that sentence structure features give really
good performance. We combine all these improvements and train a final model that outputs
state-of-the-art performance on gold-standard dataset. Later, this model is used on Chinese
dataset collected by our group and also obtain good performance. Finally, we make some
theoretical contributions to this topic.

2 Related Work

Most Internet spam detection work can be divided into two stages of development. The earliest
work tried to detect spam which contained little useful information. They focused on the media
of e-mail spam (Sahami et al., 1998; Drucker et al., 1999), web spam (Fetterly et al., 2004;
Ntoulas et al., 2006),blog spam (Bhattarai et al., 2009), Twitter spam (Grier et al., 2010) and

Thttp://tripadvisor.com
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review spam (Jindal and Liu, 2008). They used statistics and machine learning methodologies
to analyze and investigate this topic extensively. In recent years, some researchers have begun
to pay attention to the detection of spam which is deceptive. They analyzed review spam (Yoo
and Gretzel, 2009; Wu et al., 2010; Ott et al., 2011; Li et al., 2011; Lau et al., 2012) and rumors
on microblogs (Qazvinian et al., 2011). Following these works, our work deals with the second
problem, deceptive opinion detection.

Although, opinion spam is widely spread on the Internet(Jindal and Liu, 2008). It is quite
difficult to obtain a first-hand deceptive opinion dataset. Jindal and Liu (2008) used duplicate
reviews as positive data and other views as negative examples?. Wu et al. (2010) tried to detect
deceptive opinion spam by comparing popularity rankings. Qazvinian et al. (2011) annotated
rumors (a similar concept to deceptive opinion) by experts manually which is a huge project.
Our work may save such human judgement as we use gold-standard deceptive opinions.

Yoo and Gretzel (2009) first tried to collect a small gold-standard dataset from a group of
tourism marketing students and statistical methods were used to analyze the difference between
them from a psychological viewpoint. Ott et al. (2011) extended their work and collected
a gold-standard dataset of 400 truthful and 400 deceptive opinions to develop automated
deception classifiers. Following them, we also collect two datasets, 800 gold-standard opinions
in English and 1800 non-gold standard opinions in Chinese (See section 3). We try to find the
sentence structure or deep linguistic characteristics of deceptive opinions. By this effort, we
improve the automated deceptive classifier by about 2 percent on gold-standard dataset and
our model also works well on non-gold standard Chinese dataset collected by our group.

Chen et al. (2011) introduced the spam detection work into Chinese forums. They focus on
detecting deceptive writers by using both semantic and non-semantic analysis. Spam writer
detection was also investigated by (Lim et al., 2010; Mukherjee et al., 2011). Different from
their works, our work only focuses on the content of opinions themselves with no additional
information.

3 Dataset Construction

It is pointed that most of the opinions online are truthful(Jindal and Liu, 2008). Insidious
deceptive opinions are very difficult to obtain. In this part, we describe where our English
gold-standard deceptive opinions and Chinese manually annotated dataset come from.

3.1 Gold-standard English Dataset

Since Ott et al. (2011) have already provided a dataset which contains deceptive and truthful
opinions, we use their dataset as our English gold standard dataset for our research. Bellow, we
describe the detailed methods of collection.

3.1.1 Deceptive Opinions

To obtain a credible deceptive dataset, data collection procedure imitates the real way how
these deceptive opinions are collected by asking those true deceptive opinion authors to do their
jobs again. They created 400 Human Intelligence Tasks (HITs) using the Amazon Mechanical
Turk® (AMT)* with a one dollar award and allocated them to Turkers located in the United

2They suppose duplicate opinions are likely to be deceptive opinions
3http://mturk.com
420 HITs for each of the 20 hotels they selected.
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TRUTHFUL DECEPTIVE

Accuracy P R F P R F
META-old (native) 60.6% 60.8% | 60.0% | 60.4% | 60.5% | 61.3% | 60.9%

META-new(non-native) 54.5% 52.8% | 54.7% | 53.7% | 56.3% | 61.5% | 58.8%

Table 1: Performance of meta judgement of three college students, corresponding to the
cross-validation experiment in Section 5.

States. They imposed a restriction that all the opinions should be written by unique authors
to avoid that classifiers are over-tuned by different author styles, and all the tasks should be
finished in 30 minutes.

They told the Turkers the name and website of a hotel. The Turkers were asked to assume
that they worked for the hotel and write a deceptive, realistic-sounding and positive review for
the hotel. Finally, they filtered out all the insufficient quality reviews(e.g., unreasonably short,
plagiarized and so on) and obtained 400 golden deceptive opinions. These opinions were used
as the deceptive part of the dataset.

3.1.2 Truthful Opinions

For truthful part, they first got all 6,977 opinions of the 20 most popular hotels (Same as the
20 hotels chosen for HIT) form TripAdvisor. To balance the number of truthful opinions and
deceptive opinions, 20 opinions for each of the 20 hotels that meet the following conditions
were selected®:

o 5-star® review;
e Only English reviews;
e More than 150 characters, because most deceptive opinions have at least 150 characters;

o Not written by first-time authors (new users who have not previously posted an opinion);”

3.1.3 Human Performance

Ott et al. (2011) have proved the human performance on their dataset is low and made this a
baseline for further discussion. The highest result is from meta-judge® of the three students,
as presented in Table 1. We also ask three Chinese college students who have passed CET6
(College English Test Level 6) for help to make the judgement on a subset of this data. We label
the review deceptive when any of the students believe that the review is deceptive. The result
is shown in the second line of Table 1.

The result in Table 1 shows that non-native speakers perform even worse than native speakers.
Both these meta judges will be used as baselines to compare with the automatic approach of
detecting deceptive opinions.

5Same as the hotels selected for deceptive opinion dataset

6Score given by user from 1-star to 5-star shows the support of the user for the hotel.

7First-time authors are more likely to give opinion spam(Wu et al., 2010)

8Meta judge labels a review deceptive when any human judge believes the review to be deceptive.
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total | DECEPTIVE | TRUTHFUL
23397 22337 1060

Table 2: Number of each class of instances.
3.2 Chinese Dataset

Chinese dataset is collected from a famous Chinese online forum . Since it is very hard to find
qualified deceptive opinion authors, we use a collection-and-annotation method. We collected
over 20000 reviews and asked two experts who are very familiar with photography to go
through all these reviews and marked each review a spam or not, see Table 2. Finally, we get a
dataset of 1800 reviews (900 positive and 900 negative opinions) for the balance of data.

To evaluate the accuracy of our Chinese non-gold dataset, we annotated 800 reviews randomly
selected instances twice and Kappa coefficient (k) was calculated to compare the result of each
annotator by the following formula:

_ Pr(a)— Pr(e)

1—Pr(e) @

where Pr(a) is the proportion of times that the two annotators agree and Pr(e) is the proportion
of times that they would are expected to agree by chance(Carletta, 1996). The Kappa coefficient
result is 0.97. This result shows that our annotators reach a high agreement in our deceptive
opinion annotation task.

4 Deceptive Opinion Detection

To train an effective classifier, Ott et al. (2011) mainly focus on the following three approaches:

e Genre identification;
e Psycholinguist deceptive detection;

o Text categorization;

Another approach to identify deceptive opinion spam is using structural features of sentences.
We are inspired by the idea that the genre of the text can be used to detect deceptive opinion
spam. The structure of the sentence shows the genre of a writer, in some sense. We use the
following two approaches to describe the structure of the sentence :

e BIPOS(POS_; + POS)

e DEP(DEP_label + form+ head_form)

Since the frequency distribution of part-of-speech (POS) tags in a text is often dependent on
the genre of the text (Newman et al., 2003) and POS tag bigrams (BIPOS) will not only show
frequency information of POS, but also show the structure of the sentence, we suppose that POS
tag bigrams will give a better performance than pure POS features. By counting the frequency

“http:/ /bbs.fengniao.com/forum/. Most topics on this forum are about photography.
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of different structural features of the sentence, we get the hidden genre information of the
text. These features also provide a baseline with which to compare our other sentence structure
features.

The structure of the sentence is usually represented by a parsing tree. Among various existing
syntactic parsers, the dependency parser is chosen for this work due to its simplicity. We extract
the corresponding feature from the output of the Stanford parser (De Marneffe et al., 2006).
Three dependency parsing features are integrated, dependency label (DEP_label), word forms
(form) of the current word and the head word (head_form). These features are used as part of
a sentence structure feature set in our classifier.

4.1 Classifiers

Features from the approaches just introduced are used to train support vector machine and
maximum entropy classifiers, both of which are well known machine learning models which
have performed well in related work (Zhang and Yao, 2003; Ott et al., 2011).

We train a support vector machine (SVM) classifier, which finds a high-dimensional separating
hyperplane between two groups of data. This method is proved useful in (Ott et al., 2011).
Instances can be classified by the following formula:

N
y(x)=sign Z o Y ®(x, x )+ b 2)
k=1

Where N is the number of instance, x; is the kth input pattern and y, is the kth output pattern.
 is the kernel function : ®(x,x;) = x/ x (linear SVM).

We use LIBSVM(Chang and Lin, 2011) to train our linear support vector machine (SVM) models
on all the approaches mentioned in Section 4.

We also train a maximum entropy model (MEM), which finds the probability distribution that
satisfies the constraints and minimizes the relative entropy. In general, a conditional Maximum
Entropy model is an exponential (log-linear) model which has the form:

1 % fe
plalb) = —= l_[a?( » 3)

where p(a|b) denotes the probability of predicting an outcome a in the given context b
with constraint or "feature" functions f;(a, b). Here k is the number of features and Z(b) =

13 fi(a,b)
h l_[j:1 o o

We use openNLP MAXENT!? (Berger et al., 1996) and iterate 200 times to train our models on
all the approaches mentioned in Section 4, the same as the approaches used for the support
vector machine (SVM) model.

5 Experiment and Discussion

5.1 Experiment

We use a five-fold nested cross validation (CV) (Quadrianto et al., 2009) procedure to evaluate
the performance of each feature set. The result is given in Table 3. SVM-linear line is the result

1Ohttp://incubator.apache.org/opennlp/
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TRUTHFUL DECEPTIVE

Model Feature Accuracy P R F P R F
UNIGRAM 88.4% | 89.9 | 86.5 | 88.2 | 87.0 | 90.3 | 88.6
SVM-linear BIGRAM™ 89.6% | 90.1 | 89.0 | 89.6 | 89.1 | 90.3 | 89.7
(baseline) | BIGRAMT + LIWC | 89.8% | 89.8 [ 89.8 | 89.8 | 89.8 | 89.8 | 89.8
POS 74.0% | 72.0 | 75.0 | 73.5 | 76.0 | 73.1 | 74.5
BIPOS 76.9% | 76.3 | 77.2 | 76.7 | 77.5 | 76.5 | 77.0
DEP 86.3% | 86.3 | 86.3 | 86.3 | 86.3 | 86.3 | 86.3
MEM UNIGRAM 90.6% | 89.0 | 92.0 | 90.5 | 92.2 | 89.3 | 90.8
UNIGRAM + DEP 91.6% | 90.8 | 92.4 | 91.6 | 92.5 | 90.9 | 91.7
UNIGRAM + LIWC | 91.4% | 89.8 | 92.8 | 91.2 | 93.0 | 90.1 | 91.5
BIGRAM™ 90.5% | 89.3 | 91.5 | 90.4 | 91.8 | 89.5 | 90.6
META_JUDGEMENT _old 60.6% | 60.8 | 60.0 | 60.4 | 60.5 | 61.3 | 60.9
META_JUDGEMENT new 58.1% 53.1 | 56.3 | 55.5 | 56.3 | 54.4 | 55.3

Table 3: Performance of our approaches based on 5-fold cross-validation (CV) experiments
with accuracy, precision, recall and F-score. Baseline is the performance of the approaches
according to (Ott et al., 2011) on our dataset.

TRUTHFUL DECEPTIVE
Feature Accuracy P R F P R F
UNIGRAM+DET | 79.1% | 89.8 | 74.0 | 81.1 | 68.5 | 87.0 | 76.6
BIGRAM™* 78.3% | 89.8 | 73.0 | 80.5 | 66.8 | 86.7 | 75.4
BIGRAM ' +DET 78.8% | 89.8 | 73.6 | 80.9 | 67.8 | 86.9 | 76.1

Table 4: Performance of 5-fold cross-validation (CV) experiments with accuracy, precision,
recall and F-score on Chinese dataset

POS UNIGRAM DEPENDENCY label only
DECEPTIVE TRUTHFUL DECEPTIVE TRUTHFUL DECEPTIVE TRUTHFUL
-LRB- JJ prime_JJ why_WRB punct mwe
5 WP home_ NN etc. NN prt purpcl
PRP NN well_NN commented_VBD possessive advmod
-RRB- MD convention_NN extras_NNS iobj aux
CcC . round_NN downstairs_NNS nsubj amod
BIPOS BIGRAM DEPENDENCY detail
DECEPTIVE TRUTHFUL DECEPTIVE TRUTHFUL DECEPTIVE TRUTHFUL
WRB_FW RB_, checking_VBG_out_PRP was_VBD_worth_IN pobj(for&members) pobj(with&amenity)
VBG_PDT IN_$ want_VB_to_TO Just_RB_returned VBN | mark(visiting&while) nn(Michigan&Lake)
NNP_DT VBD_RP the_DT_wine_NN feeling_NN_._. cop(spacious&is) prep(surrounded&by)
VBN_VBP WP_PRP next_JJ_year_ NN level NN_._. root(ROOT&leave) xcomp(in&check)
IN_VBZ CC_FW a_DT_breakfast NN and_CC_take VB amod (staff&excellent) prep(reminded&of)

Table 5: 15 most frequently occurring features of each feature set. Ranks of deceptive and
truthful opinion are separated.
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of the approach in (Ott et al., 2011). MEM line is our new model which outperforms previous
work.

We also give the results of non-native speaker performance on gold-standard dataset in Table 1.
We find that they do worse work than native speaker. We attribute this to the reason that the
students that we asked for help are Chinese college students and English is not their native
language. That suggests that deceptive text can mislead foreigners more easily.

On a background of multiple language tasks, our model is also tested on our Chinese dataset.
All the approaches described in Section 4 were used on the MEM. We use BaseSeg (Zhao et al.,
2006) as word segmenter, BasePos'! as POS (part of speech) tagger and FudanNLP tools '? as
dependency parser. The highest three results are shown in Table 4. BIGRAM* +DEP outperforms
BIGRAM™ shows that sentence structure features also give good performance on Chinese and
our model keeps effective.

5.2 Discussion

Comparing POS feature alone with POS tag bigram (BIPOS) features, we find BIPOS always
performs better. That means POS feature alone cannot fully represent the genre of an opinion.
On the other hand, the BIPOS feature set has much richer features and can classify the genre
more easily. Since sentence structure also indicates the genre of a text, we will use this feature
set as an optimization feature set.

We have tested different combinations of feature sets and listed the representative results, see
Table 3. We find that UNIGRAM+DEP works best on maximum entropy model(MEM), about
2% higher than best result of SVM-linear model(BIGRAM* +LIWC). This proves that sentence
structure can decide the genre of a text and detect deceptive opinions.

To make the following analysis clear, the 5 highest weighted features (learned by MEM) for each
feature set for deceptive opinion and truthful opinion are listed in Table 5. Observation results
are shown below: (1) PRP has a high weight in deceptive opinion spam, which means that
deceptive opinions are more likely to use personal words. (2) Such forms, nn(Michigan&Lake)
weights high showing that truthful opinion always provided concrete information like a location.
(3) Words like home, well, wine, breakfast, excellent which are normally used in daily life get
higher weight in deceptive opinion, while words like feeling, downstairs which can reflect self
feeling are more likely to occur in truthful opinion. (4) etc. obtain high weight in truthful
opinion detection meaning that truth authors can sometimes give concrete examples to elaborate
their views.

6 Conclusion

In this work, we made an extensive annotation based on the existing dataset for deceptive
opinion spam detection. We tried a new approach, using deep linguistic features, for this task
and proved it useful. We also tested some other classifiers and improved the classification
models for the task. The proposed model outperforms the baseline system by about 2%. On the
background of multiple language tasks, our new model was tested on both English and Chinese
datasets and proved to be useful.

11http://bcmi.sjtu.edu.cn/ zhaohai/index.html
12http://code.google.com/p/fudannlp/
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