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ABSTRACT

There has been a lot of recent interest in Semantic Parsing, centering on using data-driven
techniques for mapping natural language to full semantic representations (Mooney, 2007). One
particular focus has been on learning with ambiguous supervision (Chen and Mooney, 2008; Kim
and Mooney, 2012), where the goal is to model language learning within broader perceptual
contexts (Mooney, 2008). We look at learning light inference patterns for Semantic Parsing
within this paradigm, focusing on detecting speaker commitments about events under discussion
(Nairn et al., 2006; Karttunen, 2012). We adapt PCFG induction techniques (Borschinger
et al., 2011; Johnson et al., 2012) for learning inference using event polarity and context as
supervision, and demonstrate the effectiveness of our approach on a modified portion of the
Grounded World corpus (Bordes et al., 2010).
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1 Overview and Motivation

Semantic Parsing is a subfield in NLP that looks at using data-driven techniques for mapping
language expressions to complete semantic representations (Mooney, 2007). A variety of
corpora and learning techniques have been developed for these purposes, both for doing
supervised learning (Kate et al., 2005; Kwiatkowski et al., 2010) and learning in more complex
(ambiguous) settings (Chen and Mooney, 2008, 2011). In many studies, the learning is done
by finding alignments between (latent) syntactic patterns in language and parts of the target
semantic representations, often using techniques from Statistical Machine Translation (Wong
and Mooney, 2006; Jones et al., 2012). Despite achieving impressive results in different
domains, learning semantic inference patterns is often not addressed, making it unclear how
to apply these methods to tasks like Detecting Textual Entailment. In this work, we show how
to learn light (syntactic) inference patterns for textual entailment using loosely-supervised
Semantic Parsing methods.

Detecting Textual Entailment is a topic that has received considerable attention in NLP largely
because of its connection to applications such as question answering, summarization, paraphrase
generation, and many others. The goal, loosely speaking, is to detect entailment inference
relationships between pairs of sentences (Dagan et al., 2005). More recent work on Hedge
and Event Detection (Farkas et al., 2010) has focused on similar issues related to determining
event certainty, especially in the biomedical domain (Example 3 (Thompson et al., 2011)). Four
inferences are shown in Examples 1-4, and relate to implied speaker commitments (Karttunen,
2012; Nairn et al., 2006) about events under discussion.

1. John forgot to help Mary organize the meeting
(a) = John didn’t help Mary organize the meeting
2. John remembered (to not neglect) to turn off the lights before leaving work
(a) = John turned off some lights
3. NF-kappa B p50 alone fails to (=doesn’t) stimulate kappa B-directed transcription

4. The camera {didn’t manage, managed} to impress me (=negative /positive opinion)

In Example 1, the speaker of the sentence is committed to the belief that the main event (i.e.
helping Mary organize the meeting) did not occur, whereas the opposite is true in Example 2.
This is triggered by the implicative phrases Forget to X and Remember to X, which affect the
polarity of the modified event X. These inferences relate to the semantics of English complement
constructions, a topic well studied in Linguistics (Karttunen, 1971; Kiparsky and Kiparsky,
1970). They are also part of a wider range of inference patterns that are syntactic in nature,
or visible from language surface form (Dowty, 1994). They have been of interest to studies in
proof-theoretic semantics and Natural Logic, which look at doing inference on natural language
directly (MacCartney and Manning, 2007; Moss, 2010; Valencia, 1991).

We aim to learn these implicative patterns, building on existing computational work. (Nairn
et al., 2006; Karttunen, 2012) provide a classification of implicative verbs according to the
effect they have on their surrounding context. They observe that implicative constructions
differ in terms of the polarity contexts they occur in, and the effect they have in these contexts.
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As illustrated in Table 1, one-way implicatives occur in a single polarity, whereas two-way
implicatives occur in both. For example, Forget to X in Example 1 switches polarity in a positive
context to negative, and has the opposite effect in a negative context, giving it the implicative
signature (+)(-), (-)(+) (i.e. start context, result).

Implicatives can be productively stacked together as shown in Example 2. Determining the
resulting inference for an arbitrary nesting of implicatives requires computing the relative
polarity of each smaller phrase, which is the idea behind the polarity propagation algorithm
(Nairn et al., 2006). This can be done directly from syntax by traversing a tree annotated
with polarity information and calculating the polarity interactions incrementally. This general
strategy for doing inference, which relies on syntactic and lexical features alone, avoids a full
semantic analysis and translation into logic (Bos and Markert, 2005), and has been successfully
applied to more general textual entailment tasks (MacCartney and Manning, 2007, 2008).

One problem with the approach of (Nairn et al., 2006), however, is that the implicative
signatures of verbs must be manually compiled, as there are no standard datasets available for
doing learning. To our knowledge, there has been little work on learning these specific patterns
(some related studies (Danescu-Niculescu-Mizil et al., 2009; Cheung and Penn, 2012)), which
would be useful for applying these methods to languages and domains where resources are not
available. Further, their algorithm encodes the lexical properties as hard facts, making it hard
to model potential uncertainty and ambiguity associated with these inferences (e.g. if John was
able to do X, how certain are we that he actually did X?)

The semantics of implicative expressions can often be inferred from non-linguistic context.
Knowing that managed to X implies X is something we can learn from hearing this utterance in
contexts where X holds. Recent studies on learning from ambiguous supervision for Semantic
Parsing (Chen and Mooney, 2008, 2011) has looked at incorporating perceptual context
(Mooney, 2008) of this sort into the learning process (see also (Johnson et al., 2012)). Work on
the Sportscaster Corpus (Chen and Mooney, 2008) considers interpreting soccer commentary
in ambiguous contexts where several closely occurring events are taking place. Their data is
taken from a set of simulated soccer games extended with human commentary. Each comment
is paired with a set of grounded events occurring in the game around the time of the comment.
Using these ambiguous contexts as supervision, they learn how to map novel sentences to the
correct grounded semantic representations.

We look at learning implicative inference in a similar grounded learning scenario, using am-
biguous contexts and the polarity of events as supervision. We use a modified portion of the
Grounded World corpus (Bordes et al., 2010), which was extended to have phrasal implicatives
and ambiguous contexts. Three training examples are displayed in Figure 1, and an illustration
of the analysis we aim to learn. Each example is situated in a virtual house environment and
a context, and describes events taking place in the house. Details of the corpus and learning
procedure are described in the next section.

2 Experiments

2.1 Materials

The original Grounded World corpus (Bordes et al., 2010) is a set of English descriptions
situated within a virtual house, and was designed for doing named entity recognition and
situated pronoun resolution. Inside the house is a fixed set of domain objects, including a set
of actors (e.g. father; brother), a set of furniture pieces (e.g. couch, table), a set of rooms (e.g.
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Type Examples | Effect on Polarity
Two-way implicatives manageto | (+)(+) | )
forget to HO O
One-way +implicatives || force to CIICH!

refuse to CRIC]

One-way -implicatives attempt to | () ()

hesistate to | (=) (+)

Table 1: Types of Implicative Verbs from (Nairn et al., 2006; Karttunen, 2012)

# Sentences # Token Gold Relations Aver. Context Size
7,010 Total (6,065 (85%) unique) 2,444 (63 unique concepts) 2.17 (90% > 1)
1,863 Implicative Sentences (26%)
Frequent Verb Tokens: refuse to, manage to, decline to, admit to, remember to, dare to
Complex Constructions: fail to neglect to, didn’t refrain from, refuse to remember to
Examples:

Their grandmother [admitted, , to], drinking a little wine.

The brother [didn’t,_ dare, , to]_ move into the bedroom.

Their mom [remembered, , to not_, forget,_ to], grab their toy from the closet

Table 2: Details of the extended Grounded World Corpus. The average context size is the
average number of events in the ambiguous training contexts. On the bottom are some corpus
examples with implicative constructions.

living room, bathroom), and a set of small objects (e.g. doll, chocolate), plus a set of 15 event
types (e.g. eating, sleeping, and drinking).

For our study, we used a subset of 7,010 examples from the original training set, and modified
the sentences to have syntactic alternations and paraphrases not seen in the initial corpus.
1,863 of these sentences were modified to have implicative constructions (using 70 unique
constructions from 20 verb types, see examples in Table 2)! that relate to the original content
of the sentence, in some cases creating negated forms of the original sentences. We expanded
the original named-entity annotations to normalized semantic representations, and produced a
set of distractor events (or observable contexts) for each example to make the data ambiguous.

Three training examples are shown in Figure 1. In the first example, the sentence is situated
in three observable events (sleeping, getting and bringing). These can be viewed as events in
the current context or the speaker’s belief state. Additional information about the world state
(i.e. location of objects) is provided from the original corpus for pronoun resolution, which
we ignore. The last two examples have implicative constructions, the first one leading to a
negative inference (the sister is not sleeping in the bedroom /guestroom). The last example leads
to a positive inference (the sister got a toy from the closet/storage). We show the annotations
from the original corpus for comparison.

Expanding the relations from the overall corpus and situating them within ambiguous contexts

we used the phrasal implicative lexicon available at http://www.stanford.edu/group/csli_Inr/Lexical_Resources
/phrasal-implicatives/, compiled by the authors of (Nairn et al., 2006; Karttunen, 2012)
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Utterance: 18146 while he is sleeping in the bedroom Utterance: 7054 the sister didn’t fail to get their toy from the

Original Annotation*: - <friend> - <sleep> - - <bedroom> storage

Observable Context 18146: Observable Context 7054:
(bring friend, water, (toLoc bedroom)) (get baby, doll), (get sister, gtoy, (fromLoc closet))
(get baby, videogame)
(sleep friend, (loc bedroom)) Latent semantic analysis

World State:

(get sister, gtoy, (fromLoc closet))
(in-bedroom ‘(bed, closet, friend, ...))

(in-kitchen ‘(baby,closet, friend, ...)) ...

FromLOC(CLOSET)

Utterance: 50034 the sister failed to nap in the guestroom SISTER’ GET'(+) GTQV' from the storage
. . B the sister /\ their toy
Original Annotation*: - <mother> - - <goes> - - <kitchen>
Observable Context 28932: (-+) GET/()
(move hamster, (toLoc office)) didn’t
(play hamster) (+) GET(+)
(neg (sleep sister, (loc bedroom))) failto  9et

Figure 1: Ambiguous training examples from the extended corpus. The latent semantic analysis
on the right is the representation we aim to learn from the observable context.

makes the learning task much harder. The overall aim is to use the ambiguous contexts and
event polarity to construct a latent semantic analysis (see Figure 1), that derives the appropriate
relation and inference (for a similar idea, see (Angeli et al., 2012)). In other words, we want
to learn, merely from ambiguous supervision, how to map novel sentences to their correct
semantic representations (the typical goal in Semantic Parsing), while also making the correct
inferences. Notice that the target analysis is a kind of syntactic analysis, keeping to the idea
that such inferences are visible from the surface.

2.2 Method

Many approaches to Semantic Parsing start by assigning rich structure to the target semantic
representations, which can be used for finding alignments with latent structures in the language.
Well known work by (Wong and Mooney, 2006) uses Statistical Machine Translation methods
for finding alignments between semantic representations structured as trees and syntactic
patterns in language. These alignments constitute the domain lexicon, and can be modeled
using synchronous grammars. A number of such alignment-based learning methods have been
proposed, using a variety of tools (Kate and Mooney, 2006; Jones et al., 2012; Wong and
Mooney, 2006; Liang et al., 2011; Kwiatkowski et al., 2010).

(Borschinger et al., 2011) recast the problem in terms of an unsupervised PCFG induction
problem, an idea also explored in (Johnson et al., 2012; Angeli et al., 2012; Kim and Mooney,
2012). They develop a method for automatically generating PCFGs from semantic relations,
by decomposing parts of the relations into rewrite rules. Formally, a semantic PCFG G is
(VNon, VTerm,Con,SR,R,P), where Sy € Vy,, is the set of start symbols corresponding to the
full semantic representations in a corpus, Con € Vy,, is the set of contexts, R is the set of
productions X — 8 for X € Vy,,, 8 € V*, and P is a probability function over R. A schema of
the rules in R is shown at the top of Figure 2. Words in the training data (in V,,,,,) are assigned
to all pre-terminals (i.e. semantic concepts) with equal probability, and the parameters are
learned using EM and the ambiguous contexts as supervision.

We build a large PCFG from the semantic relations in our data using the method above. Rules
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S-Rel(argy,...,arg,) —  Contexts {Phrasereci, Phrasearg,, ..., Phraseary, }
Phraseo —  Wordo Rel (args...,arg,) € Corpus
Phraseo —  PhXo Wordo O € {Rels,args}

PhXo —  Wordo

PhXo —»  PhXo Wordo

PhXO — PhXo WOTdnu”

PhXo —  Word,un

Wordo —  w w € {words in corpus}
Wordpun —  w

Phrasere; —>  Phrasepyos—pos Phrasegren

Phrasere; —  Phrasencg—pos Phrasencgrel

Phrasencgprel —  Phrasepos—neg Phrasepre

Phrasenegrel —  Phrasencg—neg Phrasepcgrel

Phraseyz —  Phraseyron Z € {pos — pos,neg — neg}
Phrasey —  Phrasenpyon W e {pos — neg,neg — pos}
Phrasep —  Wordp P e {NMON,MON}
Phrasep —  PhXp Wordp

PhXp —  PhXp Wordp

Wordp —  w

Figure 2: PCFG schema (Borschinger et al., 2011) extended with rules for implicative phrases
shown under the dotted lines. Note that word order is not modeled. The top most rule encodes
all combinations of rules on the right in the brackets.

for detecting implicative patterns are specified at the bottom of Figure 2. Like the rules
in the top part of the figure, every word in the corpus has an equal chance of being in an
implicative phrase. We distinguish between two types of implicative phrases, ones that reverse
polarity in the opposite direction (NMONPhrase), and ones that keep the polarity the same
(MONPhrase). The rules Phrase; and Phrasey, specify that both types can have different effects
(e.g. MONPhrase can be (+)(+), (-)(-)), which gets settled once the neighboring polarity is
determined. The top rules specify that each event or relation is subject to modification by an
implicative phrase, which allows for an arbitrary nesting of implicative phrases.

For example, in the fragment didn’t bother to remember to eat, didn’t reverses polarity (NMON-
Phrase), whereas bother and remember preserve polarity (MONPhrase). Equation (1) shows
how the polarity of the verb is propagated through a derivation in our grammar. Because the
verb gets transformed back into its original phrase when it encounters a MONPhrase with the
signature pp, it is again subject to modification. This is consistent with how inferences are
computed in the polarity propagation algorithm, and stays within the syntactic analysis.

notEat < [Eatn — (didn’tpn (Eatp — (botherpp (Eatp — (rememberpp (Eatp)))))](l)

For training, we perform cross validation by making four different splits in our 7,010 sentence
set (5,010 for training, and 2,000 for testing). As in (Borschinger et al., 2011), we train the
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S

S-get-baby-gtoy-fromLoc-fridge--

Phrase-baby Phrase-get Phrase-gtoy Phrase-fromLoc-fridge-
PhX-baby ~ Word-baby  Phrase-np Phrase-neg”get PhX-gtoy ~ Word-gtoy  Phrase-fromLoc Phrase-fridge
Word-null baby Phrase-NM Phrase-pn Phrase-get  Word-gtoy toy Word-fromLoc PhX-fridge  Word-fridge
\ | | \ \ \
the Word-NM Phrase-NM Word-get that from Word-null refrigerator
\ TN | \
didnt PhX-NM  Word-NM grab the
Word-NM to

neglect

Figure 3: Example output of an analysis after training

Set | Pronoun Precision Implicative Precision ~ Overall Precision Recall F-Score

0.3859 (203/526) 0.8277 (471/569) 0.788 (1576/2000) 1.0 0.8814
0.38878 (208/535)  0.7489 (373/498) 0.769 (1538/2000) 1.0 0.8694
3 0.39405 (199/505) 0.83116 (448/539)  0.8005 (1601/2000) 1.0 0.8891
4 0.333 (177/531) 0.730 (376/515) 0.75 (1500/2000) 1.0 0.8571

Av. | 0.3755 0.7845 0.7768 0.874

N =

Table 3: Results on extended Grounded World data

grammars on each split using the Inside-Out Algorithm (Lari and Young, 1990) !, a variant of
the EM algorithm often used for PCFG induction. The main thrust of the learning algorithm
is that sentences are parsed with their contexts, which provides a top-down constraint on the
possible analyses. Implicatives that lead to negative inference, for example, will consistently
be observed in negative contexts, which forces the learner to construct latent parses that lead
to such inferences. Over time, the probability that the associated words receive the correct
analysis increases.

Once the grammars are trained on the different splits, information about the original contexts
is removed, and the remaining unseen sentences are parsed. Like in (Borschinger et al., 2011),
the derived relation (or S-node) for each parse is evaluated against a gold standard relation and
marked correct if it matches this relation exactly. An example parse after training is shown in
Figure 3, where the resulting relation is (get baby, gtoy, (fromLoc fridge)). All words related to
the inference, in addition to words corresponding to other semantic concepts, were learned to
have the correct analysis (e.g. didn’t_,, neglect to, _, grab,,) , which allows us to recursively
compute the inference in the manner described above.

2.3 Results and Discussion

The results are provided in Table 3 and are broken down into each training-testing split.
Sentences are counted as correct when the main relation in the parse matches exactly a gold-
standard annotation. In terms of evaluating inference, getting the right relation means that

1we used Mark Johnson’s CKY and Inside-Out implementation available at http://web.science.mq.edu.au/ mjohn-
son/Software.htm.
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the correct inference is achieved. As mentioned above, a large portion of the original corpus
contains sentences with pronouns, and we isolate sentences with pronouns, as well as with
implicative phrases, and measure the overall precision for each set.

The average overall precision is 0.7768, with 0.7845 average precision on implicative phrases
and 0.3755 on sentences with pronouns. The latter precision is the lowest, and is to be expected
since we simply assign pronouns the most probable referent based on training (no further
resolution is done). Recall in all cases is 1.0, since we build the semantic relations from the
total corpus following (Borschinger et al., 2011). This avoids having out-of-grammar issues
when parsing test sentences, but limits the parsers to only the relations seen in the corpus. This
is one downside to a grammar approach, which is discussed and improved upon in (Kim and
Mooney, 2012) and will be a main focus of future work.

We emphasize that the evaluation, following (Borschinger et al., 2011; Kim and Mooney, 2012)
and others, is done by looking at the resulting semantic relations (S-Node), and ignores the
rest of the syntactic analysis. The parser therefore might make wrong decisions while arriving
at the correct inference and relations. For example, the analysis in Figure 3 might have didn’t
neglect to as a single implicative phrase marked as pp (as opposed to two), which leads to the
same inference. Future work will look at evaluating this and employing unsupervised learning
methods for ensuring that the domain lexicon is properly inferred.

Despite these issues, the results are encouraging and show that learning light inference can
be done using standard Semantic Parsing techniques with loose ambiguous supervision. This
result is not altogether surprising, given that the inference patterns we consider are types of
syntactic patterns, and are therefore similar to the other patterns we induce. Future work will
look at scaling this up to more complex types of inference in an open-domain. One particular
direction might be looking at more complex forms of negation, as studied in, for example,
(Blanco and Moldovan, 2012). Another direction is using these techniques, which require very
little supervision, to help learn inference patterns for unresourced languages and domains.

3 Conclusions

This work complements recent work on Semantic Parsing, specifically within the ambiguous
learning paradigm, and shows how to integrate light syntactic inference into the learning
using event polarity and context as loose supervision. The main focus has been on learning
implicative verb constructions, which have well-understood semantic properties relating to
speaker commitment. The strategy we adopted follows that of (Nairn et al., 2006), and keeps
inference computation within the syntax. We adapted current PCFG-based grammar induction
techniques for Semantic Parsing, and demonstrated the effectiveness of our inference learning
method on a modified portion of the Grounded World corpus. Future work will concentrate on
extending these results to open-domain textual entailment problems, and on inference learning
for unresourced languages and domains.
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