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ABSTRACT

This paper presents the utilization of chunk phrases to facilitate evaluation of machine transla-
tion. Since most of current researches on evaluation take great effects to evaluate translation
quality on content relevance and readability, we further introduce high-level abstract infor-
mation such as semantic similarity and topic model into this phrase-based evaluation metric.
The proposed metric mainly involves three parts: calculating phrase similarity, determining
weight to each phrase, and finding maximum similarity map. Experiments on MTC Part 2
(LDC2003T17) show our metric, compared with other popular metrics such as BLEU, MAXSIM
and METEOR, achieves comparable correlation with human judgements at segment-level and
significant higher correlation at document-level.
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1 Introduction

In recent years, machine translation (MT) has benefited a lot from the advancement of automatic
evaluation which, compared with manual evaluation, can give quick and objective feedback on
the quality of translation. So most of current MT systems need one or more automatic metrics
to frequently update their models. Among all automatic evaluation metrics, those based on
ngrams are most widely used. A basic mode of ngram-based metric is to estimate whether
ngrams from system translation (also called candidate) can match with those from references
or not. However, most of such metrics suffer from one or more following problems: 1) nonsense
ngrams in evaluation; 2) same weight for different ngrams; 3) lack of fuzzy matching; 4)
absence of context information.

Therefore, this paper proposes a new automatic MT evaluation metric which uses linguistic
phrase rather than ngram as the basic unit of evaluation. In linguistics, a phrase is a group of
words (or sometimes a single word) that form a constituent and so function as a single unit in
the syntax of a sentence.! There are some different types of phrases, such as Noun Phrase (NP),
Verb Phrase (VP), Adverb Phrase (ADVP), Adjective Phrase (ADJP), and Preposition Phrase (PP)
and so forth. In this paper, only NP and VP are used in our experiments, and all phrases are
obtained by chunker?.

Given phrases, our metric evaluates translations with three key parts, including calculating
phrase similarity, allocating weight to each phrase, and finding a maximum similarity map.
For the first part, we not only adopt a semantic similarity function based on WordNet but also
explore a topic similarity function based on a popular topic model. And we present a novel
framework to unify the two similarity measures successfully. To the second part, we examine
several different weight functions, including phrase length (i.e. ngram weight), tf.idf and
topic relevance to distinguish informativeness of phrases. To the last part, we address how to
establish a maximum similarity map between phrases of candidates and references and further
analyze its working mechanism by experiments.

It is worth to mention that our metric has a great flexibility such that any other similarity and
weight functions could be incorporated easily. Experiments also show the metric, compared with
some popular metrics, achieves comparable correlation with human judgements at segment-
level and significant higher correlation at document-level.

2 Related works

In recent years, numerous ngram-based metrics have been proposed. BLEU (Papineni et al.,
2002) as the most famous evaluation metric calculates an overall score via geometric mean of
precisions on different ngrams. NIST (Doddington, 2002) improves BLEU with arithmetic mean
and weight for different ngrams. However both BLEU and NIST do not consider synonyms.
In METEOR (Banerjee and Lavie, 2005), three modules, “exact”, “porter stem” and “WN
synonymy”, are used to create word-alignment successively. And a penalty for word-order is
integrated into the final score. MAXSIM (Chan and Ng, 2008) constructs a bipartite graph for
unmatched ngrams. And Kuhn-Munkres algorithm (Kuhn, 1955; Munkres, 1957) is used to
find a maximum weighted matching. However, synonyms in METEOR and MAXSIM are viewed
as equivalent completely. Furthermore, nonsense ngrams are still used in these metrics. By
contrast, in our metric, phrases are considered as the unit of evaluation and a fine similarity

http://en.wikipedia.org/wiki/Phrase
2http://jtextpro.sourceforge.net/
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function is defined. And context information contributes to our metric as well.

Phrase information has been used in several evaluation methods. In the work of Giménez
and Marquez (2007), overlapping is calculated on the set of words within a same phrase type,
and sequences of phrase types are used in the metric of NIST to score phrase-order. However,
this work does not distinguish different phrases with the same type and ignores the fact that
different types of phrases can be established a correspondence. Echizen-ya and Araki (2010)
propose to establish correspondence of phrases for which mutual similarity score is highest. But
this method just takes NP into consideration since similarity based on PER (Su et al., 1992)
cannot determine the correspondence of VP correctly. Zhou et al. (2008) diagnoses translations
based on check-points where each phrase can be scored by ngram matching. However, it ignores
the order of phrases in a translation and phrase correspondence relies on word-alignment
trained on parallel corpus. Different with these works, this paper treats a phrase as a single
unit and integrates explicit measurement of phrase-order into metric and correspondence is
established by fine similarities between phrases.

3 Phrase-based evaluation metric

Phrase-based evaluation (PBE) metric proposed by this paper compares a pair of candidate-
reference translation by identifying phrase correspondence between them. Firstly, this metric
extracts phrases from them using chunking tool; then each phrase is assigned a weight to
indicate its informativeness. After that, according to similarities between phrases, the metric
find a maximum similarity map between two phrase sequences so that each phrase of one
translation is correspondent with at most one in the other. Figure 1 gives two examples of

mapping.

Wi, Wt,2 w‘,O Wi,/ W,
S2,2 S,
Si 4,3
Wr,1 Wr,2 Wr,3

(a) Map with 2 blocks (b) Map with 3 blocks

Figure 1: Examples of mapping. w is the weight of a phrase in candidate t or reference r; and s
is the similarity between two phrases

Given a maximum map, we can calculate precision scores for candidate t and reference r
respectively and a penalty factor, similar to Banerjee and Lavie (2005), to measure phrase-

order:
Pt:Zwisi/Zwi Pr:ijsj/ij pen =y (#blocks — 1/m)*
i€t i€t jer jer
where w; is the weight of the ith phrase and s; is the similarity related to this phrase, y and 8
are constant, m and #blocks are the number of matchings and blocks® in the map. Then final
score for evaluation is:
score = (aP, +(1—a)P,)-(1—pen)

3A block in a map consists of only as more consecutive matchings as possible. For example, in Figure 1(a), there are
two blocks: one consists of 51 ; and s, 5; 54 5 is the other one; Figure 1(b) has three blocks.
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where a is a constant varying from zero to one.

In this paper, similar to METEOR, document-level score is obtained by integrating fragments of
scores from segments. However, in our metric, context information is also used to improve the
performance of document-level evaluation.

4 Phrase similarity

In this paper, phrase similarity consists of two parts and can be represented by an interpolation:
SIM = 0SIM;, + (1— 6)SIM,,,,

where 6 is a constant ranging from zero to one; SIM;,, called internal or general function,
is only related to phrases and separated from their contexts; external SIM,,,, is also called
context similarity which is circumstance-specific.

In this paper, internal similarity is based on WordNet, defined as SIM;,y and external similarity
is measured by topic similarity SIM,. The rest of this section will describe the two functions.

4.1 Similarity function based on WordNet

Ignoring word-order, each pair of words between two phrases can have a lexical similarity. So
similarity between phrases can be measured by similarities of words.

Lexical Similarity: Given two words, their similarity is one if they have the same lemma or
porter stem. Otherwise, WordNet is used to compute a semantic similarity. However, different
with other metrics where similarity of any two synonyms is one, our metric uses a fine function
proposed by Lin (1998)*:

lin(c1,¢5) =2logP o)/ [logP(c;) +1ogP(cz) ]

where ¢; and c, are two synsets, ¢, is the lowest level of synset which subsumes c; and c,, P (c)
is the probability of a word belonging to synset c.

Similarity between two phrases: For two phrases phr; = wyw,---w,,, and phry = v;vy---v,,
there would be in total m x n lexical similarities. According to Liu et al. (2008), these similarities
can be presented in a matrix where the element at position of (i, j ) corresponds to the value of
lexical similarity sim (wi, Vj). Then, a similarity between the two phrases can be obtained by:

SIM,,, (phry, phry) =[S (phry, phry) + S (phra, phry) | /2

where S (phry, phry) = > max{sim (wisv1) - -sim(wy,v,)}/m.

4.2 Similarity function based on topic model

There are three steps to use topic model as external similarity for phrases: topic model
estimation, obtaining topic distributions of phrases and calculating topic similarity of phrases.

Topic model estimation: In this paper, We use Latent Dirichlet Allocation® (LDA) (Blei et al.,
2003), an unsupervised machine learning technique, to obtain topic model from data collection.

“http://www.sussex.ac.uk/Users/drh21/
Shttp://jgibblda.sourceforge.net/
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This model could give two type of distributions: p (w | 2) and p (z | d). It is worth to mention
that we build separate topic models for references and candidate translations of each system.
This is because separate models can prevent unknown or semantically equivalent words between
different systems from being underestimated.

Topic distributions of phrases: For a phrase phr = w; ---w,, its probability on topic z can be
calculated as follows:

P(topic=z|phr=wy---w,) =P (wy---wy,|2) - P(2)/P(wy--wy,)

n n
“[Te(19) P To(e)
i=1 i=1
n n K
=[P (wil=) - PE/ [P (wil 2) P(2)
i=1 i=1 k=1
where K is the number of topics and Z is the set of topics. In this paper, p (z) = 1/K. Note that
this equation treats phrase as bag of words and the same phrases in different documents within
a topic model have the same topic distribution. Thus such distribution is topic-specific rather
than document-specific.

Topic similarity of phrases: Generally, similarity between topic distributions of two phrases
can be calculated by cosine function. However, in this paper, topic is not aligned between
different models and thus two distributions from different models cannot be used in cosine
function directly. In this paper, we adopt a simplified method. Given two phrases phr, and phr,
from document d, of one system and d, of one reference, their topic similarity is:

SIM, (phr,,phr,) = 1— | cos (phr,,d,) — cos (phr,d,) |

where cos ( phr, d) denotes cosine value between topic distributions of phrase phr and document
d. This Equation suggests that if two phrases have approximate phrase-document similarity, so
does their mutual similarity. Such topic similarity is document-specific. Of course, it is possible
that two translations differ too much while two phrases in them get a higher final similarity.
However, our experiment shows that a bias to internal similarity can reduce such influence.

5 Phrase weight

In this section, we will present two basic functions: ngram, tf.idf. Then a method of improving
them with topic model is described.

5.1 Basic weight functions

In our metric, ngram, length of a phrase, is the default weight function. However, this
function ignores the contexts of a phrase. Thus another function, tf.idf which has been used in
information retrieval widely, is also presented:

tf.idf, 4 = (1+ log(tf, ))log (N/df,)

where tf, 4 is the number of occurrence of the term t in the document d, df; is the number of
documents which contains term t, N is the number of documents.

It is worth noting that in this paper, we build their own tf.idf dictionaries for references and
candidates of each system. This is different from other works, such as Babych and Hartley
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(2004) and Wong and Kit (2009), where tf.idf value of a word in candidate is directly taken
from references and thus unmatched words in the candidate are ignored.

5.2 Topic-based weight

With close scrutiny, phrase weight can be divided into two parts:
Weight (phr,t) = Rel (phr,t) - Inf o (phr) (@)

where Info ( phr) denotes informativeness of phrase phr, Rel ( phr, t) measures the correlation
between the phrase and its text t. Ideally, we expect the function Inf o( phr) has little
correlation with t.

In general, we could measure the correlation between phr and t from different perspectives,
such as topic relevance, probability of co-occurring and so on. In this paper, we define:
Rel (phr,t) =cos (phr, t). And functions in section 5.1 can serve as Inf o. However, It should
be noted that tf.idf value of a word or phrase relys on its contexts to some extent.

6 Maximum similarity map

Similar to Chan and Ng (2008), we view matching between phrases as a bipartite graph and
Kuhn-Munkres (KM) algorithm is use to find a map which has a maximum sum of similarities.
However, our metric needs to calculate a penalty score for phrase-order. Thus when there are
multiple such maps, we need to select one from them.

In this paper, facing with multi-options, KM algorithm will select the maps in which the first
phrase of current reference has the minimal correspondent position in candidate; and this
process will continue in the phrase sequence of the reference until there’s only one map left.
This stratagem would keep the relative order of phrases in some situations which will be
illustrated in section 7.3.

Take Figure 1 as an example. KM will choose Figure 1(a), because in both maps w, ; has the
same correspondence w, ; while w, , has the correspondence w, , in Figure 1(a) and w, 4 in
Figure 1(b).

7 Experiments

We conduct experiments on MTC Part 2 (LDC2003T17) which contains 100 source documents
(878 segments in total) in Chinese and 4 English references for each segment. Translations of
three systems were assessed by human judges on each segments in terms of adequacy (Adq)
and fluency (Flu). We normalize the human raw scores according to Blatz et al. (2004) and
average scores for segments. Document score is the average of scores of its segments. Before
evaluation, translations are tokenized and lower-cased.

In our default metric PBE (or PBE, ), a is set to 0.2, both § and y are 0.5, 6 is 1 and phrase
weight function is ngram. In this paper, only NP and VP are taken into consideration since they
contain more information and give a stable evaluation in our preliminary experiments. Pearson
correlation coefficient is used to measure correlation between automatic evaluation and human
judgements.
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7.1 Performance of default metric

According to Table 1°, our metric PBE is significantly better than other three popular metrics
only with an exception on METEOR” at segment-level. We guess the reason of relative lower
performance of our metric at segment-level than document-level is that short segments do
not contain enough phrases and thus PBE can not perform well on them. Furthermore, Table
1 shows tf.idf brings the best metric PBE 4, suggesting that context information can help to
improve evaluation effectively. In addition, since these metrics put more effort on matching
between candidates and references, they are more correlated with Adq than Flu score.

Segment-Level Document-Level
Adq [ Flu Adq | Flu

BLEU 0.2379 | 0.2184 - -
MAXSIM | 0.2677 | 0.2235 | 0.2722 | 0.2600
METEOR | 0.3489 | 0.3014 | 0.3025 | 0.2938

[ PBE [ 0.3262 ] 0.3199 [ 0.3807 [ 0.3291 ]
PBEgy | - | - | 0.4153 [ 0.3471 |

Metric

Table 1: Pearson coefficient for automatic evaluation metrics

7.2 Effect of topic model in evaluation

Table 2 is the result of evaluation based on topic model.® We can find that topic model can
improve metrics significantly. An exception happens on PBE,;4: topic-based weight function
“Weight” seems helpless. We guess this results from the potential relevance between tf.idf and
our topic model: both rely on context information within a document and corpus.

Document-Level

Metric Topic-Based Func. Adq [ o
0.3807 | 0.3291
PBE +Weight 0.4065 | 0.3503
neram 1 4 SIM 0.4007 | 0.3380

+Weight+SIM 0.4285 | 0.3648
0.4153 | 0.3471

PBE.- +Weight 0.4176 | 0.3439
didf T SIM 0.4428 | 0.3626
+Weight+SIM 0.4324 | 0.3519

Table 2: Pearson coefficient for metrics based on topic model with K=50 and 6=0.8

OTf.idf is tested only on document since document is more suitable for it to make estimation for phrase weight. And
we do not report performance of BLEU at document-level because it’s unfair to compare it with other metrics since
BLEU considers impact of sentence length.

7METEOR (Denkowski and Lavie, 2011) uses parameters tuned to adequacy scores.

8LDA is trained on documents, thus only results at document-level evaluation are presented. And preliminary
experiments suggest that metrics based on topic model perform better when K=50 and 6=0.8. Thus this setting is also
used in this paper.
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7.3 Selection of maximum similarity map

For comparing with our selection strategy for multi-options, we use beam search to find a “better”
map which has less blocks without changing the maximum similarity. Our experiment shows
that there is only one maximum similarity map in most cases; otherwise, in most situations of
multi-options, our strategy will give a better and reasonable results.

For example, in Figure 2, each translation has two “peace” and beam search finds a different
map with KM where the number of blocks declines by 1. However, this result seems to lead to
an overestimation since it destroys the original order of “peace” for the sake of lower pen value
(see related equation in section 3).

‘Output of KM algorithm
Reference:
[helne [saidlve, “ only if [the two sides]xp [want]vP [peacelxr,

»

Machine: ‘v !
[helxe [sald

B ly A [are]w willing [to achieve]vp
[pea€e]xr , [can possibly reahze]VP [peace]xp .

»

-Output of beam search
Reference:
[helxe [saidlve, “ only if [the two sides]xp [want]vp [peacelxr,
[pAeace]m: [can be]vp [the realltyJNp 7 -
Machine:| | .
[helfe [Sald]vl’ “ [only thg,two sides]np [ar€]ve willing [to achieve]ve
[peacelxr, [can possibly realize]VP [peacelxe . ”

Figure 2: An example of comparison between results of KM and beam search

Conclusion and Future Work

This paper present a new automatic MT evaluation metric which is based on linguistic phrase.
This metric incorporates high-level abstract information such as semantic similarity based
on WordNet and topic model into phrase similarity and explores several functions such as
ngram, tf.idf and topic relevance to allocate weight for each phrase. And a method of finding a
maximum similarity map is presented. Experiments show our metric is more suitable for long
translation and achieves significant higher correlation with human judgements than several
other popular metrics at document-level and comparable results at segment-level. Experimental
results also show that context information and topic model can improve the performance of
evaluation effectively.

In the future, we would examine in details how chunker performs on translations with various
qualities, use syntactic information or structure in evaluation and explore utilization of more
sophisticated model instead of bag-of-word etc. We expect our metric could be performed on
document-level SMT systems (Gong et al., 2011) to measure their quality rightly.
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