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A
Noun compounds (NCs) provide a convenient way of communicating complex biomedi-
cal concepts in natural language. New NCs evolve with scientific progress in various fields
and are often not included in standard dictionaries. Thus, semantic analysis of NCs is an
important task in applications including ontology alignment, semantic data integration,
information extraction, and question answering. A first step in such analysis is the syntac-
tic grouping or bracketing of the constituent nouns. The state-of-the-art in bracketing is
mostly limited to compounds with three nouns using empirical studies involving corpora
like the Web or Medline biomedical research article citations. Here, we present an alter-
native knowledge-based approach using the Unified Medical Language System (UMLS)
concept labels and definitions for NCs with three or four tokens. Experiments indicate
that our method offers comparable accuracy with those that use the Web or Medline for
3-token NCs. Preliminary evaluations with 4-token NCs also point to the potential of our
approach to bracketing longer NCs.

K: noun compounds, bracketing, terminologies, knowledge-based methods.

Translation in Telugu

Title: įవ-Ȟౖ ద� ȣȷ© లȍ ఎƚరǭ� ఆంగ¡ సǣ�ళన ƫమșచక șక�-ƬǱ�ణ సంƘగ� తƮ Ɗలöంę ఒక ȣస© -
ĭ� ƫơǲతȚơనం
Authors: రǝáంÌకȜȉǴ,ūƬయÙɁǲÞ
Abstract: ఆంగ¡ Ǡȍ â¡ ష� Ǣౖన įవ, Ȟౖ ద� ȣస© ǓవనలƮ సహజ Ǔషȍ వ�క�పరĖటä సǣ�ళన ƫమșచáȈ
ఒక అƮåలǢౖనǝǱ� Ƭ� అంƘȷ�Ǩ. ȣȹ© యప² గƄƋ పǲణǞంęè² త � సǣ�ళన పƗȈƵ² ǝźక ƬఘంŔȜȍ¡
ȷơరణంõ ęర�బడȜ. అంƚవలన, ĭ� న సంƸŒ సంకరణం, ĭ� ƫƮసంơనం, ĭ� న సంగ² హణం, మǲǪ సంƝహ
ƬవృƄ� వంŒ అƮవర�ƫలȍ సǣ�ళన șá�ర� Țȩ¡ షణ ఒక Ǡఖ�Ǣౖన దశ. అŔవంŒ Țȩ¡ షణȍ సǣ�ళనం ȍƬ
అƮసంơన ƫమșచáల ƬǱ�ణ వǳ� కరణ ఒక ǤదŒ పƬ. ఆƤƬక వǳ� కరణ ȚơƫȈ ఎä�వõ ȞÓ మǲǪ
ș�స ȷǱంȣల ƺౖ అƮǓȚక అధ�యƫల Ɨ£Ǳ Ƅ² పద సǣ�ళƫలç వǲ�ȷ�Ǩ. ఈ ș�సం ȍ ǣǠ įవ-Ȟౖ ద�
పǲǓషసంƸŒ-ǫƬǄౖ ÉǢŦకÙȅంû£Ãȸస� ం -ȍఉంūǓవనలƻǴ¡ మǲǪșŒƬర£చƫలƮఉపǯöంĔ
Ƅ² పద-చƆర�ద సǣ�ళƫలƮ వǳ� కǲంę ఒక ĭ� ƫơǲత ప² ƃ�ǝ�య ȚơƫƬ� ప² ȟశƺŨƆƫ�Ǡ. Ƅ² పద
సǣ�ళన ప² ǯõలȍǝ పద� Ƅ ȞÓ ȋƗ ș�సȷǱంȣȈ ȚƬǯöంę ఇతర పద� ƆలƋƽల�దöన ఖĔ�తత£ం
అంƘȺ�ంƘ. చƆర�ద సǣ�ళƫలƋ జǲƶన ǠందȺ� పǲȥలనȈ, ǝ ȚơƫȈ మǲంత ƼŨúౖ న సǣ�ళƫల
ƬǱ�ణవǳ� కరణȍåťఉపǯగపūȷమǱ� �Ƭ�ȻĔȺ�ƫ�Ǩ.
Keywords: సǣ�ళనƫమșచáȈ,șక�ƬǱ�ణవǳ� కరణ, పǲǓషȈ,ĭ� ƫơǲతపద� ƆȈ
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1 Introduction
Noun compounds are noun phrases that are comprised of tokens each of which is a noun.
For example cell count or colon cancer are examples of NCs with two tokens.
Although these examples are easy to interpret for a human reader, in general, the semantic
content of a noun compound cannot be automatically extracted based on the constituent
nouns. In the NCs olive oil, baby oil, and fuel oil the relationship between
the second token ‘oil’ with the corresponding first tokens ‘olive’, ‘baby’, and ‘fuel’ is clearly
different. However, in these cases, there is a way of deriving the meaning of the NCs using
the constituent words. There are other non-compositional NCs, such as baby boomer,
snake oil, and olive branch, where the meaning of the constituent tokens cannot be
composed to arrive at the semantic interpretation of the corresponding NCs. In biomedical
domains, we often see NCs with 3 or more tokens, where there is additional ambiguity
with regards to the syntactic association among the constituent tokens that can lead to
different semantic interpretations. Consider the NCs cancer cell line and cancer
cell apoptosis. The first NC is the cell line (immortal cell sample) from a cancerous
tumor and the latter is about the apoptosis (programmed cell death) of cancer cells. Thus,
we see that, although the part-of-speech tags are exactly the same for both NCs, the syntax
trees1

(cancer (cell line)) and ((cancer cell) apoptosis)

are different. Since the semantic interpretation closely follows the syntactic interpretation
(referred to as bracketing henceforth), it is an important task to correctly bracket NCs.

1.1 Motivation
Biomedical language processing poses several challenges including significant lexical vari-
ation, synonymy, polysemy, latent and implicit semantic content, and long sentences with
long range compositional dependencies (Friedman and Johnson, 2006). NCs occur fre-
quently in biomedical articles and clinical narratives, and are also found in labels of con-
cepts in biomedical ontologies. Correctly bracketing NCs has applications in ontology
alignment, semantic mappings, information extraction, question answering, and other in-
formatics applications in biomedicine. In ontology alignment, identifying concept pairs
from two different ontologies that are equivalent or involved in a specific relationship is
an essential task. Concept labels together with interrelationships among concepts are used
to achieve this goal. But these labels are often NCs and require appropriate interpretation
to determine equivalence and identify relationships. NC analysis is also useful in generat-
ing semantic mappings where complex biomedical entities in relationships extracted from
raw text need to be mapped to appropriate concepts in standard terminologies. Query ex-
pansion and modification using relevance feedback for recall oriented search tasks also
benefit from NC analysis.

1.2 Related Work
Standard natural language processing tools do not exist for NC bracketing. Both chunkers
and deep parsers — including the latest versions of Stanford parser (de Marneffe et al.,

1For NCs, these are always binary trees, also representable using binary bracketings. The number of possible
ways of binary bracketing n elements is given by the famous n-th Catalan number (2n)!

(n+1)!n!
.
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2006) and Enju parser (Matsuzaki et al., 2007) — do not offer bracketing for NCs. Linguists
and computer scientists have been studying NC bracketing mostly in non-biomedical do-
mains in the recent past. Pustejovsky et al. (1993) used the frequencies of adjacent tokens in
an NC to determine left or right bracketing for 3-token NCs. Lauer (1995) used the depen-
dency model for NC bracketing based on frequencies of bi-grams in Grolier’s encyclopedia
achieving 80% accuracy on a dataset of 3-token NCs extracted from the encyclopedia. Re-
cently, Keller and Lapata (2003) used the Web bi-gram counts and Girju et al. (2005) used
decision trees for supervised NC bracketing to achieve similar results on Lauer’s dataset.

Nakov and Hearst (2005) used new lexical surface features such as possessive markers,
hyphenated or concatenated tokens, and capitalization and conducted several experiments
using Web n-gram counts to achieve a 90% accuracy using a majority vote on the results
of various techniques for Lauer’s dataset. Their work is the first and the only attempt to
perform bracketing of biomedical NCs. They also constructed a dataset of 430 three-token
NCs from Medline2 abstracts and achieved 95% accuracy using the majority vote of 23
different methods. Bergsma et al. (2010) used support vector machines with n-gram counts
and binary lexical features to achieve an accurarcy of 88% with Nakov’s dataset. Although
these datasets contain NCs outside their original full context (e.g., the full sentences they
occur in), the assumption made by all these efforts and our current effort is that effect of
the context is not significant to identifying the bracketing option that corresponds to the
most frequently used (or well accepted) interpretation. So the correct bracketing of an
NC is assumed to be the one that reflects the compositional nature of its most frequent
interpretation.

Currently, to the best of our knowledge, there are no attempts on bracketing 4-token NCs,
although there were cumulative accuracy results for general noun phrases of arbitrary
length by Pitler et al. (2010). Also, earlier 3-token NC bracketing methods are based on
large corpora and have only been tested on non-biomedical datasets, with the exception of
Nakov and Hearst (2005). Our approach is knowledge-based in that we only use the labels
and definitions of UMLS3 concepts to bracket biomedical NCs. Treating the label and con-
cept definition set as a corpus, we bracketed NCs with techniques based on frequency and
relatedness measures. We used the biomedical dataset used in the thesis by Nakov (2007)
for 3-token NCs. We also tested our approach on separate 3- and 4-token NC datasets that
we constructed by parsing biomedical abstracts (Section 3.1) since Nakov’s set was mostly
left bracketed. Our results indicate comparable performance to corpus based methods for
the 3-token NCs and perform 40% better than random guessing for the 4-token NC dataset.

2 Knowledge-Based NC Bracketing Approach
We use the UMLS Metathesaurus (or just UMLS) as the knowledge base for the bracketing
task. UMLS is an ongoing National Library of Medicine (NLM) effort that is an integration
of 161 biomedical terminologies with about 2.6 million concepts and 8.6 unique concept
names. A new version is released each year with updates from included source vocabular-
ies and additional new terminologies. Besides maintaining the inter-concept relationships
provided by the source vocbularies, UMLS also has concept mappings between different
terminologies; synonyms for different concepts are also maintained. Thus, UMLS is an ex-
cellent source of terminological information in biomedicine. For this paper we particularly

2http://www.nlm.nih.gov/bsd/pmresources.html
3http://www.nlm.nih.gov/research/umls/
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use the English unique concept names and the definitions (when provided) of concepts in
UMLS.

Before we proceed, we enumerate the bracketing possibilities for 3- and 4-token NCs. As
seen in example in Section 1, 3-token NCs usually have two options - left and right brack-
eting. However, 4-token NCs have five options. If w1 w2 w3 w4 is an NC, where each wi is
a single-token noun, we have

((w1w2)w3)w4, (w1w2)(w3w4), (w1(w2w3))w4,

w1((w2w3)w4), and w1(w2(w3w4)),

as the five possible bracketing options.

2.1 Frequency Based Greedy Bracketing
There are nearly 6 million unique English concept names (ignoring case) in UMLS that
encompass several important topics. We treat the set of these labels as a small corpus
and count frequencies of token subsequences (based on word boundaries) of NCs to be
bracketed. The first approach is to use the raw frequencies to choose the most frequent
groupings. Let f (x) be the frequency of the phrase x in the UMLS concept name corpus.
For an NC with n tokens denoted by w1 w2 . . . wn, the frequency function f (wiwi+1 . . . w j),
1≤ i ≤ j ≤ n, is the frequency of the phrase “wi wi+1 . . . w j” in the corpus. For a 3-token NC
w1 w2 w3, if f (w1w2)> f (w2w3), we choose left bracketing; otherwise, it is right bracketed.
For 3-token NCs, we also employed the adjacency approach introduced by Pustejovsky
et al. (1993) where instead of raw frequencies, simple proportions are used to determine left
or right bracketing. Here, left bracketing is selected if f (w1w2)/ f (w2) > f (w2w3)/ f (w3),
otherwise right bracketing is chosen.

Algorithm 1 GREEDY-BRACKET-4NC (NC w1w2w3w4)
1: Set max f =max( f (w1w2), f (w2w3), f (w3w4))
2: if max f = f (w1w2) then
3: if log2(3). f (w1w2w3)≥ f (w3w4) then
4: return ((w1w2)w3)w4
5: else
6: return (w1w2)(w3w4)
7: else if max f = f (w2w3) then
8: if f (w1w2w3)≥ f (w2w3w4) then
9: return (w1(w2w3))w4

10: else
11: return w1((w2w3)w4)
12: else
13: if log2(3). f (w2w3w4)≥ f (w1w2) then
14: return w1(w2(w3w4))
15: else
16: return (w1w2)(w3w4)

For 4-token NCs, we follow a greedy approach in choosing among the five possible options.
Assuming w1 w2 w3 w4 as the four-token NC, we use Algorithm 1 to choose the bracketing.
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The intuition behind the algorithm is to use a bottom-up approach to bracket the most
frequent adjacent token pair first, before bracketing longer subsequences. The pseudocode
is mostly self explanatory, except that since these are raw frequencies, we use log2(3) as a
factor4 to give more weight to the occurrence of three-token phrases when comparing them
with two-token phrase frequencies.

In addition to using frequencies of NC tokens in the corpus of unique UMLS strings, we
also experimented with frequency based and adjacency approaches using the set of all
strings in the UMLS without ignoring duplicates arising out of identical concept labels
from different terminologies. While considering unique strings gives more importance
to the presence of a phrase in multiple unique UMLS labels, considering all strings gives
more importance to the overall frequency with which a phrase appears in all labels, thus
accounting for the association with multiple UMLS concepts.

2.2 Cohesion Measure Based Non-Greedy Bracketing
Raw frequency based approaches do not fully consider the relative frequencies of other
tokens involved in an NC. For example, consider the NC family health history.
Although the phrase ‘family health’ is more frequent than ‘health history’, we see that
this NC is right bracketed as it is often interpreted as the health history of a family of an
individual. Also, the greedy nature of the bracketing approach outlined in Algorithm 1
might not be ideal. For example, in the compound liver membrane protein gly-
cosylation, the frequency of ‘membrane protein’ is higher than the frequencies of ‘liver
membrane’ or ‘protein glycosylation’. Using the greedy approach, (membrane protein)
will be chosen as the first grouping. However, it turns out the correct bracketing has (liver
membrane) as the first grouping with protein as its modifier. To counter this, we propose
bracketing cohesion measures that provide a cohesion score based on the full structure of a
bracketing choice. Once the cohesion measure is computed for all bracketing choices, the
choice with the highest cohesion value is output as the correct bracketing.

Bracketing cohesion is a meta-measure based on other relatedness measures. Let
S (t1, t2) ∈ [0, 1] be a measure that computes relatedness between any two given terms
t1 and t2. Then, given a bracketing binary tree T , we define the corresponding bracketing
cohesion measure

C(T,S ) =
∑

non-leaf node n∈T

S (left-child(n), right-child(n)),

where left-node(n) and right-node(n) are the subsequences of NC tokens corresponding
to the left and right children of node n. For example, let T be the bracketing tree shown in
Figure 1 for the example used in this section. Then the cohesion measure value is S (liver,
membrane) + S (liver membrane, protein) + S (liver membrane protein, glycosylation).

Based on the cohesion values, the best bracketing is the one that corresponds to the brack-
eting tree T that maximizes5 C(T,S ). We note that this approach of using cohesion mea-
sures is generic and can be applied to NCs of any length. The intuition behind bracketing

4The general strategy is to use log2(# words in the term) as the weighting factor (Frantzi et al., 1998)
5When multiple trees have the same score, other ways of breaking the tie are needed; one can default to

the most frequent bracketing tree in the observed data for that length. Also, the highest possible value for the
cohesion measure for NCs of length n is n− 1 since there are n− 1 internal nodes and each S (t1, t2)≤ 1.
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Figure 1: A bracketing tree for “Liver Membrane Protein Glycosylation”

cohesion is based on the observation that token subsequences in an NC that is composi-
tional in nature are related to each other. Otherwise, they would not manifest in textual
documents as NCs themselves and as parts of longer NCs. The intuition then is to model
the relative suitability/validity of bracketing options for a given NC based on the strength
of the relatedness between the subsequences that arise out of the tree structures corre-
sponding to the bracketing options. For example, bracketing the NC in Figure 1 as (liver
membrane) (protein glycosylation) would result in the cohesion valueS (liver, membrane)
+ S (protein, glycosylation) + S (liver membrane, protein glycosylation).

We experimented with three symmetric measures for S . The first one is based on the
Jaccard index – for two sets A and B, it is the ratio |A∩B|

|A∪B| , often used to measure resemblance
of two sets of items. Translating this to the terms t i and their frequencies f (t i), we have a
measure

S (t1, t2) =
f (t1 ∧ t2)

f (t1) + f (t2)− f (t1 ∧ t2)
.

Since this is a measure based on frequencies, we also used the UMLS label corpus with
both unique strings and all strings which give us a total of two measures.

We also use a third measure that uses available concept definitions in the UMLS that are
obtained from different source vocabularies and are more descriptive than the concept la-
bels. Pedersen et al. (2007) derived second-order context vectors for UMLS concepts that
capture the frequently co-occurring words in the definitions of concepts and certain con-
cept neighbors (nodes reachable by one-hop), hence the name second-order, in the UMLS
Metathesaurus relationship graph. They define a relatedness measure using the cosine of
the normalized context vectors for any given UMLS concept pair. We call this measure
UMLSRel6 and use this as an option for S to compute cohesion in our experiments based
on a local installation of the Perl modules made available by Pedersen et al. (2007). Other
measures, such as mutual information can also be used for S when computing cohesion
measures.

3 Experiments and Evaluation
We applied the methods elaborated in Section 2 to the biomedical 3-token NC dataset
constructed by Nakov and Hearst (2005); Nakov (2007). This dataset has 430 biomedical
NCs of which 84% are left bracketed. We separately constructed both 3-token and 4-token
NC datasets that were bracketed by two biomedical researchers.

6If one of the terms does not correspond to a UMLS concept or if neither the term nor its neighbors have a
definition, the relatedness value is treated as zero. This usually happens with longer terms with 3 or more tokens.
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3.1 Construction of Datasets
We used Natural Language Tool Kit (NLTK (Bird et al., 2009)) to sample and parse ap-
proximately 175,000 biomedical research article abstracts from NLM’s Pubmed web ser-
vice. Using NLTK’s chunker we sorted 3- and 4-token NCs based on their frequencies and
manually selected 100 from each set according to the sorted order. For the 3-token NCs,
the selection was done to maintain a rouch balance between possible left and right brack-
eted NCs while still going in the sorted order. Following the extraction, two biomedical
researchers (not the authors) independently bracketed the datasets. The annotator agree-
ment was 90% for our 3 NC dataset (NC) and it was 59% for the 4-token NC set (4NC).
We note that expected agreement by chance is only 20% for 4-token NCs because of five
possible choices, while it is 50% for the 3-token case. Since we started out with 100 NCs in
each data set, we finally have 90 in the 3-token set and 59 in the 4-token set. Of the 90 three-
token NCs, 42 are right bracketed; for the 59 NCs in the UK-4NC set, the bracketing choice
((w1w2)w3)w4 is the most frequent, with 32 instances, although, as explained in the next
section, for 10 of these 32 cases annotators felt that the bracketing option (w1w2)(w3w4) also
applied. These gold standard bracketed NC files used for the experiments are provided
here: http://protocols.netlab.uky.edu/~rvkavu2/bracketing.html.

3.2 Experiments and Discussion
For the 3-token NCs we used seven techniques to do the bracketing. The first four are
the raw frequency based methods and the adjacency model based frequency proportion
method outlined in Section 2.1, considering both the unique strings and all strings in the
UMLS labels. These are denoted by Freq, Adj, Freq_uniq, Adj_uniq in Table
1. The next two methods are based on the bracketing cohesion method when the related-
ness measure used in computing cohesion is based on the Jaccard index, again using all
labels and only unique labels denoted by Jaccard and Jaccard_uniq respectively in
the table. The final method uses the bracketing cohesion approach based on the context
vector based UMLSRel (Pedersen et al., 2007) as discussed in Section 2.2. For the 4-token
NCs, we used five techniques where the first two are based on the greedy frequency based
bracketing approach outlined in Algorithm 1 using all UMLS strings and then using only
unique strings separately. The next two methods pick the best bracketing option based on
the cohesion measures of all possible bracketing options using the Jaccard index, again,
using all strings and then only unique strings. Finally, the UMLSRel (Pedersen et al., 2007)
measure is used for bracketing cohesion as outlined in Section 2.2. We also did a majority
vote and defaulted to the most frequent option in the dataset to break ties. The results of
these experiments are outlined in Tables 1 and 2.

From the results we see that frequency based approaches slightly outperformed other mea-
sures. The cohesion based methods slightly underperformed for the 3-token case com-
pared to the frequency based measures. We attribute this to the nature of the measures
chosen – both Jaccard index and UMLSRel are corpus based and moving beyond UMLS
labels and definitions to corpus based approaches might be suitable. However, path based
similarity measures based on the UMLS graph might be more suitable alternatives to be
explored. We also computed majority vote based on our methods, which did not signifi-
cantly improve the overall accuracy, although there were examples where some methods
performed better than others. For the Nakov dataset, the majority vote with left bracketing
as the tie-breaker improved the accuracy to 87% (up 3%). Nakov and Hearst (2005) use 23
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Method Nakov-3NC 3NC
Freq 84 % 89%

Freq_uniq 83% 85%
Adj 67% 78%

Adj_uniq 72% 77%
Jaccard 81% 75%

Jaccard_uniq 81% 74%
UMLSRel 79% 74%

Table 1: Accuracy for 3-token NCs

Method 4NC
Freq 63%

Fre_uniq 63%
Jaccard 48%

Jaccard_uniq 44%
UMLSRel 63%

Table 2: Accuracy for 4-token NCs

different methods in their majority vote for 3-token NCs to arrive at an accuracy of 95%
on a significantly (84%) left bracketed dataset. It would be interesting future task to see
how all those methods perform just by using the UMLS label set as the corpus. Coming
to the 4-token NC dataset we constructed, our greedy frequency based approach is 41%
more successful than random guessing that can lead to an expected 20% accuracy. In the
dataset there were several contentious choices where researchers thought that there are
two equally acceptable bracketing options. This happened in about 10 (out of 59) cases
where the contention is between the choices ((w1w2)w3)w4 and (w1w2)(w3w4). An exam-
ple of such an NC is bone marrow cell proliferation. Here annotators felt that
both interpretations are appropriate. Accuracy improved from 63% to 70% when we al-
lowed either choice for these contentious NCs.

4 Concluding Remarks
We pursued a knowledge-based approach to bracketing biomedical NCs with 3- and 4-
tokens. In addition to employing frequency count based approaches, we also proposed
the concept of bracketing cohesion that takes as input measures of term pair relatedness.
We initially experimented with Jaccard’s index and context vector based UMLSRel mea-
sures for computing bracketing cohesion. We plan to extend the bracketing cohesion using
various other measures of relatedness including mutual information and also compute it
over a bigger corpus. We would also like to explore other path based relatedness measures
based on the UMLS graph structure. Although we don’t have concrete results yet on entire
dataset, using

S (t1, t2) =
1

shortest-path-length(t1, t2)

as the relatedness measure for cohesion based method (Section 2.2) produced good results
for a smaller subset of the 3-token NCs. Another important frequency based measure that
outputs term-hood scores to terms is the C-value method (Frantzi et al., 1998). We are
currently in the process of computing C-values for different n-grams. The idea is to use
the C-values instead of the frequencies in the greedy approach. We also plan to build and
test our methods on a larger 4-token NC dataset and perform a more thorough analysis on
inter-annotator agreement and confidence intervals for accuracies on unseen datasets.

Acknowledgements
Many thanks to Jacob Painter and Supriya Prabhala for helping us create the gold stan-
dard dataset. The project described was supported by the National Center for Research

566



Resources, UL1RR033173, and the National Center for Advancing Translational Sciences,
UL1TR000117. The content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the NIH.

References
Bergsma, S., Pitler, E., and Lin, D. (2010). Creating robust supervised classifiers via web-
scale n-gram data. In ACL, pages 865–874.

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python. O’Reilly
Media.

de Marneffe, M., MacCartney, B., and Manning, C. (2006). Generating Typed Dependency
Parses from Phrase Structure Parses. In Proceedings of LREC 2006.

Frantzi, K. T., Ananiadou, S., and Tsujii, J.-i. (1998). The c-value/nc-value method of
automatic recognition for multi-word terms. In Second European Conf. on Research and
Advanced Tech. for Digital Libraries, ECDL ’98, pages 585–604.

Friedman, C. and Johnson, S. B. (2006). Natural language and text processing in
biomedicine. In Shortliffe, E. H. and Cimino, J. J., editors, Biomedical Informatics, Health
Informatics, pages 312–343. Springer New York.

Girju, R., Moldovan, D., Tatu, M., and Antohe, D. (2005). On the semantics of noun
compounds. Comput. Speech Lang., 19:479–496.

Keller, F. and Lapata, M. (2003). Using the web to obtain frequencies for unseen bigrams.
Comput. Linguist., 29:459–484.

Lauer, M. (1995). Designing Statistical Language Learners: Experiments on Noun Compounds.
PhD thesis, Macquarie University, Australia.

Matsuzaki, T., Miyao, Y., and Tsujii, J. (2007). Efficient HPSG parsing with supertag-
ging and CFG-filtering. In Proceedings of the 20th international joint conference on Artificial
intelligence, IJCAI’07, pages 1671–1676.

Nakov, P. and Hearst, M. (2005). Search engine statistics beyond the n-gram: Application
to noun compound bracketing. In Proceedings of CoNLL-05, pages 17–24.

Nakov, P. I. (2007). Using the Web as an Implicit Training Set: Application to Noun Compound
Syntax and Semantics. PhD thesis, Univ. of California, Berkeley.

Pedersen, T., Pakhomov, S. V. S., Patwardhan, S., and Chute, C. G. (2007). Measures of
semantic similarity and relatedness in the biomedical domain. J. of Biomedical Informatics,
40:288–299.

Pitler, E., Bergsma, S., Lin, D., and Church, K. W. (2010). Using web-scale n-grams to
improve base np parsing performance. In COLING, pages 886–894.

Pustejovsky, J., Anick, P., and Bergler, S. (1993). Lexical semantic techniques for corpus
analysis. Comput. Linguist., 19:331–358.

567




